JPH05294637A - Production of material for fluoride glass fiber - Google Patents

Production of material for fluoride glass fiber

Info

Publication number
JPH05294637A
JPH05294637A JP4100946A JP10094692A JPH05294637A JP H05294637 A JPH05294637 A JP H05294637A JP 4100946 A JP4100946 A JP 4100946A JP 10094692 A JP10094692 A JP 10094692A JP H05294637 A JPH05294637 A JP H05294637A
Authority
JP
Japan
Prior art keywords
raw material
fluoride
glass
vapor
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4100946A
Other languages
Japanese (ja)
Other versions
JP2979840B2 (en
Inventor
Hidefusa Uchikawa
英興 内川
Shigeru Matsuno
繁 松野
Kiichi Yoshiara
喜市 吉新
Katsuhiro Imada
勝大 今田
Hisao Watai
久男 渡井
Ken Sato
建 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4100946A priority Critical patent/JP2979840B2/en
Publication of JPH05294637A publication Critical patent/JPH05294637A/en
Application granted granted Critical
Publication of JP2979840B2 publication Critical patent/JP2979840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/042Fluoride glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain a material for glass fiber having excellent performances readily and rapidly by bringing a specific vapor to a component raw material having a specific metallic atom linked through oxygen atom to an organic group and reacting. CONSTITUTION:In a process for vaporizing a component raw material having a metallic atom of group IA or IVA of the periodic table linked through oxygen atom to an organic group, the process is carried out as follows. Namely, at least one vapor of dipivaloylmethane and tetrahydrofuran is brought into contact with the raw material and the reaction is carried out to give the objective material. In the vaporization process, since the thermal decomposition of the raw material is suppressed and the raw material can be stably and rapidly sent to a reaction part under heating at a low temperature by bringing at least one vapor of dipivaloylmethane and tetrahydrofuran into contact with the component raw material, the raw material can be vaporized in good reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば光通信システ
ム等に用いる低損失フッ化物ファイバーの化学気相成長
(CVD)法を用いたフッ化物ガラスファイバー用材料
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a material for a fluoride glass fiber using a chemical vapor deposition (CVD) method of a low loss fluoride fiber used in, for example, an optical communication system.

【0002】[0002]

【従来の技術】近年、光通信システムの進歩発展が目覚
ましく、その一つとして赤外光ファイバーを用いた長距
離通信システムを実現する試みがなされている。その実
現のためには、石英系光ファイバーをはるかにしのぐ低
損失性をもつファイバーが不可欠である。これらの赤外
光ファイバー用の候補材料として、フッ化物ガラス、カ
ルコゲン化物ガラス、ハロゲン化物結晶などがある。こ
の中で、フッ化物ガラスが性能、製法の難易性に対する
見通しなどの点から、最も有望視されている。フッ化物
ガラスの製造法としては、るつぼを用いてフッ化物を熔
解反応させる固相法および各種の気相法が盛んに検討さ
れているが、この方法ではるつぼからの不純物がガラス
中に混入されやすく、未だ確立された製法は無い現状に
ある。このうち、最近は高純度均質ガラスの優れた合成
法としてCVD法が注目を集め、多くの試みがなされて
いる。
2. Description of the Related Art In recent years, the progress and development of optical communication systems have been remarkable, and as one of them, an attempt has been made to realize a long-distance communication system using an infrared optical fiber. In order to realize this, a fiber with low loss far exceeding that of silica-based optical fiber is indispensable. Candidate materials for these infrared optical fibers include fluoride glass, chalcogenide glass, halide crystals and the like. Among them, the fluoride glass is regarded as the most promising from the viewpoints of performance and difficulty in manufacturing method. As a method for producing fluoride glass, a solid phase method in which a fluoride is melt-reacted using a crucible and various vapor phase methods have been extensively studied, but in this method, impurities from the crucible are mixed in the glass. It is easy and there is no established manufacturing method yet. Of these, the CVD method has recently attracted attention as an excellent synthetic method of high-purity homogeneous glass, and many attempts have been made.

【0003】このようなフッ化物ファイバー用材料に要
求される性能としては、低損失であることが最も重要で
ある。また、製造プロセス面では、高速度で容易に製造
できることが挙げられる。特に、低損失なものを得るた
めには、光伝送損失の原因となる不純物および微結晶の
生成を抑制する必要がある。このような観点から、原料
となる有機金属化合物の精製による高純度化が容易であ
り、原料、反応ガス、反応条件等の改善によって微結晶
の抑制が可能なCVD法が上記材料の製造上非常に有利
である。これらのことは、例えば刊行物{第52回応用
物理学会学術講演会予稿集講演番号11a−ZK−9}
などに示されている。
Low loss is the most important performance required for such a material for a fluoride fiber. In terms of manufacturing process, it is possible to easily manufacture at high speed. In particular, in order to obtain a low-loss material, it is necessary to suppress the generation of impurities and fine crystals that cause optical transmission loss. From this point of view, the CVD method, which facilitates the purification by purification of the organometallic compound as a raw material and can suppress the fine crystals by improving the raw material, the reaction gas, the reaction conditions, etc., is very important in the production of the above material. Is advantageous to. These are, for example, publications {Proceedings of the 52nd Academic Meeting of the Applied Physics, Lecture No. 11a-ZK-9}.
Etc.

【0004】[0004]

【発明が解決しようとする課題】しかし、CVD法によ
って製造することが最も有利であるにもかかわらず、現
在CVD用原料として安定で良好な気化特性を有するも
のが存在しないことは、本来のCVD法のもつ利点を活
かせない大きな問題となっている。これは、主としてC
VD用原料として多用されているβージケトン系のジピ
バロイルメタン(DPM)化合物などの加熱による気化
特性が不良であり、熱分解しやすいことによるものであ
る。この点は例えば刊行物{第52回応用物理学会学術
講演会予稿集講演番号11a−ZK−8}に指摘されて
おり、金属のDPM化合物の本質的な不安定性に起因す
る欠点であると考えられる。このような原料の不安定性
のため、極端な場合には原料を使い捨てにして合成せざ
るをえないという事態も生じている。したがって、上記
の原料に起因する欠点のために、性能の良好かつ作製再
現性のよいフッ化物ファイバー用材料を製造するための
CVD技術は確立されていない現状にある。
However, in spite of the fact that the CVD method is most advantageous, the fact that there is currently no raw material for CVD having stable and good vaporization characteristics is due to the fact that the original CVD method is used. It is a big problem that cannot take advantage of the law. This is mainly C
This is because the vaporization characteristics of β-diketone-based dipivaloylmethane (DPM) compounds, which are often used as VD raw materials, are poor and they are easily decomposed by heat. This point is pointed out, for example, in the publication {The 52nd Annual Meeting of the Applied Physics Society of Japan, Proceedings, Lecture No. 11a-ZK-8}, and is considered to be a defect due to the intrinsic instability of the DPM compound of metal. Be done. Due to such instability of the raw materials, in extreme cases, the raw materials have to be thrown away for synthesis. Therefore, due to the drawbacks caused by the above raw materials, the CVD technique for producing a material for a fluoride fiber having good performance and good production reproducibility is not established yet.

【0005】即ち、従来のCVD法によるフッ化物ファ
イバー用材料の製造においては、原料の安定性および気
化性不良に伴い、低温での加熱によってCVD反応部へ
原料を安定に輸送することは不可能であった。そのた
め、多成分系の組成制御が行いにくく、良好な特性を有
するファイバー用材料の安定かつ高速合成ができないと
いう大きな問題点があった。さらに、原料の気化効率を
上げるために高い温度で加熱すると、原料が熱分解しな
がら輸送されてしまい、堆積物中への不純物の混入、微
結晶生成や組成ズレが不可避であった。そればかりか、
前記のような原料を使い捨てにしなければならないとい
う不都合も起こっていた。また、従来の方法では気化速
度を抑えて合成(反応)時間を長くした場合には、原料
の気化状態が経時的に変化するために、形成した膜の厚
さ方向の組成が不均質になって光損失が増大することが
避けられなかった。そのため、安定かつ低温での良好な
気化が得られる新原料の開発が強く望まれているが、こ
れに関しては未だ全く進展はない現状にある。
That is, in the conventional production of a fluoride fiber material by the CVD method, it is impossible to stably transport the raw material to the CVD reaction section by heating at a low temperature due to poor stability and vaporization of the raw material. Met. Therefore, there has been a big problem that it is difficult to control the composition of a multi-component system, and stable and high-speed synthesis of a fiber material having good characteristics cannot be performed. Further, when the raw material is heated at a high temperature in order to increase its vaporization efficiency, the raw material is transported while being pyrolyzed, and it is inevitable that impurities are mixed in the deposit, fine crystal formation and composition deviation. Not only that,
The inconvenience of having to dispose of the above-mentioned raw materials has also occurred. In addition, in the conventional method, when the vaporization rate is suppressed and the synthesis (reaction) time is lengthened, the vaporized state of the raw material changes with time, so that the composition of the formed film in the thickness direction becomes heterogeneous. Inevitably, the optical loss increases. Therefore, there is a strong demand for the development of a new raw material that can obtain stable and good vaporization at low temperature, but there is still no progress in this regard.

【0006】この発明は、かかる課題を解決するために
なされたもので、容易にかつ高速に、良好な性能を有す
るフッ化物ガラスファイバー用材料の製造方法を得るこ
とを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a method for easily and rapidly producing a material for a fluoride glass fiber having good performance.

【0007】[0007]

【課題を解決するための手段】この発明のフッ化物ガラ
スファイバー用材料の製造方法は、周期率表のIAない
しIVA族金属原子が酸素原子を介して有機基と結合し
た成分原料の気化工程において、上記原料にジピバロイ
ルメタンおよびテトラヒドロフランの内の少なくとも一
種の蒸気を接触させて後、反応させる方法である。
The method for producing a material for fluoride glass fibers according to the present invention comprises a step of vaporizing a component raw material in which a metal atom of Group IA to IVA of the periodic table is bonded to an organic group through an oxygen atom. In this method, at least one vapor selected from dipivaloylmethane and tetrahydrofuran is brought into contact with the above raw material and then reacted.

【0008】[0008]

【作用】この発明において、周期率表のIAないしIV
A族金属原子が酸素原子を介して有機基と結合した化合
物原料の気化工程において、ジピバロイルメタンおよび
テトラヒドロフランの内の少なくとも一種の蒸気を接触
させることにより、上記原料の熱分解を抑制するととも
に、従来より低温での加熱によって安定かつ高速に反応
部へ輸送することができるので、再現性の良い原料の気
化を得ることができる。
In the present invention, IA to IV of the periodic table are used.
In the vaporization step of the compound raw material in which the group A metal atom is bonded to the organic group via the oxygen atom, at least one vapor of dipivaloylmethane and tetrahydrofuran is brought into contact with the raw material to suppress thermal decomposition of the raw material. At the same time, since it can be stably and rapidly transported to the reaction part by heating at a lower temperature than in the past, vaporization of the raw material with good reproducibility can be obtained.

【0009】[0009]

【実施例】本発明者らは、前記のDPM化合物のような
金属原子が有機基と結合した化合物の気化性について詳
細に検討を加えた結果、これらの化合物のうち特にフッ
化物ファイバーの主成分となるIA族ないしIVA族の
Li、Na、Sr、Ba、Y、La、Zr、Hfなどの
化合物の安定性かつ気化性が良好でないことが判明し
た。したがって、これらの金属の酸化物を主成分とする
フッ化物ガラスをCVD法によって合成する場合、特に
目的とする組成への制御性が難しくなることが避けられ
ないことが分かった。そこで本発明者らは、これらの化
合物を従来よりも低温での加熱により、熱分解すること
なく安定に気化させることができれば、組成の制御性が
向上し、所望の特性を有するファイバー用材料が再現性
よく高速で合成できることを見いだし、本発明を完成す
るに至った。
EXAMPLES The present inventors have made detailed investigations on the vaporization properties of compounds in which a metal atom is bonded to an organic group, such as the DPM compound, and as a result, have found that among these compounds, the main component of the fluoride fiber is It has been found that the compounds such as Li, Na, Sr, Ba, Y, La, Zr, and Hf of Group IA to IVA, which have the following formulas, have poor stability and vaporizability. Therefore, when synthesizing a fluoride glass containing oxides of these metals as a main component by the CVD method, it was unavoidable that the controllability to the intended composition becomes particularly difficult. Therefore, the present inventors, if these compounds can be stably vaporized without being thermally decomposed by heating at a temperature lower than conventional ones, the composition controllability is improved, and a fiber material having desired properties is obtained. They have found that they can be synthesized with high reproducibility and at high speed, and completed the present invention.

【0010】実施例1.五元の原料加熱系統を有する通
常のホットウォールタイプのCVD装置を用い、この発
明の一実施例によるジルコニウム系フッ化物ガラスであ
る50ZrF4−30BaF2−10LaF3−10YF3
を酸化マグネシウム基板上に合成する実験を行った。原
料としては、従来から存在する各金属のアセチルアセト
ナート誘導体を用い、4元の原料それぞれに加熱時にお
いて、ジピバロイルメタンの蒸気を流入接触させた。合
成条件としては、原料の加熱温度をすべて210℃に設
定し、キャリアガスはアルゴン、反応ガスは四フッ化炭
素で反応部(炉)内圧力は1Torr、基板温度は22
0℃に保持して120分間反応を行った。反応後、四フ
ッ化炭素気流中で室温まで自然徐冷を行ったところ、膜
厚約3μmのこの発明の一実施例によるフッ化物ガラス
が得られた。赤外分光光度計を用い、このガラスの光透
過性を測定して、このガラスを用いてファイバーを製作
した場合の赤外光伝送損失の大まかな指標とした。さら
に、ガラスファイバー材料の膜質および結晶の状態を電
子顕微鏡で観察調査した。
Embodiment 1. Using a normal hot wall type CVD apparatus having a five-element raw material heating system, zirconium fluoride glass of 50ZrF 4 -30BaF 2 -10LaF 3 -10YF 3 according to an embodiment of the present invention.
An experiment was carried out to synthesize the compound on a magnesium oxide substrate. Conventionally existing acetylacetonate derivatives of each metal were used as raw materials, and vapors of dipivaloylmethane were brought into contact with each of the quaternary raw materials during heating. As the synthesis conditions, the heating temperature of all the raw materials was set to 210 ° C., the carrier gas was argon, the reaction gas was carbon tetrafluoride, the reaction part (furnace) internal pressure was 1 Torr, and the substrate temperature was 22.
It was kept at 0 ° C. and reacted for 120 minutes. After the reaction, spontaneous cooling was performed in a carbon tetrafluoride stream to room temperature to obtain a fluoride glass according to an example of the present invention having a film thickness of about 3 μm. An infrared spectrophotometer was used to measure the light transmittance of this glass, which was used as a rough index of the infrared light transmission loss when a fiber was produced using this glass. Furthermore, the film quality and crystal state of the glass fiber material were observed and investigated with an electron microscope.

【0011】比較例1.実施例1と同様の原料および合
成条件を用いて、テトラヒドロフラン蒸気の混入を行わ
ない従来のCVD法により、同一組成のフッ化物ガラス
ファイバー用材料を合成したところ、基板上への堆積が
ほとんど認められず、210℃の加熱では気化性が不良
であることが判明した。そこで、従来法については原料
の加熱温度を一律290℃に設定し直して120分間合
成を行い、実施例1の場合と同様に、反応後四フッ化炭
素気流中で室温まで自然放冷を行って1μmの厚さの膜
を得た。この膜についても同様に、膜質および上記と同
一基準で光透過性(光伝送損失)の評価を行った。
Comparative Example 1. Using the same raw materials and synthesis conditions as in Example 1 and synthesizing a material for a fluoride glass fiber having the same composition by a conventional CVD method that does not mix tetrahydrofuran vapor, almost all deposition on the substrate was observed. However, it was found that the vaporization was poor when heated at 210 ° C. Therefore, in the conventional method, the heating temperature of the raw materials was uniformly set to 290 ° C., the synthesis was performed for 120 minutes, and, similarly to the case of Example 1, naturally cooled to room temperature in the carbon tetrafluoride stream after the reaction. As a result, a film having a thickness of 1 μm was obtained. This film was also evaluated for the film quality and the light transmittance (light transmission loss) on the same basis as above.

【0012】図1は、この発明と従来例を比較する上記
実施例1および比較例1で得られた2種類のフッ化物フ
ァイバーガラス材料の赤外光損失特性を示す赤外光損失
特性図であり、図中、A1は実施例1のフッ化物ファイ
バーガラス材料の特性、B1は比較例1のフッ化物ファ
イバーガラス材料の特性である。図1から明らかなよう
に、この発明の一実施例によるファイバーガラス材料は
従来の製造方法によるものと比較して、赤外光領域全般
にわたって損失が低く、特に通信用信号光の波長として
予定されている2.55μm付近の波長においてこの傾
向が顕著である。また、前記の実験において、両CVD
法のジルコニウム系フッ化物ガラス合成における堆積速
度を比べたところ、同一の加熱(気化)温度においてこ
の発明の一実施例の場合には従来法の50〜100倍優
れていることが判明した。さらに、両ファイバーガラス
材料の表面観察によれば、従来法によるものは所々に微
結晶構造の生成が見られたのに対し、この発明の一実施
例によるものはこれが全く見られなかった。即ち、この
発明の一実施例によると、光の伝送損失を生ずる原因と
なる微結晶の生成を抑制できることが分かった。したが
って、この発明の一実施例によれば、従来の製造方法よ
りはるかに低温での加熱により、性能の良好なフッ化物
ファイバー用ガラス材料をCVD法によって合成するこ
とが可能である。
FIG. 1 is an infrared light loss characteristic diagram showing the infrared light loss characteristics of the two kinds of fluoride fiber glass materials obtained in Example 1 and Comparative Example 1 for comparing the present invention with the conventional example. In the figure, A1 is the characteristic of the fluoride fiberglass material of Example 1, and B1 is the characteristic of the fluoride fiberglass material of Comparative Example 1. As is apparent from FIG. 1, the fiberglass material according to one embodiment of the present invention has a low loss over the entire infrared light region as compared with the fiberglass material manufactured by the conventional manufacturing method, and is particularly intended for the wavelength of signal light for communication. This tendency is remarkable at wavelengths around 2.55 μm. In the above experiment, both CVD
Comparing the deposition rates in the zirconium-based fluoride glass synthesis of the method, it was found that the same heating (vaporization) temperature was 50 to 100 times better than the conventional method in the case of one embodiment of the present invention. Further, according to the surface observation of both fiber glass materials, the formation by the conventional method was found to have a microcrystalline structure in some places, whereas the one by the embodiment of the present invention did not show this at all. That is, it has been found that according to one embodiment of the present invention, it is possible to suppress the formation of fine crystals that cause the transmission loss of light. Therefore, according to one embodiment of the present invention, it is possible to synthesize a glass material for a fluoride fiber having good performance by the CVD method by heating at a temperature much lower than that of the conventional manufacturing method.

【0013】実施例2.実施例1と同一のCVD装置を
用い、ジルコニウム系フッ化物ガラスである50ZrF
4−20BaF2−5LaF3−5AlF3−20NaFを
酸化マグネシウム基板上に、この発明の他の実施例によ
って合成を行った。原料としては、従来から多く用いら
れている各金属のジピバロイルメタネート誘導体を原料
として用い、これらをそれぞれすべて190℃に加熱し
ながら、それぞれの中にキャリアガスのアルゴンと共に
有機溶剤であるテトラヒドロフランの蒸気を流入させて
接触させた。基板温度は200℃に設定した。反応ガス
はフッ化水素で反応部(炉)内圧力は1Torrで10
0分間反応を行った。反応後、フッ化水素気流中で室温
まで自然徐冷を行ったところ、膜厚約5μmのこの発明
の他の実施例によるフッ化物ガラスが得られた。実施例
1と同様に赤外分光光度計を用い、このガラス材料の赤
外光損失の指標として光透過性を測定した。さらに、ガ
ラス材料の膜質および結晶の状態を電子顕微鏡で調査し
た。
Embodiment 2. Using the same CVD apparatus as in Example 1, 50 ZrF which is a zirconium-based fluoride glass
4 -20BaF 2 -5LaF 3 -5AlF 3 -20NaF magnesium oxide substrate was subjected to other examples the synthesis of the present invention. As a raw material, a dipivaloylmethanate derivative of each metal, which has been widely used in the past, is used as a raw material, and while each of them is heated to 190 ° C., each of them is an organic solvent together with argon as a carrier gas. Tetrahydrofuran vapor was flowed in and brought into contact. The substrate temperature was set to 200 ° C. The reaction gas is hydrogen fluoride and the pressure in the reaction part (furnace) is 1 Torr and 10
The reaction was carried out for 0 minutes. After the reaction, spontaneous cooling was performed in a hydrogen fluoride stream to room temperature to obtain a fluoride glass having a film thickness of about 5 μm according to another example of the present invention. An infrared spectrophotometer was used in the same manner as in Example 1, and the light transmittance was measured as an index of the infrared light loss of this glass material. Furthermore, the film quality and crystal state of the glass material were investigated by an electron microscope.

【0014】比較例2.実施例2と同様の原料および合
成条件を用いてテトラヒドロフラン蒸気の混入を行わな
い従来のCVD法により、同一組成のフッ化物ファイバ
ー用ガラス材料の合成を実施した。しかし、基板上への
堆積はわずかであり、190℃の加熱では気化性が不良
であることが判明した。そこで、従来法については原料
の加熱温度を一律270℃に設定し直して120分間合
成を行い、この発明の他の実施例の場合と同様に、反応
後フッ化水素気流中で室温まで自然放冷を行って2μm
の厚さの膜を得た。この膜についても同様に、膜質およ
び実施例2と同一基準で光透過性(光損失)の評価をお
こなった。
Comparative Example 2. A glass material for a fluoride fiber having the same composition was synthesized by the conventional CVD method using the same raw materials and synthesis conditions as in Example 2 without mixing tetrahydrofuran vapor. However, the deposition on the substrate was slight, and it was found that the vaporization property was poor when heated at 190 ° C. Therefore, in the conventional method, the heating temperature of the raw materials was uniformly set to 270 ° C. and the synthesis was carried out for 120 minutes. After the reaction, the mixture was spontaneously released to room temperature in a hydrogen fluoride stream after the reaction. Cool down to 2 μm
A film having a thickness of This film was also evaluated for light transmittance (light loss) on the same basis as the film quality and Example 2.

【0015】図2は、この発明と従来例を比較する上記
実施例2および比較例2で得られた2種類のフッ化物フ
ァイバーガラス材料の赤外光損失特性を示す赤外光損失
特性図であり、図中、A2は実施例2のフッ化物ファイ
バーガラス材料の特性、B2は比較例2のフッ化物ファ
イバーガラス材料の特性である。図2から明らかなよう
に、この発明の他の実施例による材料は、比較例として
用いた従来の製造方法によるものと比較して、赤外光領
域全般にわたって損失が低く、特に2.55μm付近の
波長においてこの傾向が顕著であるという実施例1の場
合と同様の結果が得られた。さらに、ガラス材料の膜質
を電子顕微鏡で調査した結果、従来法によるものは実施
例1の比較例の場合と同様、ところどころに微結晶の生
成が認められた。また、前記の実験中に両CVD法のジ
ルコニウム系フッ化物ガラス合成における堆積速度を比
べたところ、同一の加熱(気化)温度においてこの発明
の他の実施例の方法の場合には従来法の20〜50倍優
れていることが判明した。したがって、この発明の他の
実施例によれば、従来の製造方法よりはるかに低温での
加熱により、性能の良好なフッ化物ファイバー用ガラス
材料をCVD法によって高速に合成できることがこの実
施例においても明らかとなった。
FIG. 2 is an infrared light loss characteristic diagram showing the infrared light loss characteristics of the two types of fluoride fiber glass materials obtained in Example 2 and Comparative Example 2 for comparing the present invention with the conventional example. In the figure, A2 is the characteristic of the fluoride fiberglass material of Example 2, and B2 is the characteristic of the fluoride fiberglass material of Comparative Example 2. As is apparent from FIG. 2, the materials according to other examples of the present invention have lower loss over the entire infrared light region, particularly around 2.55 μm, as compared with the materials according to the conventional manufacturing method used as a comparative example. The same result as in the case of Example 1 was obtained in which this tendency was remarkable at the wavelength of. Further, as a result of investigating the film quality of the glass material with an electron microscope, generation of fine crystals was observed in some places in the conventional method as in the comparative example of Example 1. Further, when the deposition rates in the zirconium-based fluoride glass synthesis of both CVD methods were compared during the above-mentioned experiment, it was found that the same heating (vaporization) temperature was 20% of the conventional method in the case of the method of the other embodiment of the present invention. It turned out to be ~ 50 times better. Therefore, according to another embodiment of the present invention, it is possible to rapidly synthesize a glass material for a fluoride fiber having good performance by the CVD method by heating at a temperature much lower than that of the conventional manufacturing method. It became clear.

【0016】実施例1および2において、比較例で用い
た従来法によるガラスファイバー用材料の性能が良好で
ない最大の理由は、原料が加熱によって気化しにくく、
かつ比較的高い温度で加熱したために原料の分解が生
じ、反応部まで安定に輸送されにくかったことに起因す
ると考えられる。即ち、これら従来法によるサンプルの
ファイバー用材料としての特性が良好でない主な原因
は、実施例中で記述したような微結晶の生成ならびに各
原料の不安定輸送に起因する合成膜中における組成の不
均質性が生じたことにあると推定される。
In Examples 1 and 2, the main reason why the performance of the conventional glass fiber material used in Comparative Example is not good is that the raw materials are difficult to vaporize by heating,
Moreover, it is considered that the decomposition of the raw material occurred because it was heated at a relatively high temperature, and it was difficult to stably transport it to the reaction part. That is, the main cause of the poor properties of the sample as a fiber material by these conventional methods is the formation of fine crystals as described in the examples and the compositional change in the synthetic film due to unstable transport of each raw material. It is highly probable that heterogeneity occurred.

【0017】この発明の実施例の製造方法を用い、実施
例1および2と同様にして、実施例で示した組成に限ら
ず、ZrF4−BaF2−LaF3−YF3−AlF3−L
iF、ZrF4−HfF4−BaF2−LaF3−NaF−
AlF3、ZrF4−BaF2−GaF3−AlF3、Zr
4−BaF2−LaF3−NaF−AlF3−InF3
どのフッ化物ガラスファイバー用材料をCVD法により
製造した。その結果、いずれの場合にも先に示した実施
例1および2と同様に、この発明の実施例により、従来
法よりも良好な性能を有するフッ化物ガラスファイバー
用材料を製造できることが判明した。
Using the manufacturing method according to the embodiment of the present invention, similarly to Embodiments 1 and 2, not only the composition shown in the embodiment but also ZrF 4 --BaF 2 --LaF 3 --YF 3 --AlF 3 --L
iF, ZrF 4 -HfF 4 -BaF 2 -LaF 3 -NaF-
AlF 3, ZrF 4 -BaF 2 -GaF 3 -AlF 3, Zr
A material for fluoride glass fiber such as F 4 —BaF 2 —LaF 3 —NaF—AlF 3 —InF 3 was manufactured by the CVD method. As a result, it was found that, in any case, similar to Examples 1 and 2 shown above, the examples of the present invention can produce a material for fluoride glass fiber having better performance than the conventional method.

【0018】この発明に係わる成分原料に接触させる蒸
気について、各種の有機溶剤を検討したところ、実施例
で用いた2種以外のものではこの発明により得られる効
果である低温での加熱による気化性の向上の効果は明ら
かにならなかった。したがって、この発明では、原料に
接触させる蒸気として、ジピバロイルメタンおよびテト
ラヒドロフランの内の少なくとも一種を用いる必要があ
る。この効果の詳細については明らかでないが、以上の
実験結果から加熱による原料の分解を抑制し、しかも従
来原料に付加することによって、原料よりも低沸点の付
加体を形成し、このために気化性が向上すると同時に、
この付加体が安定に反応部に輸送される働きをなすもの
と推定される。
When various organic solvents were examined for the vapor to be brought into contact with the component raw materials according to the present invention, the vaporization property by heating at a low temperature which is the effect obtained by the present invention, except for the two types used in the examples, is obtained. The effect of the improvement was not clear. Therefore, in the present invention, it is necessary to use at least one of dipivaloylmethane and tetrahydrofuran as the vapor to be brought into contact with the raw material. The details of this effect are not clear, but from the above experimental results, decomposition of the raw material due to heating is suppressed, and by adding to the conventional raw material, an adduct having a boiling point lower than that of the raw material is formed. At the same time
It is presumed that this adduct functions to be stably transported to the reaction part.

【0019】さらに、この発明は、成分原料の気化工程
においてジピバロイルメタンおよびテトラヒドロフラン
の蒸気を接触させる方法には限定されない。接触方法と
しては、実施例のように加熱時に原料中に直接接触させ
てもよく、キャリアガスとともに原料中に流入接触させ
てもよく、いずれの場合にも原料の気化促進効果が現れ
ることを実験によって確かめた。なお、この発明におけ
る気化工程とは、液体または固体状原料が気体になる時
および気体になった直後を指すものとする。
Further, the present invention is not limited to the method of bringing vapors of dipivaloylmethane and tetrahydrofuran into contact with each other in the vaporizing step of the component raw materials. As the contact method, it may be directly contacted in the raw material at the time of heating as in the example, or may be brought into contact with the raw material by flowing into the raw material together with a carrier gas. Confirmed by. The vaporization step in the present invention refers to the time when the liquid or solid raw material becomes a gas and the time immediately after it becomes a gas.

【0020】また、この発明に係わる成分原料として
は、周期率表のIAないしIVA族に属するLi、N
a、Ba、Sr、Y、La、Al、Gd、Zr、Hf、
などの金属原子が酸素原子を介して有機基と結合した化
合物であれば、上記の有機溶剤の効果が発揮されること
を実験によって確認した。したがって、この条件に適合
するものとして、上記金属のアセチルアセトネート、ジ
ピバロイルメタネート、アルコキシド、ヘキサフルオロ
アセチルアセトネート、ペンタフルオロプロパノイルピ
バロイルメタネート、シクロペンタジエニルおよびそれ
らの誘導体などを使用し、いずれの場合にも前記の気化
促進効果が発現することを確かめた。これらの原料有機
金属化合物の中で、特にヘキサフルオロアセチルアセト
ネートやペンタフルオロプロパノイルピバロイルメタネ
ート等のフッ素を含有する誘導体は、フッ化物系ガラス
を合成するのに都合がよいが、この発明でも従来法と同
様に反応ガスとして四フッ化炭素、フッ化水素、六フッ
化イオウなどのフッ素化合物を使用すれば、必ずしも上
記のフッ素を含有する誘導体を使用する必要はない。こ
の発明の実験において、上記に挙げた有機金属化合物の
うちのどのような物を原料として使用しても、合成した
ファイバーガラス材料の性能に相違は生じないことを実
施例と同様の実験によって確認した。
The raw materials for the components of the present invention include Li and N belonging to the groups IA to IVA of the periodic table.
a, Ba, Sr, Y, La, Al, Gd, Zr, Hf,
It was confirmed by experiments that the effects of the above-mentioned organic solvent are exhibited if the compound is a compound in which a metal atom is bonded to an organic group through an oxygen atom. Therefore, acetylacetonate, dipivaloylmethanate, alkoxide, hexafluoroacetylacetonate, pentafluoropropanoylpivaloylmethanate, cyclopentadienyl and their derivatives are applicable to this condition. It was confirmed that the above-mentioned vaporization promoting effect was exhibited in any case by using the above. Among these raw material organometallic compounds, derivatives containing fluorine, such as hexafluoroacetylacetonate and pentafluoropropanoylpivaloylmethanate, are particularly convenient for synthesizing a fluoride glass. Also in the invention, if a fluorine compound such as carbon tetrafluoride, hydrogen fluoride or sulfur hexafluoride is used as the reaction gas as in the conventional method, it is not always necessary to use the above-mentioned fluorine-containing derivative. In the experiment of the present invention, it was confirmed by the same experiment as in the example that the performance of the synthesized fiberglass material does not differ even if any of the above-mentioned organometallic compounds is used as a raw material. did.

【0021】[0021]

【発明の効果】この発明は、以上説明した通り、周期率
表のIAないしIVA族金属原子が酸素原子を介して有
機基と結合した成分原料の気化工程において、上記原料
にジピバロイルメタンおよびテトラヒドロフランの内の
少なくとも一種の蒸気を接触させて後、反応させること
により、容易にかつ高速に、良好な性能を有するフッ化
物ガラスファイバー用材料の製造方法を得ることができ
る。
As described above, the present invention uses dipivaloylmethane as a raw material in the vaporization step of the component raw material in which the metal atom of Group IA to IVA of the periodic table is bonded to the organic group through the oxygen atom. By contacting at least one of the vapors of tetrahydrofuran and tetrahydrofuran and then reacting them, it is possible to easily and rapidly obtain a method for producing a material for a fluoride glass fiber having good performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明と従来例を比較するフッ化物ファイバ
ーガラス材料の赤外光損失特性図である。
FIG. 1 is an infrared light loss characteristic diagram of a fluoride fiber glass material for comparing the present invention with a conventional example.

【図2】この発明と従来例を比較するフッ化物ファイバ
ーガラス材料の赤外光損失特性図である。
FIG. 2 is an infrared light loss characteristic diagram of a fluoride fiber glass material for comparing the present invention with a conventional example.

【符号の説明】[Explanation of symbols]

A1 実施例1のフッ化物ファイバーガラス材料の特性 A2 実施例2のフッ化物ファイバーガラス材料の特性 B1 比較例1のフッ化物ファイバーガラス材料の特性 B2 比較例2のフッ化物ファイバーガラス材料の特性 A1 Properties of Fluoride Fiber Glass Material of Example 1 A2 Properties of Fluoride Fiber Glass Material of Example 2 B1 Properties of Fluoride Fiber Glass Material of Comparative Example 1 B2 Properties of Fluoride Fiber Glass Material of Comparative Example 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今田 勝大 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 (72)発明者 渡井 久男 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 (72)発明者 佐藤 建 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiro Imada 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Material Device Research Center (72) Inventor Hisao Watai 8-1-1 Tsukaguchihonmachi, Amagasaki Mitsubishi Electric Corporation Material Devices Research Center (72) Inventor Ken Sato 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Material Devices Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 周期率表のIAないしIVA族金属原子
が酸素原子を介して有機基と結合した成分原料の気化工
程において、上記原料にジピバロイルメタンおよびテト
ラヒドロフランの内の少なくとも一種の蒸気を接触させ
て後、反応させるフッ化物ガラスファイバー用材料の製
造方法。
1. A vaporizing step of a component raw material in which a metal atom of Group IA to IVA of the Periodic Table is bonded to an organic group through an oxygen atom, wherein the raw material is at least one vapor selected from dipivaloylmethane and tetrahydrofuran. A method for producing a material for a fluoride glass fiber, which comprises contacting with and then reacting with each other.
JP4100946A 1992-04-21 1992-04-21 Method for producing material for fluoride glass fiber Expired - Fee Related JP2979840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100946A JP2979840B2 (en) 1992-04-21 1992-04-21 Method for producing material for fluoride glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100946A JP2979840B2 (en) 1992-04-21 1992-04-21 Method for producing material for fluoride glass fiber

Publications (2)

Publication Number Publication Date
JPH05294637A true JPH05294637A (en) 1993-11-09
JP2979840B2 JP2979840B2 (en) 1999-11-15

Family

ID=14287523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100946A Expired - Fee Related JP2979840B2 (en) 1992-04-21 1992-04-21 Method for producing material for fluoride glass fiber

Country Status (1)

Country Link
JP (1) JP2979840B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040627A (en) * 2001-07-30 2003-02-13 Mitsubishi Electric Corp Raw material for quartz glass and its producing method
JP2008110916A (en) * 2008-01-17 2008-05-15 Mitsubishi Electric Corp Manufacturing method of quartz glass and manufacturing method of optical device
DE102009022559A1 (en) * 2008-12-19 2010-06-24 J-Fiber Gmbh Producing glass articles comprises depositing a reaction mixture comprising a silicon compound and an oxygen compound onto a substrate using a high-frequency plasma

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040627A (en) * 2001-07-30 2003-02-13 Mitsubishi Electric Corp Raw material for quartz glass and its producing method
JP2008110916A (en) * 2008-01-17 2008-05-15 Mitsubishi Electric Corp Manufacturing method of quartz glass and manufacturing method of optical device
DE102009022559A1 (en) * 2008-12-19 2010-06-24 J-Fiber Gmbh Producing glass articles comprises depositing a reaction mixture comprising a silicon compound and an oxygen compound onto a substrate using a high-frequency plasma

Also Published As

Publication number Publication date
JP2979840B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
Mochalov et al. Plasma-chemistry of arsenic selenide films: Relationship between film properties and plasma power
KR20010005863A (en) Bismuth amide compounds and compositions, and method of forming bismuth-containing films therewith
KR20000049201A (en) Chemical vapor deposition of aluminum oxide
US5412129A (en) Stabilization of precursors for thin film deposition
Maruyama et al. Aluminum oxide thin films prepared by chemical vapor deposition from aluminum 2‐ethylhexanoate
US5948322A (en) Source reagents for MOCVD formation of non-linear optically active metal borate films and optically active metal borate films formed therefrom
JP2979840B2 (en) Method for producing material for fluoride glass fiber
JP3665682B2 (en) Method for producing fluoride thin film
US4982019A (en) Volatile divalent metal alkoxides
JPH0193405A (en) Complex compound for forming oxide superconductor thin film and method for forming said thin film
JP2979839B2 (en) CVD raw material for fluoride glass
Someno et al. Preparation of AlN-Al2O3 Composite Films by Microwave Plasma Chemical Vapor Deposition
US5069701A (en) Preparation of fluoride glass by chemical vapor deposition
Landry et al. The preparation of (Al2O3) x (SiO2) y thin films using [al (OSiEt3) 3] 2 as a single‐source precursor
US5275843A (en) Manufacture of β-BaB2 O4 film by a sol-gel method
JPH04260640A (en) Production of barium compound thin film
JP2545356B2 (en) Deposition technology
JP2568224B2 (en) Gas-phase chemical reaction material supply method
USH1170H (en) Volatile divalent double metal alkoxides
JP3205371B2 (en) Manufacturing method of fluoride thin film
Fujiura et al. Chemical vapor deposition of ZrF4-based fluoride glasses
JPH05208818A (en) Production of thin film of barium compound
JP2802676B2 (en) Method for producing thin film using 1,3-diketone organometallic complex
JP3159267B2 (en) Manufacturing method of fluoride glass
JPH0559553A (en) Production of barium compound thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees