JPS5854102B2 - Doped silica glass - Google Patents

Doped silica glass

Info

Publication number
JPS5854102B2
JPS5854102B2 JP4331875A JP4331875A JPS5854102B2 JP S5854102 B2 JPS5854102 B2 JP S5854102B2 JP 4331875 A JP4331875 A JP 4331875A JP 4331875 A JP4331875 A JP 4331875A JP S5854102 B2 JPS5854102 B2 JP S5854102B2
Authority
JP
Japan
Prior art keywords
doped silica
silica glass
silicon dioxide
metal
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4331875A
Other languages
Japanese (ja)
Other versions
JPS51119021A (en
Inventor
忠 宮下
昭彦 山路
隆夫 枝広
明夫 川名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4331875A priority Critical patent/JPS5854102B2/en
Publication of JPS51119021A publication Critical patent/JPS51119021A/en
Publication of JPS5854102B2 publication Critical patent/JPS5854102B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明は純粋石英ガラスに他元素の酸化物を添加し、屈
折率の制御された光学的に高品質のドープトシリカガラ
スの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing optically high-quality doped silica glass with a controlled refractive index by adding oxides of other elements to pure silica glass.

ドープトシリカガラスは二酸化珪素を主成分とし、これ
に少量の他の元素の酸化物を添加して得られる高融点ガ
ラスである。
Doped silica glass is a high melting point glass that is mainly composed of silicon dioxide and is obtained by adding small amounts of oxides of other elements.

適当な酸化物を選択することにより熱膨張係数の極めて
小さなガラスとか、屈折率の制御されたガラスが得られ
ている。
By selecting an appropriate oxide, glass with an extremely small coefficient of thermal expansion or glass with a controlled refractive index can be obtained.

例えば前者については酸化ニオブあるいは酸化クンタル
を数%添加することにより実質的に熱膨張係数が零のガ
ラスがB、V、Janakirama −Raoの米国
特許3,031,318によって実現されている。
For example, regarding the former, a glass having a substantially zero coefficient of thermal expansion has been realized by adding several percent of niobium oxide or kuntal oxide, as disclosed in U.S. Pat. No. 3,031,318 by B. V. Janakirama-Rao.

後者の屈折率の制御されたドープトシリカガラスは近年
、光通信方式における伝送媒体への応用が極めて有望視
されている。
The latter doped silica glass with a controlled refractive index has recently been viewed as extremely promising for application as a transmission medium in optical communication systems.

従来、このようなドープトシリカガラスは主成分の二酸
化珪素と添加金属酸化物の粉末を所定の組成比で混合し
、融点以上に加熱し溶融ガラス化することにより得られ
ている。
Conventionally, such doped silica glass has been obtained by mixing silicon dioxide as a main component and powder of an additive metal oxide in a predetermined composition ratio, heating the mixture to a temperature above the melting point, and converting the mixture into molten glass.

しかし、この方法では二酸化珪素が主成分のため融点が
極めて高く、粘性を下げガラス化することは容易でなく
、したがって均一の組成を有し、その上気泡などを含ま
ない良質のガラスを得ることは困難である。
However, with this method, since silicon dioxide is the main component, its melting point is extremely high, and it is difficult to reduce the viscosity and turn it into vitrification. Therefore, it is difficult to obtain high-quality glass that has a uniform composition and does not contain bubbles. It is difficult.

他の合成法として珪素や添加金属のハライド化合物を酸
水素炎中に導入し酸化溶融する方法(J、F、ハイデ、
米国特許2.272,342)や同じくハライド化合物
を高周波プラズマにより酸化ガラス化する方法(J、A
Another synthesis method is a method in which silicon or a halide compound of an additive metal is introduced into an oxyhydrogen flame and oxidized and melted (J, F, Heide,
U.S. Patent No. 2,272,342) and a method of oxidizing vitrification of halide compounds using high-frequency plasma (J, A
.

ウィンクーバーン、英国特許37273/71)がある
Wincoburn, British Patent No. 37273/71).

これらはいずれも気体原料から逐次堆積によりガラス塊
を得る方法であるが、ガラスを得る収率が低いこと、合
成に長時間を要すること、大きな塊を得難いことなどの
欠点を有している。
All of these methods obtain glass lumps by sequential deposition from gaseous raw materials, but they have drawbacks such as a low yield of glass, a long synthesis time, and difficulty in obtaining large lumps.

本発明の目的は二酸化珪素の粉末に添加金属塊を混入さ
せ、これを介して高周波による直接溶融を行なうことに
より高品質、組成の均一な大型のドープトシリカガラス
を得ることである。
The object of the present invention is to obtain a large-sized doped silica glass of high quality and uniform composition by mixing additive metal lumps into silicon dioxide powder and performing direct melting using high frequency waves through the mixture.

以下に本発明を図面を用いて説明する。The present invention will be explained below using the drawings.

図面は本発明によるドープトシリカガラスの合成の実施
例を説明する断面図である。
The drawings are cross-sectional views illustrating an example of synthesis of doped silica glass according to the present invention.

1はドープトシリカガラスの主成分となる粉末状の二酸
化珪素であり、2は添加すべき所定量の金属塊である。
1 is powdered silicon dioxide which is the main component of doped silica glass, and 2 is a predetermined amount of metal lump to be added.

これらが適当に混ぜ合わされて冷却器4によって水冷さ
れた容器3に入れられている。
These are mixed appropriately and placed in a container 3 which is water-cooled by a cooler 4.

そして外部より高周波コイル5によって加熱される。Then, it is heated from the outside by a high frequency coil 5.

粉末状の酸化物では電気伝導度が低いため高周波電界が
原料中に電流を発生することができず、したがって高周
波による自己発熱が不可能である。
Powdered oxides have low electrical conductivity, so a high frequency electric field cannot generate current in the raw material, and self-heating due to high frequencies is therefore impossible.

しかし、混入された金属塊は低抵抗のため高周波電界に
よって容易に発熱し高温度になる。
However, since the mixed metal lump has low resistance, it easily generates heat due to the high frequency electric field and reaches a high temperature.

この際、発熱している金属塊の周囲の二酸化珪素も高温
になり、伝導性を帯びてくる。
At this time, the silicon dioxide surrounding the metal lump that is generating heat also becomes high temperature and becomes conductive.

そして金属塊の近傍から徐々に高周波電流が発生し、高
温になり溶解しはじめる。
Then, a high-frequency current is gradually generated near the metal lump, which reaches a high temperature and begins to melt.

この時、金属塊も雰囲気中の酸素ガス又は送り込まれた
酸素と反応し酸化物に変化し、周囲の二酸化珪素と均一
に混ぜ合わされる。
At this time, the metal lump also reacts with the oxygen gas in the atmosphere or the oxygen introduced, changes into an oxide, and is uniformly mixed with the surrounding silicon dioxide.

このようにして金属酸化物の添加された二酸化珪素の溶
融体が容器中に得られ、適当な時間高温に保持された後
冷却することによりブロック状にドープトシリカガラス
が取り出される。
In this way, a metal oxide-doped silicon dioxide melt is obtained in a container, kept at a high temperature for a suitable period of time, and then cooled to take out the doped silica glass in the form of a block.

溶融体を入れる容器は周囲から水冷され、高温になるの
が防がれ容器からの不純物の浸み出しや溶融体との反応
が生じない。
The container containing the molten material is water-cooled from its surroundings, preventing it from reaching high temperatures and preventing impurities from leaching out of the container or reacting with the molten material.

次に実施例により本発明を更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 に 酸化珪素の粉末225gに一辺が約51nmのサイコロ
状の金属アルミニウムを20個混入させ、これらを周囲
に水冷パイプを配した石英ガラス製るつぼに入れて加熱
用高周波コイル中に置いた。
In Example, 20 dice-shaped pieces of metal aluminum each having a side of about 51 nm were mixed into 225 g of silicon oxide powder, and these were placed in a quartz glass crucible surrounded by a water-cooled pipe and placed in a high-frequency heating coil.

高周波発振機の出力周波数は3.9 MHzであった。The output frequency of the high frequency oscillator was 3.9 MHz.

高周波の出力を増していくにつれ、当初金属アルミニウ
ムの塊が発熱し周囲の二酸化珪素と反応し徐々に溶融領
域が増大し遂にるつぼの周辺部を除いた全体が液状化す
る。
As the high-frequency power is increased, the lump of metal aluminum initially generates heat and reacts with the surrounding silicon dioxide, gradually increasing the molten area until the entire crucible except for the periphery becomes liquefied.

この時金属アルミニウムは雰囲気中の酸素と反応し酸化
アルミニウムに変化した。
At this time, metal aluminum reacted with oxygen in the atmosphere and changed into aluminum oxide.

溶融物の温度は光高温計によって約200000と測定
された。
The temperature of the melt was measured by optical pyrometer to be approximately 200,000.

この状態に5時間保持し溶融を続は酸什アルミニウムと
二酸什珪素が均一に混ざり合った後、急冷することによ
り塊状の酸化アルミニウムドープトシリカガラスが得ら
れた。
This state was maintained for 5 hours to continue melting. After the aluminum oxide and silicon oxide were uniformly mixed, the mixture was rapidly cooled to obtain a lump of aluminum oxide doped silica glass.

これを光学研磨して屈折率を測定したところすl−’J
ウムD線の波長で1.465であった。
This was optically polished and the refractive index was measured.
The wavelength of the Um D line was 1.465.

実施例 2 金属チタンを実施例1同様に二酸化珪素に混ぜ合わせて
酸化チタンドープトシリカガラスを得た。
Example 2 Titanium metal was mixed with silicon dioxide in the same manner as in Example 1 to obtain titanium oxide doped silica glass.

すなわち、一辺が約5mmのサイコロ状の金属チタン1
8個を380gの二酸化珪素の粉末と混ぜ合わせて高周
波誘導加熱を行なった。
In other words, a dice-shaped titanium metal 1 with a side of approximately 5 mm.
Eight pieces were mixed with 380 g of silicon dioxide powder and subjected to high frequency induction heating.

その結果屈折率が1.473の透明なガラス体が得られ
た。
As a result, a transparent glass body with a refractive index of 1.473 was obtained.

本手法は他の添加物を有するドープトシリカガラスにつ
いても同様に利用できることは明白である。
It is clear that the method can be applied to doped silica glasses with other additives as well.

すなわち、添加酸化物の出発原料としてゲルマニウム、
亜鉛、鉛、バナジン、クロム、鉄、コバルト、ニッケル
などを使用することによってそれぞれ金属酸化物を添加
した種々の特性を有するドープトシリカガラスが得られ
る。
That is, germanium is used as the starting material for the additive oxide.
By using zinc, lead, vanadine, chromium, iron, cobalt, nickel, etc., doped silica glasses having various properties with metal oxides added thereto can be obtained.

以上説明したように、本発明の製造法は高周波誘導加熱
により透明で高品質の均一なドープトシリカガラスを塊
状に容易に製造できる利点がある。
As explained above, the manufacturing method of the present invention has the advantage that transparent, high-quality, uniform doped silica glass can be easily manufactured in bulk by high-frequency induction heating.

そして本発明の製造法は光伝送路としてのガラスファイ
バの量産化に有効である。
The manufacturing method of the present invention is effective for mass production of glass fibers as optical transmission lines.

本発明の実施の態様を示せば次の如くである。The embodiments of the present invention are as follows.

(1) 添加する金属塊がアルミニウム、チタン、ゲ
ルマニウム、亜鉛、鉛、バナジン、クロム、鉄、コバル
ト、ニッケルの少なくとも1種以上からなる特許請求の
範囲記載の製造法。
(1) The manufacturing method according to the claims, wherein the metal lump to be added is at least one of aluminum, titanium, germanium, zinc, lead, vanadine, chromium, iron, cobalt, and nickel.

(2)製造の雰囲気中に酸素が含まれる特許請求の範囲
の製造法。
(2) The manufacturing method according to the claims, wherein oxygen is included in the manufacturing atmosphere.

(3)周囲が冷却された容器を用いて前記の混合物が溶
解、ガラス化される特許請求の範囲記載の製造法。
(3) A manufacturing method according to the claims, wherein the mixture is melted and vitrified using a container whose surroundings are cooled.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のドープトシリカガラスの製造法の説明的
断面図である。 1・・・・・・粉末状二酸化珪素、2・・・・・・金属
塊、3・・・・・・容器、4・・・・・・冷却器、5・
・・・・・高周波コイル。
The drawings are explanatory cross-sectional views of the method for manufacturing doped silica glass of the present invention. 1... Powdered silicon dioxide, 2... Metal lump, 3... Container, 4... Cooler, 5...
...High frequency coil.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化珪素に金属酸化物を添加したドープトシリカ
ガラスの製造法において、二酸化珪素の粉末に添加金属
塊を混入し、高周波誘導加熱により金属塊を介して加熱
溶解し、かつ該金属を酸化させ、添加物が均一に混ざり
合った二酸化珪素の溶融体を冷却することを特徴とする
ドープトシリカガラスの製造法。
1. In a method for producing doped silica glass in which a metal oxide is added to silicon dioxide, an additive metal lump is mixed into silicon dioxide powder, heated and melted through the metal lump by high-frequency induction heating, and the metal is oxidized. A method for producing doped silica glass, which comprises cooling a silicon dioxide melt in which additives are uniformly mixed.
JP4331875A 1975-04-11 1975-04-11 Doped silica glass Expired JPS5854102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4331875A JPS5854102B2 (en) 1975-04-11 1975-04-11 Doped silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4331875A JPS5854102B2 (en) 1975-04-11 1975-04-11 Doped silica glass

Publications (2)

Publication Number Publication Date
JPS51119021A JPS51119021A (en) 1976-10-19
JPS5854102B2 true JPS5854102B2 (en) 1983-12-02

Family

ID=12660446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4331875A Expired JPS5854102B2 (en) 1975-04-11 1975-04-11 Doped silica glass

Country Status (1)

Country Link
JP (1) JPS5854102B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956802U (en) * 1982-10-04 1984-04-13 株式会社村田製作所 bond structure
JPS59183004U (en) * 1983-05-20 1984-12-06 株式会社村田製作所 Dielectric unit fixing structure of dielectric resonator
JPS59183003U (en) * 1983-05-20 1984-12-06 株式会社村田製作所 Dielectric unit fixing structure of dielectric resonator
JPS61176801U (en) * 1985-04-19 1986-11-05
JPS63135001A (en) * 1986-11-26 1988-06-07 Toko Inc Dielectric filter
JPS63191705U (en) * 1987-05-28 1988-12-09
JPS63198205U (en) * 1987-06-09 1988-12-20
JPH0315841B2 (en) * 1983-09-13 1991-03-04 Murata Manufacturing Co
JPH04119103U (en) * 1992-03-26 1992-10-26 株式会社村田製作所 dielectric filter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956802U (en) * 1982-10-04 1984-04-13 株式会社村田製作所 bond structure
JPS59183004U (en) * 1983-05-20 1984-12-06 株式会社村田製作所 Dielectric unit fixing structure of dielectric resonator
JPS59183003U (en) * 1983-05-20 1984-12-06 株式会社村田製作所 Dielectric unit fixing structure of dielectric resonator
JPH0315841B2 (en) * 1983-09-13 1991-03-04 Murata Manufacturing Co
JPS61176801U (en) * 1985-04-19 1986-11-05
JPS63135001A (en) * 1986-11-26 1988-06-07 Toko Inc Dielectric filter
JPS63191705U (en) * 1987-05-28 1988-12-09
JPS63198205U (en) * 1987-06-09 1988-12-20
JPH04119103U (en) * 1992-03-26 1992-10-26 株式会社村田製作所 dielectric filter

Also Published As

Publication number Publication date
JPS51119021A (en) 1976-10-19

Similar Documents

Publication Publication Date Title
JPS5854102B2 (en) Doped silica glass
TW201806889A (en) Production method of crystallized glass member having curved surface shape
US5108477A (en) Method for making a glass article
US4011006A (en) GeO2 -B2 O3 -SiO2 Optical glass and lightguides
Zhang et al. Vertical Bridgman growth and optical properties of CdSiP 2 crystals
JPS60108338A (en) Manufacture of base material for optical fiber
Sigaev et al. Glasses and their crystallization in the (1− х) KNbO3· хSiO2 system at low glass-forming oxide contents, 0⩽ х⩽ 0.35
CN108911502B (en) Fluorine-sulfur phosphate laser glass and preparation method and application thereof
Kolobov et al. Features of crystallization and characteristics of quartz glass obtained on oao dinur plasma torches from the quartz sand of the Ramenskii deposit
JPS63201034A (en) Production of crystallized glass having negative thermal expansion coefficient
JPS59146947A (en) Manufacture of preform for light conductive body
Guo et al. Synthesis and properties of GeS2–Ga2S3–PbI2 chalcohalide glasses
Kuzuu et al. KrF-and ArF-excimer-laser-induced absorption in silica glasses produced by melting synthetic silica powder
Sidorov et al. Structure and Optical Properties Of LiNbO3: В Crystals Grown from Charges of Different Origins
CN116947311B (en) Doped quartz glass for high-power laser gain medium and preparation method thereof
JPS6086039A (en) Production of fluorine-containing silica glass
JPH0123420B2 (en)
JPS5832037A (en) Preparation of glass containing additive
Sayed et al. Study of the optical properties of Li2O modified P2O5-Na2O glasses
JPH044260B2 (en)
US2736659A (en) Method for preparation of highly refractive material
JPS6048454B2 (en) Glass manufacturing method
JPS62288129A (en) Production of glass preform for optical fiber
JPS60251147A (en) Process and device for preparing halide glass
KR20240025775A (en) Manufacturing method of quartz ware