JP2979840B2 - Method for producing material for fluoride glass fiber - Google Patents

Method for producing material for fluoride glass fiber

Info

Publication number
JP2979840B2
JP2979840B2 JP4100946A JP10094692A JP2979840B2 JP 2979840 B2 JP2979840 B2 JP 2979840B2 JP 4100946 A JP4100946 A JP 4100946A JP 10094692 A JP10094692 A JP 10094692A JP 2979840 B2 JP2979840 B2 JP 2979840B2
Authority
JP
Japan
Prior art keywords
fluoride
raw material
glass
present
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4100946A
Other languages
Japanese (ja)
Other versions
JPH05294637A (en
Inventor
英興 内川
繁 松野
喜市 吉新
勝大 今田
久男 渡井
建 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4100946A priority Critical patent/JP2979840B2/en
Publication of JPH05294637A publication Critical patent/JPH05294637A/en
Application granted granted Critical
Publication of JP2979840B2 publication Critical patent/JP2979840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/042Fluoride glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えば光通信システ
ム等に用いる低損失フッ化物ファイバーの化学気相成長
(CVD)法を用いたフッ化物ガラスファイバー用材料
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a material for a fluoride glass fiber using a chemical vapor deposition (CVD) method of a low-loss fluoride fiber used in, for example, an optical communication system.

【0002】[0002]

【従来の技術】近年、光通信システムの進歩発展が目覚
ましく、その一つとして赤外光ファイバーを用いた長距
離通信システムを実現する試みがなされている。その実
現のためには、石英系光ファイバーをはるかにしのぐ低
損失性をもつファイバーが不可欠である。これらの赤外
光ファイバー用の候補材料として、フッ化物ガラス、カ
ルコゲン化物ガラス、ハロゲン化物結晶などがある。こ
の中で、フッ化物ガラスが性能、製法の難易性に対する
見通しなどの点から、最も有望視されている。フッ化物
ガラスの製造法としては、るつぼを用いてフッ化物を熔
解反応させる固相法および各種の気相法が盛んに検討さ
れているが、この方法ではるつぼからの不純物がガラス
中に混入されやすく、未だ確立された製法は無い現状に
ある。このうち、最近は高純度均質ガラスの優れた合成
法としてCVD法が注目を集め、多くの試みがなされて
いる。
2. Description of the Related Art In recent years, the progress of optical communication systems has been remarkable, and as one of them, attempts have been made to realize long-distance communication systems using infrared optical fibers. To achieve this, a fiber having a low loss property far exceeding that of a silica-based optical fiber is indispensable. Candidate materials for these infrared optical fibers include fluoride glass, chalcogenide glass, and halide crystals. Among them, fluoride glass is considered most promising in terms of performance, difficulty in the production method, and the like. As a method for producing fluoride glass, a solid phase method in which a fluoride is melted and reacted using a crucible and various gas phase methods have been actively studied.In this method, impurities from the crucible are mixed into the glass. It is easy to use and there is no established manufacturing method. Of these, recently, the CVD method has attracted attention as an excellent method for synthesizing high-purity homogeneous glass, and many attempts have been made.

【0003】このようなフッ化物ファイバー用材料に要
求される性能としては、低損失であることが最も重要で
ある。また、製造プロセス面では、高速度で容易に製造
できることが挙げられる。特に、低損失なものを得るた
めには、光伝送損失の原因となる不純物および微結晶の
生成を抑制する必要がある。このような観点から、原料
となる有機金属化合物の精製による高純度化が容易であ
り、原料、反応ガス、反応条件等の改善によって微結晶
の抑制が可能なCVD法が上記材料の製造上非常に有利
である。これらのことは、例えば刊行物{第52回応用
物理学会学術講演会予稿集講演番号11a−ZK−9}
などに示されている。
As the performance required of such a material for a fluoride fiber, low loss is the most important. Further, in terms of a manufacturing process, it can be easily manufactured at a high speed. In particular, in order to obtain a low loss, it is necessary to suppress the generation of impurities and microcrystals that cause optical transmission loss. From such a viewpoint, a CVD method that can easily purify an organometallic compound as a raw material by purification and easily suppress microcrystals by improving a raw material, a reaction gas, reaction conditions, and the like is a very important method for manufacturing the above material. Is advantageous. These are described in, for example, the publication {52th Annual Meeting of the Japan Society of Applied Physics, Proceedings No. 11a-ZK-9}.
And so on.

【0004】[0004]

【発明が解決しようとする課題】しかし、CVD法によ
って製造することが最も有利であるにもかかわらず、現
在CVD用原料として安定で良好な気化特性を有するも
のが存在しないことは、本来のCVD法のもつ利点を活
かせない大きな問題となっている。これは、主としてC
VD用原料として多用されているβージケトン系のジピ
バロイルメタン(DPM)化合物などの加熱による気化
特性が不良であり、熱分解しやすいことによるものであ
る。この点は例えば刊行物{第52回応用物理学会学術
講演会予稿集講演番号11a−ZK−8}に指摘されて
おり、金属のDPM化合物の本質的な不安定性に起因す
る欠点であると考えられる。このような原料の不安定性
のため、極端な場合には原料を使い捨てにして合成せざ
るをえないという事態も生じている。したがって、上記
の原料に起因する欠点のために、性能の良好かつ作製再
現性のよいフッ化物ファイバー用材料を製造するための
CVD技術は確立されていない現状にある。
However, despite the fact that it is most advantageous to manufacture by the CVD method, the fact that there is no material having a stable and good vaporization characteristic as a CVD material at present does not exist. This is a major problem that cannot take advantage of the advantages of the law. This is mainly due to C
This is because β-ketone-based dipivaloylmethane (DPM) compounds, which are frequently used as a raw material for VD, have poor vaporization characteristics due to heating and are easily thermally decomposed. This point is pointed out, for example, in the publication {The 52nd Annual Meeting of the Japan Society of Applied Physics, Proceedings No. 11a-ZK-8}, and is considered to be a drawback caused by the intrinsic instability of metal DPM compounds. Can be Due to such instability of the raw materials, in extreme cases, the raw materials have to be disposable and synthesized. Therefore, due to the drawbacks caused by the above-mentioned raw materials, a CVD technique for producing a fluoride fiber material having good performance and good production reproducibility has not been established.

【0005】即ち、従来のCVD法によるフッ化物ファ
イバー用材料の製造においては、原料の安定性および気
化性不良に伴い、低温での加熱によってCVD反応部へ
原料を安定に輸送することは不可能であった。そのた
め、多成分系の組成制御が行いにくく、良好な特性を有
するファイバー用材料の安定かつ高速合成ができないと
いう大きな問題点があった。さらに、原料の気化効率を
上げるために高い温度で加熱すると、原料が熱分解しな
がら輸送されてしまい、堆積物中への不純物の混入、微
結晶生成や組成ズレが不可避であった。そればかりか、
前記のような原料を使い捨てにしなければならないとい
う不都合も起こっていた。また、従来の方法では気化速
度を抑えて合成(反応)時間を長くした場合には、原料
の気化状態が経時的に変化するために、形成した膜の厚
さ方向の組成が不均質になって光損失が増大することが
避けられなかった。そのため、安定かつ低温での良好な
気化が得られる新原料の開発が強く望まれているが、こ
れに関しては未だ全く進展はない現状にある。
That is, in the production of a material for a fluoride fiber by the conventional CVD method, it is impossible to stably transport the raw material to the CVD reaction section by heating at a low temperature due to the poor stability and vaporization of the raw material. Met. Therefore, there has been a great problem that it is difficult to control the composition of a multi-component system, and it is not possible to stably and quickly synthesize a fiber material having good characteristics. Furthermore, if the raw material is heated at a high temperature in order to increase the vaporization efficiency, the raw material is transported while being thermally decomposed, so that the incorporation of impurities into the sediment, the formation of microcrystals, and the composition shift are inevitable. Not only that,
There has also been a disadvantage that the above-mentioned raw materials must be disposable. Further, in the conventional method, when the vaporization rate is suppressed and the synthesis (reaction) time is lengthened, the vaporized state of the raw material changes with time, so that the composition in the thickness direction of the formed film becomes inhomogeneous. It was inevitable that the light loss would increase. Therefore, there is a strong demand for the development of a new raw material that can provide stable and good vaporization at a low temperature, but there is no progress on this at all.

【0006】この発明は、かかる課題を解決するために
なされたもので、容易にかつ高速に、良好な性能を有す
るフッ化物ガラスファイバー用材料の製造方法を得るこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a method for easily and rapidly producing a material for a fluoride glass fiber having good performance.

【0007】[0007]

【課題を解決するための手段】この発明のフッ化物ガラ
スファイバー用材料の製造方法は、周期率表のIAない
しIVA族金属原子が酸素原子を介して有機基と結合し
た成分原料の気化工程において、上記原料にジピバロイ
ルメタンおよびテトラヒドロフランの内の少なくとも一
種の蒸気を接触させて後、反応させる方法である。
According to the present invention, there is provided a method for producing a material for a fluoride glass fiber, comprising the steps of: evaporating a component raw material in which a metal atom belonging to Group IA or IVA of the periodic table is bonded to an organic group via an oxygen atom; A method in which at least one kind of vapor of dipivaloylmethane and tetrahydrofuran is brought into contact with the above-mentioned raw materials and then reacted.

【0008】[0008]

【作用】この発明において、周期率表のIAないしIV
A族金属原子が酸素原子を介して有機基と結合した化合
物原料の気化工程において、ジピバロイルメタンおよび
テトラヒドロフランの内の少なくとも一種の蒸気を接触
させることにより、上記原料の熱分解を抑制するととも
に、従来より低温での加熱によって安定かつ高速に反応
部へ輸送することができるので、再現性の良い原料の気
化を得ることができる。
According to the present invention, IA to IV in the periodic table are used.
In the vaporization step of a compound raw material in which a group A metal atom is bonded to an organic group via an oxygen atom, by contacting at least one vapor of dipivaloylmethane and tetrahydrofuran, thermal decomposition of the raw material is suppressed. At the same time, the raw material can be transported to the reaction section more stably and at a higher speed by heating at a lower temperature than before, so that the raw material with good reproducibility can be vaporized.

【0009】[0009]

【実施例】本発明者らは、前記のDPM化合物のような
金属原子が有機基と結合した化合物の気化性について詳
細に検討を加えた結果、これらの化合物のうち特にフッ
化物ファイバーの主成分となるIA族ないしIVA族の
Li、Na、Sr、Ba、Y、La、Zr、Hfなどの
化合物の安定性かつ気化性が良好でないことが判明し
た。したがって、これらの金属の酸化物を主成分とする
フッ化物ガラスをCVD法によって合成する場合、特に
目的とする組成への制御性が難しくなることが避けられ
ないことが分かった。そこで本発明者らは、これらの化
合物を従来よりも低温での加熱により、熱分解すること
なく安定に気化させることができれば、組成の制御性が
向上し、所望の特性を有するファイバー用材料が再現性
よく高速で合成できることを見いだし、本発明を完成す
るに至った。
EXAMPLES The inventors of the present invention have studied in detail the volatility of a compound in which a metal atom is bonded to an organic group, such as the above-mentioned DPM compound, and as a result, among these compounds, in particular, the main component of fluoride fiber It has been found that the compounds of Group IA to Group IVA, such as Li, Na, Sr, Ba, Y, La, Zr, and Hf, have poor stability and poor vaporization. Therefore, it has been found that in the case of synthesizing a fluoride glass mainly containing an oxide of such a metal by a CVD method, it is inevitable that controllability to a target composition is particularly difficult. Thus, the present inventors, if these compounds can be stably vaporized without being thermally decomposed by heating at a lower temperature than before, the controllability of the composition is improved, and a fiber material having desired characteristics is obtained. They have found that they can be synthesized at high speed with good reproducibility, and have completed the present invention.

【0010】実施例1.五元の原料加熱系統を有する通
常のホットウォールタイプのCVD装置を用い、この発
明の一実施例によるジルコニウム系フッ化物ガラスであ
る50ZrF4−30BaF2−10LaF3−10YF3
を酸化マグネシウム基板上に合成する実験を行った。原
料としては、従来から存在する各金属のアセチルアセト
ナート誘導体を用い、4元の原料それぞれに加熱時にお
いて、ジピバロイルメタンの蒸気を流入接触させた。合
成条件としては、原料の加熱温度をすべて210℃に設
定し、キャリアガスはアルゴン、反応ガスは四フッ化炭
素で反応部(炉)内圧力は1Torr、基板温度は22
0℃に保持して120分間反応を行った。反応後、四フ
ッ化炭素気流中で室温まで自然徐冷を行ったところ、膜
厚約3μmのこの発明の一実施例によるフッ化物ガラス
が得られた。赤外分光光度計を用い、このガラスの光透
過性を測定して、このガラスを用いてファイバーを製作
した場合の赤外光伝送損失の大まかな指標とした。さら
に、ガラスファイバー材料の膜質および結晶の状態を電
子顕微鏡で観察調査した。
Embodiment 1 FIG. Using a normal hot wall type CVD apparatus having a pentagonal raw material heating system, 50ZrF 4 -30BaF 2 -10LaF 3 -10YF 3 which is a zirconium-based fluoride glass according to one embodiment of the present invention.
Was synthesized on a magnesium oxide substrate. As a raw material, a conventionally existing acetylacetonate derivative of each metal was used, and steam of dipivaloylmethane was flowed into and contacted with each of the quaternary raw materials during heating. As the synthesis conditions, the heating temperature of all the raw materials was set to 210 ° C., the carrier gas was argon, the reaction gas was carbon tetrafluoride, the pressure inside the reaction section (furnace) was 1 Torr, and the substrate temperature was 22 ° C.
The reaction was maintained at 0 ° C. for 120 minutes. After the reaction, the resultant was naturally cooled slowly to room temperature in a stream of carbon tetrafluoride. As a result, a fluoride glass having a thickness of about 3 μm according to one embodiment of the present invention was obtained. The light transmittance of the glass was measured using an infrared spectrophotometer, and was used as a rough index of infrared light transmission loss when a fiber was manufactured using the glass. Further, the film quality and crystal state of the glass fiber material were observed and investigated with an electron microscope.

【0011】比較例1.実施例1と同様の原料および合
成条件を用いて、テトラヒドロフラン蒸気の混入を行わ
ない従来のCVD法により、同一組成のフッ化物ガラス
ファイバー用材料を合成したところ、基板上への堆積が
ほとんど認められず、210℃の加熱では気化性が不良
であることが判明した。そこで、従来法については原料
の加熱温度を一律290℃に設定し直して120分間合
成を行い、実施例1の場合と同様に、反応後四フッ化炭
素気流中で室温まで自然放冷を行って1μmの厚さの膜
を得た。この膜についても同様に、膜質および上記と同
一基準で光透過性(光伝送損失)の評価を行った。
Comparative Example 1 Using the same raw material and synthesis conditions as in Example 1, a material for a fluoride glass fiber having the same composition was synthesized by a conventional CVD method without mixing of tetrahydrofuran vapor. However, it was found that heating at 210 ° C. resulted in poor vaporization. Therefore, in the conventional method, the heating temperature of the raw materials is uniformly reset to 290 ° C., and the synthesis is performed for 120 minutes. As in the case of Example 1, the reaction is allowed to cool naturally to room temperature in a stream of carbon tetrafluoride. Thus, a film having a thickness of 1 μm was obtained. This film was also evaluated for film quality and light transmittance (light transmission loss) in the same manner as described above.

【0012】図1は、この発明と従来例を比較する上記
実施例1および比較例1で得られた2種類のフッ化物フ
ァイバーガラス材料の赤外光損失特性を示す赤外光損失
特性図であり、図中、A1は実施例1のフッ化物ファイ
バーガラス材料の特性、B1は比較例1のフッ化物ファ
イバーガラス材料の特性である。図1から明らかなよう
に、この発明の一実施例によるファイバーガラス材料は
従来の製造方法によるものと比較して、赤外光領域全般
にわたって損失が低く、特に通信用信号光の波長として
予定されている2.55μm付近の波長においてこの傾
向が顕著である。また、前記の実験において、両CVD
法のジルコニウム系フッ化物ガラス合成における堆積速
度を比べたところ、同一の加熱(気化)温度においてこ
の発明の一実施例の場合には従来法の50〜100倍優
れていることが判明した。さらに、両ファイバーガラス
材料の表面観察によれば、従来法によるものは所々に微
結晶構造の生成が見られたのに対し、この発明の一実施
例によるものはこれが全く見られなかった。即ち、この
発明の一実施例によると、光の伝送損失を生ずる原因と
なる微結晶の生成を抑制できることが分かった。したが
って、この発明の一実施例によれば、従来の製造方法よ
りはるかに低温での加熱により、性能の良好なフッ化物
ファイバー用ガラス材料をCVD法によって合成するこ
とが可能である。
FIG. 1 is an infrared light loss characteristic diagram showing the infrared light loss characteristics of the two types of fluoride fiber glass materials obtained in Example 1 and Comparative Example 1 for comparing the present invention with the conventional example. In the figures, A1 indicates the characteristics of the fluoride fiberglass material of Example 1, and B1 indicates the characteristics of the fluoride fiberglass material of Comparative Example 1. As is apparent from FIG. 1, the fiber glass material according to one embodiment of the present invention has a lower loss over the entire infrared light region than that of the conventional manufacturing method, and is particularly intended as a wavelength of communication signal light. This tendency is remarkable at a wavelength around 2.55 μm. In the above experiment, both CVDs were used.
When the deposition rates in the synthesis of zirconium-based fluoride glass by the method were compared, it was found that, at the same heating (vaporization) temperature, the embodiment of the present invention was 50 to 100 times better than the conventional method. Further, according to the surface observation of both fiber glass materials, a microcrystalline structure was formed in some places according to the conventional method, whereas no formation was observed in the embodiment of the present invention. That is, according to the embodiment of the present invention, it has been found that the generation of microcrystals which causes light transmission loss can be suppressed. Therefore, according to the embodiment of the present invention, it is possible to synthesize a glass material for a fluoride fiber having excellent performance by the CVD method by heating at a much lower temperature than the conventional manufacturing method.

【0013】実施例2.実施例1と同一のCVD装置を
用い、ジルコニウム系フッ化物ガラスである50ZrF
4−20BaF2−5LaF3−5AlF3−20NaFを
酸化マグネシウム基板上に、この発明の他の実施例によ
って合成を行った。原料としては、従来から多く用いら
れている各金属のジピバロイルメタネート誘導体を原料
として用い、これらをそれぞれすべて190℃に加熱し
ながら、それぞれの中にキャリアガスのアルゴンと共に
有機溶剤であるテトラヒドロフランの蒸気を流入させて
接触させた。基板温度は200℃に設定した。反応ガス
はフッ化水素で反応部(炉)内圧力は1Torrで10
0分間反応を行った。反応後、フッ化水素気流中で室温
まで自然徐冷を行ったところ、膜厚約5μmのこの発明
の他の実施例によるフッ化物ガラスが得られた。実施例
1と同様に赤外分光光度計を用い、このガラス材料の赤
外光損失の指標として光透過性を測定した。さらに、ガ
ラス材料の膜質および結晶の状態を電子顕微鏡で調査し
た。
Embodiment 2 FIG. Using the same CVD apparatus as in Example 1, 50ZrF which is a zirconium-based fluoride glass
4 -20BaF 2 -5LaF 3 -5AlF 3 -20NaF magnesium oxide substrate was subjected to other examples the synthesis of the present invention. As a raw material, a dipivaloyl methanate derivative of each metal that has been widely used in the past is used as a raw material, and while these are all heated to 190 ° C., each is an organic solvent together with argon as a carrier gas in each. Tetrahydrofuran vapor was flowed in and brought into contact. The substrate temperature was set at 200 ° C. The reaction gas is hydrogen fluoride and the pressure inside the reactor (furnace) is 10 at 1 Torr.
The reaction was performed for 0 minutes. After the reaction, the resultant was naturally cooled slowly to room temperature in a hydrogen fluoride gas stream. As a result, a fluoride glass having a film thickness of about 5 μm according to another embodiment of the present invention was obtained. Light transmittance was measured as an index of infrared light loss of this glass material using an infrared spectrophotometer in the same manner as in Example 1. Further, the film quality and crystal state of the glass material were examined with an electron microscope.

【0014】比較例2.実施例2と同様の原料および合
成条件を用いてテトラヒドロフラン蒸気の混入を行わな
い従来のCVD法により、同一組成のフッ化物ファイバ
ー用ガラス材料の合成を実施した。しかし、基板上への
堆積はわずかであり、190℃の加熱では気化性が不良
であることが判明した。そこで、従来法については原料
の加熱温度を一律270℃に設定し直して120分間合
成を行い、この発明の他の実施例の場合と同様に、反応
後フッ化水素気流中で室温まで自然放冷を行って2μm
の厚さの膜を得た。この膜についても同様に、膜質およ
び実施例2と同一基準で光透過性(光損失)の評価をお
こなった。
Comparative Example 2 Using the same raw material and synthesis conditions as in Example 2, a glass material for a fluoride fiber having the same composition was synthesized by a conventional CVD method without mixing of tetrahydrofuran vapor. However, the deposition on the substrate was slight, and it was found that heating at 190 ° C. resulted in poor vaporization. Therefore, in the conventional method, the heating temperature of the raw materials is uniformly reset to 270 ° C., and the synthesis is performed for 120 minutes. After the reaction, the mixture is spontaneously released to room temperature in a hydrogen fluoride gas stream as in the other embodiments of the present invention. 2 μm after cooling
Was obtained. This film was similarly evaluated for film quality and light transmittance (light loss) on the same basis as in Example 2.

【0015】図2は、この発明と従来例を比較する上記
実施例2および比較例2で得られた2種類のフッ化物フ
ァイバーガラス材料の赤外光損失特性を示す赤外光損失
特性図であり、図中、A2は実施例2のフッ化物ファイ
バーガラス材料の特性、B2は比較例2のフッ化物ファ
イバーガラス材料の特性である。図2から明らかなよう
に、この発明の他の実施例による材料は、比較例として
用いた従来の製造方法によるものと比較して、赤外光領
域全般にわたって損失が低く、特に2.55μm付近の
波長においてこの傾向が顕著であるという実施例1の場
合と同様の結果が得られた。さらに、ガラス材料の膜質
を電子顕微鏡で調査した結果、従来法によるものは実施
例1の比較例の場合と同様、ところどころに微結晶の生
成が認められた。また、前記の実験中に両CVD法のジ
ルコニウム系フッ化物ガラス合成における堆積速度を比
べたところ、同一の加熱(気化)温度においてこの発明
の他の実施例の方法の場合には従来法の20〜50倍優
れていることが判明した。したがって、この発明の他の
実施例によれば、従来の製造方法よりはるかに低温での
加熱により、性能の良好なフッ化物ファイバー用ガラス
材料をCVD法によって高速に合成できることがこの実
施例においても明らかとなった。
FIG. 2 is an infrared light loss characteristic diagram showing infrared light loss characteristics of the two kinds of fluoride fiber glass materials obtained in the above-mentioned Example 2 and Comparative Example 2 which compare the present invention with the conventional example. In the figures, A2 indicates the characteristics of the fluoride fiber glass material of Example 2, and B2 indicates the characteristics of the fluoride fiber glass material of Comparative Example 2. As is apparent from FIG. 2, the material according to the other embodiment of the present invention has a lower loss over the entire infrared light region, especially around 2.55 μm, as compared with the material according to the conventional manufacturing method used as the comparative example. The same result as in the case of Example 1 in which this tendency was remarkable at the wavelength of was obtained. Further, as a result of examining the film quality of the glass material with an electron microscope, it was found that microcrystals were formed in some places by the conventional method, as in the comparative example of Example 1. Further, when the deposition rates in the synthesis of the zirconium-based fluoride glass of both CVD methods were compared during the above experiment, the same heating (evaporation) temperature was observed in the case of the method of another embodiment of the present invention. It was found to be ~ 50 times better. Therefore, according to another embodiment of the present invention, it can be seen that a glass material for a fluoride fiber having good performance can be synthesized at a high speed by the CVD method by heating at a much lower temperature than the conventional manufacturing method. It became clear.

【0016】実施例1および2において、比較例で用い
た従来法によるガラスファイバー用材料の性能が良好で
ない最大の理由は、原料が加熱によって気化しにくく、
かつ比較的高い温度で加熱したために原料の分解が生
じ、反応部まで安定に輸送されにくかったことに起因す
ると考えられる。即ち、これら従来法によるサンプルの
ファイバー用材料としての特性が良好でない主な原因
は、実施例中で記述したような微結晶の生成ならびに各
原料の不安定輸送に起因する合成膜中における組成の不
均質性が生じたことにあると推定される。
In Examples 1 and 2, the main reason why the performance of the material for glass fiber according to the conventional method used in the comparative example is not good is that the raw material is hardly vaporized by heating, and
Further, it is considered that the raw material was decomposed due to heating at a relatively high temperature, and it was difficult to stably transport the raw material to the reaction section. That is, the main reason why the properties of the sample obtained by the conventional method as a material for a fiber are not good is that the composition in the synthetic film caused by the formation of microcrystals and the unstable transport of each raw material as described in the Examples. It is presumed that heterogeneity has occurred.

【0017】この発明の実施例の製造方法を用い、実施
例1および2と同様にして、実施例で示した組成に限ら
ず、ZrF4−BaF2−LaF3−YF3−AlF3−L
iF、ZrF4−HfF4−BaF2−LaF3−NaF−
AlF3、ZrF4−BaF2−GaF3−AlF3、Zr
4−BaF2−LaF3−NaF−AlF3−InF3
どのフッ化物ガラスファイバー用材料をCVD法により
製造した。その結果、いずれの場合にも先に示した実施
例1および2と同様に、この発明の実施例により、従来
法よりも良好な性能を有するフッ化物ガラスファイバー
用材料を製造できることが判明した。
[0017] Using the method of Example of the present invention, in the same manner as in Example 1 and 2 is not limited to the composition shown in Example, ZrF 4 -BaF 2 -LaF 3 -YF 3 -AlF 3 -L
iF, ZrF 4 -HfF 4 -BaF 2 -LaF 3 -NaF-
AlF 3, ZrF 4 -BaF 2 -GaF 3 -AlF 3, Zr
Materials for fluoride glass fibers such as F 4 —BaF 2 —LaF 3 —NaF—AlF 3 —InF 3 were produced by a CVD method. As a result, it was found that, in each case, similarly to Examples 1 and 2 described above, a material for a fluoride glass fiber having better performance than the conventional method can be manufactured by the example of the present invention.

【0018】この発明に係わる成分原料に接触させる蒸
気について、各種の有機溶剤を検討したところ、実施例
で用いた2種以外のものではこの発明により得られる効
果である低温での加熱による気化性の向上の効果は明ら
かにならなかった。したがって、この発明では、原料に
接触させる蒸気として、ジピバロイルメタンおよびテト
ラヒドロフランの内の少なくとも一種を用いる必要があ
る。この効果の詳細については明らかでないが、以上の
実験結果から加熱による原料の分解を抑制し、しかも従
来原料に付加することによって、原料よりも低沸点の付
加体を形成し、このために気化性が向上すると同時に、
この付加体が安定に反応部に輸送される働きをなすもの
と推定される。
Various organic solvents were examined for the vapor to be brought into contact with the component raw materials according to the present invention. The vaporization by heating at a low temperature, which is an effect obtained by the present invention, was obtained for the organic solvents other than the two used in the examples. The effect of the improvement was not clear. Therefore, in the present invention, it is necessary to use at least one of dipivaloylmethane and tetrahydrofuran as the vapor to be brought into contact with the raw material. Although the details of this effect are not clear, from the above experimental results, decomposition of the raw material due to heating is suppressed, and by adding it to the conventional raw material, an adduct having a lower boiling point than the raw material is formed. At the same time
It is presumed that this adduct functions to be stably transported to the reaction section.

【0019】さらに、この発明は、成分原料の気化工程
においてジピバロイルメタンおよびテトラヒドロフラン
の蒸気を接触させる方法には限定されない。接触方法と
しては、実施例のように加熱時に原料中に直接接触させ
てもよく、キャリアガスとともに原料中に流入接触させ
てもよく、いずれの場合にも原料の気化促進効果が現れ
ることを実験によって確かめた。なお、この発明におけ
る気化工程とは、液体または固体状原料が気体になる時
および気体になった直後を指すものとする。
Further, the present invention is not limited to a method of bringing the vapors of dipivaloylmethane and tetrahydrofuran into contact in the vaporization step of the component raw materials. As a contact method, as in the example, the raw material may be brought into direct contact with the raw material at the time of heating, or the raw material may be brought into contact with the raw material together with a carrier gas. Confirmed by. The vaporization step in the present invention refers to the time when the liquid or solid raw material becomes gas and immediately after it becomes gas.

【0020】また、この発明に係わる成分原料として
は、周期率表のIAないしIVA族に属するLi、N
a、Ba、Sr、Y、La、Al、Gd、Zr、Hf、
などの金属原子が酸素原子を介して有機基と結合した化
合物であれば、上記の有機溶剤の効果が発揮されること
を実験によって確認した。したがって、この条件に適合
するものとして、上記金属のアセチルアセトネート、ジ
ピバロイルメタネート、アルコキシド、ヘキサフルオロ
アセチルアセトネート、ペンタフルオロプロパノイルピ
バロイルメタネート、シクロペンタジエニルおよびそれ
らの誘導体などを使用し、いずれの場合にも前記の気化
促進効果が発現することを確かめた。これらの原料有機
金属化合物の中で、特にヘキサフルオロアセチルアセト
ネートやペンタフルオロプロパノイルピバロイルメタネ
ート等のフッ素を含有する誘導体は、フッ化物系ガラス
を合成するのに都合がよいが、この発明でも従来法と同
様に反応ガスとして四フッ化炭素、フッ化水素、六フッ
化イオウなどのフッ素化合物を使用すれば、必ずしも上
記のフッ素を含有する誘導体を使用する必要はない。こ
の発明の実験において、上記に挙げた有機金属化合物の
うちのどのような物を原料として使用しても、合成した
ファイバーガラス材料の性能に相違は生じないことを実
施例と同様の実験によって確認した。
The component raw materials according to the present invention include Li, Nb belonging to groups IA to IVA of the periodic table.
a, Ba, Sr, Y, La, Al, Gd, Zr, Hf,
It was confirmed by experiments that the above-mentioned effect of the organic solvent was exhibited when the compound was a compound in which a metal atom was bonded to an organic group via an oxygen atom. Therefore, acetylacetonate, dipivaloylmethanate, alkoxide, hexafluoroacetylacetonate, pentafluoropropanoylpivaloylmethanate, cyclopentadienyl, and derivatives thereof of the above-mentioned metals are considered as meeting these conditions. And the like were used, and it was confirmed that the above-described vaporization promoting effect was exhibited in each case. Among these starting organometallic compounds, derivatives containing fluorine, such as hexafluoroacetylacetonate and pentafluoropropanoylpivaloylmethanate, are particularly convenient for synthesizing a fluoride glass. In the present invention, if a fluorine compound such as carbon tetrafluoride, hydrogen fluoride, or sulfur hexafluoride is used as the reaction gas as in the conventional method, it is not always necessary to use the above-mentioned fluorine-containing derivative. In the experiments of the present invention, it was confirmed by the same experiment as in the examples that no difference was caused in the performance of the synthesized fiberglass material even when any of the above-mentioned organometallic compounds was used as a raw material. did.

【0021】[0021]

【発明の効果】この発明は、以上説明した通り、周期率
表のIAないしIVA族金属原子が酸素原子を介して有
機基と結合した成分原料の気化工程において、上記原料
にジピバロイルメタンおよびテトラヒドロフランの内の
少なくとも一種の蒸気を接触させて後、反応させること
により、容易にかつ高速に、良好な性能を有するフッ化
物ガラスファイバー用材料の製造方法を得ることができ
る。
According to the present invention, as described above, dipivaloylmethane is added to the raw material in the vaporizing step of the component raw material in which a metal atom belonging to Group IA or IVA of the periodic table is bonded to an organic group via an oxygen atom. By bringing at least one kind of vapor out of tetrahydrofuran into contact, and then reacting, a method for producing a material for a fluoride glass fiber having good performance can be obtained easily and at high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明と従来例を比較するフッ化物ファイバ
ーガラス材料の赤外光損失特性図である。
FIG. 1 is an infrared light loss characteristic diagram of a fluoride fiber glass material comparing the present invention with a conventional example.

【図2】この発明と従来例を比較するフッ化物ファイバ
ーガラス材料の赤外光損失特性図である。
FIG. 2 is a graph showing infrared light loss characteristics of a fluoride fiber glass material comparing the present invention with a conventional example.

【符号の説明】[Explanation of symbols]

A1 実施例1のフッ化物ファイバーガラス材料の特性 A2 実施例2のフッ化物ファイバーガラス材料の特性 B1 比較例1のフッ化物ファイバーガラス材料の特性 B2 比較例2のフッ化物ファイバーガラス材料の特性 A1 Properties of the fluoride fiber glass material of Example 1 A2 Properties of the fluoride fiber glass material of Example 2 B1 Properties of the fluoride fiber glass material of Comparative Example 1 B2 Properties of the fluoride fiber glass material of Comparative Example 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今田 勝大 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 材料デバイス研究所内 (72)発明者 渡井 久男 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 材料デバイス研究所内 (72)発明者 佐藤 建 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 材料デバイス研究所内 (56)参考文献 特開 平2−275726(JP,A) 特開 平5−117855(JP,A) 特開 平5−132776(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03B 8/04 C03B 37/018 C23C 16/18 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Katsuhiro Imada 8-1-1, Tsukaguchi-Honmachi, Amagasaki-shi Mitsubishi Electric Corporation Materials and Devices Laboratory (72) Inventor, Hisao Watoi 8-1-1, Tsukaguchi-Honmachi, Amagasaki-shi No. Mitsubishi Materials Corporation Materials and Devices Research Laboratory (72) Inventor Takeshi Sato 8-1-1 Tsukaguchi Honcho, Amagasaki City Mitsubishi Electric Corporation Materials and Devices Laboratory (56) References JP-A-2-275726 (JP, A) JP-A-5-117855 (JP, A) JP-A-5-132776 (JP, A) (58) Fields studied (Int. Cl. 6 , DB name) C03B 8/04 C03B 37/018 C23C 16 / 18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 周期率表のIAないしIVA族金属原子
が酸素原子を介して有機基と結合した成分原料の気化工
程において、上記原料にジピバロイルメタンおよびテト
ラヒドロフランの内の少なくとも一種の蒸気を接触させ
て後、反応させるフッ化物ガラスファイバー用材料の製
造方法。
1. In a vaporization step of a component material in which a metal atom belonging to Group IA or IVA of the periodic table is bonded to an organic group via an oxygen atom, at least one of dipivaloylmethane and tetrahydrofuran is added to the material. And a method for producing a material for a fluoride glass fiber to be reacted.
JP4100946A 1992-04-21 1992-04-21 Method for producing material for fluoride glass fiber Expired - Fee Related JP2979840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100946A JP2979840B2 (en) 1992-04-21 1992-04-21 Method for producing material for fluoride glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100946A JP2979840B2 (en) 1992-04-21 1992-04-21 Method for producing material for fluoride glass fiber

Publications (2)

Publication Number Publication Date
JPH05294637A JPH05294637A (en) 1993-11-09
JP2979840B2 true JP2979840B2 (en) 1999-11-15

Family

ID=14287523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100946A Expired - Fee Related JP2979840B2 (en) 1992-04-21 1992-04-21 Method for producing material for fluoride glass fiber

Country Status (1)

Country Link
JP (1) JP2979840B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040627A (en) * 2001-07-30 2003-02-13 Mitsubishi Electric Corp Raw material for quartz glass and its producing method
JP5003503B2 (en) * 2008-01-17 2012-08-15 三菱電機株式会社 Method for producing quartz glass and method for producing optical device
DE202008017383U1 (en) * 2008-12-19 2009-08-20 J-Fiber Gmbh Glass, in particular glass fiber preform

Also Published As

Publication number Publication date
JPH05294637A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
US5071460A (en) Process for the preparation of fluoride glass and process for the preparation of optical fiber preform using the fluoride glass
KR20000049201A (en) Chemical vapor deposition of aluminum oxide
SE431321B (en) FORMULA WITH A FLUOREDOP STANNY OXIDE MOVIE AND PROCEDURE FOR ITS PREPARATION
JPH083171A (en) Adduct, its production, and production of thin film
US4627865A (en) Process of manufacturing optical fibers of extremely low loss in the medium infrared
JP2979840B2 (en) Method for producing material for fluoride glass fiber
US3442700A (en) Method for the deposition of silica films
US5948322A (en) Source reagents for MOCVD formation of non-linear optically active metal borate films and optically active metal borate films formed therefrom
JP3665682B2 (en) Method for producing fluoride thin film
WO2000067300A1 (en) Liquid precursors for formation of materials containing alkali metals
JP2979839B2 (en) CVD raw material for fluoride glass
JPS61236628A (en) Manufacture of alumina-doped silica fiber using organic metal compound
US5275843A (en) Manufacture of β-BaB2 O4 film by a sol-gel method
Huang et al. High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition
US5145508A (en) Method of making fluoride glass using barium β-diketones
US6994800B1 (en) Liquid precursors for formation of materials containing alkali metals
Barbé et al. Microstructure, Orientation, and Properties of Sol‐Gel‐Derived KTiOPO4 Thin Films
JP2545356B2 (en) Deposition technology
JP3205371B2 (en) Manufacturing method of fluoride thin film
JPH06122523A (en) Production of chalcogenide glass containing rare earth metal ion
JPH04260640A (en) Production of barium compound thin film
JP3159267B2 (en) Manufacturing method of fluoride glass
US5281405A (en) Optically useful compositions and a sol-gel process for their production
US5855956A (en) Method for autostoichiometric chemical vapor deposition
JP2002363749A (en) Method of producing crystal film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees