JPS63201034A - Production of crystallized glass having negative thermal expansion coefficient - Google Patents

Production of crystallized glass having negative thermal expansion coefficient

Info

Publication number
JPS63201034A
JPS63201034A JP2941687A JP2941687A JPS63201034A JP S63201034 A JPS63201034 A JP S63201034A JP 2941687 A JP2941687 A JP 2941687A JP 2941687 A JP2941687 A JP 2941687A JP S63201034 A JPS63201034 A JP S63201034A
Authority
JP
Japan
Prior art keywords
powder
thermal expansion
glass
expansion coefficient
crystallized glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2941687A
Other languages
Japanese (ja)
Other versions
JPH0432020B2 (en
Inventor
Kazuhiko Jinnai
和彦 陣内
Hiroshi Tateyama
博 立山
Kunio Kimura
邦夫 木村
Masakatsu Ijichi
伊地知 正勝
Hironori Hamazaki
浜崎 廣教
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IJICHI SHIYUKEIJIYOU KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
IJICHI SHIYUKEIJIYOU KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IJICHI SHIYUKEIJIYOU KK, Agency of Industrial Science and Technology filed Critical IJICHI SHIYUKEIJIYOU KK
Priority to JP2941687A priority Critical patent/JPS63201034A/en
Publication of JPS63201034A publication Critical patent/JPS63201034A/en
Publication of JPH0432020B2 publication Critical patent/JPH0432020B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce the title crystallized glass having a negative thermal expansion coefficient by mixing the specified amts. of Al2O3 powder and Li2O powder into volcanic vitreous deposit powder, heating and melting the powder, relieving the stress, further reheating the material under specified conditions, and annealing its. CONSTITUTION:From 14-30wt.% Al2O3 powder and 7-15wt.% Li2O powder are added to the powder of SHIRASU (white sandy deposit) as the volcanic vitreous deposit powder, and mixed. The mixed powder is heated at 1,600 deg.C for 1hr in an electric furnace, and melted to form cullet. The cullet is crushed, and reheated in the electric furnace at 1,600 deg.C for 1hr. The stress is then relieved, and the melt is annealed. The obtained glass is kept at 500-800 deg.C for 12-24hr and then annealed, and the crystallized glass having a negative thermal expansion coefficient is obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は天然に大量に存在し、現在あまり多くは利用さ
れていないシラスをはじめとする火山ガラス質堆積物を
有効利用し、負の熱膨張係数を有するガラスを製造する
方法に関し、本発明で得られるガラスは、その粉末を通
常の正の熱膨張係数を有するガラスあるいはセラミック
粉末等と適量混合し、加熱焼結して無膨張焼結体を得る
、又はそれ単味で加熱した際に収縮する事が望まれる部
材を得る等従来のガラスが具備していなかった新規な用
途に活用出来るものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention effectively utilizes volcanic glassy deposits such as whitebait, which naturally exists in large quantities and is currently not used in large quantities, to generate negative heat. Regarding the method of manufacturing glass having a coefficient of expansion, the glass obtained by the present invention is obtained by mixing the powder with an appropriate amount of glass or ceramic powder having a normal positive coefficient of thermal expansion, and heating and sintering the mixture to form non-expansion sintered glass. It can be used for new purposes that conventional glass has not been equipped with, such as obtaining a body or obtaining a member that is desired to shrink when heated.

〈従来の技術〉 火山ガラス質堆積物は5102を主成分として約70重
量%、その他にA 1203 、 Nano、 K2O
等を含む一種のけい酸塩であり、我が国に広(分布して
おり、その利用方法も多く研究されている。例えば南九
州に広く分布する火山ガラス質堆積物の一種であるシラ
スの利用方法の一つとしてガラスへの応用があり、特公
昭52−17338号公報で示される様な方法が提案さ
れている。この特公昭52−17338号公報で示され
るのは、シラスに対してCab、 ZrO2及びZnO
を添加して、耐アルカリ性に富んだガラスを製造しよう
とする方法である。
<Prior art> Volcanic glassy deposits are mainly composed of 5102 and about 70% by weight, and also contain A 1203, Nano, and K2O.
It is a type of silicate that is widely distributed in Japan, and many studies have been conducted on how to use it. For example, how to use shirasu, which is a type of volcanic glassy deposit widely distributed in southern Kyushu. One of the methods is application to glass, and a method as shown in Japanese Patent Publication No. 52-17338 has been proposed.What is shown in this Japanese Patent Publication No. 52-17338 is Cab, ZrO2 and ZnO
This method attempts to produce glass with high alkali resistance by adding .

本発明者等も先に、火山ガラス質堆積物に対し添加する
物質の量や熱処理条件を適宜調整する事で強度が大なる
ガラスの製造方法を開発、特許出願をなした(特願昭8
0−288651号)。
The present inventors had also previously developed a method for manufacturing glass with increased strength by appropriately adjusting the amount of substances added to volcanic glassy deposits and heat treatment conditions, and filed a patent application (Japanese Patent Application No. 8
0-288651).

ところでこれらのガラスは全て熱膨張係数は正であり、
熱膨張係数が約80X 10”17℃位の大きな値を示
すガラス程強度が大で、熱膨張係数の大きさと強度とは
正比例する傾向にある事が判った。
By the way, all of these glasses have positive thermal expansion coefficients,
It has been found that glasses with larger thermal expansion coefficients of about 80 x 10'' and 17°C have higher strength, and that the size of the thermal expansion coefficient and the strength tend to be directly proportional.

しかるに耐熱衝撃性を考慮すれば出来る限り熱膨張の少
ない材料が好ましい為に、強度は大であるが熱膨張係数
は小あるいは全く熱膨張をしないという材料があれば好
都合である。
However, considering thermal shock resistance, it is preferable to use a material with as little thermal expansion as possible, so it would be advantageous to have a material that has high strength but has a small coefficient of thermal expansion or no thermal expansion at all.

〈発明が解決しようとする問題点〉 本発明は強度は大で、熱膨張が小あるいは全く熱膨張を
しない材料の原料としたり、又それ単味で加熱により収
縮する部材として用いる負の熱膨張係数を有するガラス
の製造法を提供する事を目的とする。
<Problems to be Solved by the Invention> The present invention can be used as a raw material for materials that have high strength and have little or no thermal expansion, or can be used as a material that shrinks when heated. The purpose of this invention is to provide a method for manufacturing glass having a coefficient of coefficient.

〈問題点を解決する為の手段〉 上記本発明の目的を達成する為の手段は次の如くである
。即ち人4.03粉末14〜30重量%、Li2O粉末
7〜15重量%、残部火山ガラス質堆積物粉末からなる
配合の混合粉末を、加熱溶融した後、歪除去処理を施し
、更に550〜800℃の温度下で12〜24時間再加
熱した後徐冷することを特徴とする負の熱膨張係数を有
する結晶化ガラスの製造法である。
<Means for solving the problems> The means for achieving the above object of the present invention are as follows. That is, a mixed powder with a composition of 14 to 30% by weight of human 4.03 powder, 7 to 15% by weight of Li2O powder, and the remainder volcanic glassy deposit powder is heated and melted, then subjected to strain removal treatment, and further This is a method for producing crystallized glass having a negative thermal expansion coefficient, which is characterized by reheating at a temperature of 12 to 24 hours and then slowly cooling.

上記混合粉末中のAl2O3やLi2Oは、ガラス中に
ユークリプタイト(L i 20・Al2O3・2Si
O2)やβ−スボデューメン(Li20・Al2O3・
4SiO□)結晶の生成過程、及びこれらの結晶の相転
移時の収縮性を利用して負の熱膨張係数を有するガラス
を得る為であり、Al2O.14重置方未満あるいはL
i2O7重量%未満では必要な量の上記結晶の生成がな
く、−万人J20゜が30重置方を越えると融点が高く
なり過ぎ、又L i 20が15重量%を越えると融点
が低下し過ぎ結晶が粗大化し得られるガラスの強度低下
が激しいが為に、k120.は14〜30重量%、L1
20は7〜15重量%が望ましい。
Al2O3 and Li2O in the above mixed powder are eucryptite (Li20・Al2O3・2Si) in the glass.
O2) and β-subodumene (Li20・Al2O3・
This is to obtain a glass having a negative coefficient of thermal expansion by utilizing the formation process of Al2O.4SiO.4SiO. Less than 14 times or L
If I2O is less than 7% by weight, the required amount of the above crystals will not be formed, if J20° exceeds 30% by weight, the melting point will become too high, and if Li20 exceeds 15% by weight, the melting point will decrease. Over time, the crystals become coarser and the strength of the resulting glass decreases significantly, so k120. is 14-30% by weight, L1
20 is desirably 7 to 15% by weight.

又再加熱時の温度及び時間は、後述する実施例の結果か
ら出来る限り短時間処理でしかも得られるガラスの熱m
彊係数が負の値となる範囲で選定した。
In addition, the temperature and time during reheating should be determined based on the results of the examples described later.
It was selected within the range where the Qi coefficient is a negative value.

〈実施例及び作用〉 以下本発明の実施例を示す。<Examples and effects> Examples of the present invention will be shown below.

11透工 この実施例は、火山ガラス質堆積物として鹿児島県吉田
町に産する所謂吉田シラスを用いた。その吉田シラスの
化学組成を下記第1表に示す。この様な吉田シラスの未
水洗品粉末83.56gに対し、市販Al2O3粉末3
1.61g、市販Li2O11,86gを調合して混合
粉末を得た。該混合粉末の化学組成を同じく下記第1表
に示す。
11. Transparent work In this example, so-called Yoshida Shirasu, which is produced in Yoshida Town, Kagoshima Prefecture, was used as a volcanic glassy deposit. The chemical composition of Yoshida whitebait is shown in Table 1 below. For 83.56 g of unwashed Yoshida whitebait powder, 3 g of commercially available Al2O3 powder
A mixed powder was obtained by blending 1.61 g and 11.86 g of commercially available Li2O. The chemical composition of the mixed powder is also shown in Table 1 below.

なお上記混合粉末は、吉田シラス59.39重量%、人
1,03.29.53重量%、L12011.08重量
%の組合せとなる。
The above mixed powder is a combination of 59.39% by weight of Shirasu Yoshida, 29.53% by weight of Human 1,03, and 11.08% by weight of L1.

この様な組成の混合粉末を、白金皿に入れ電気炉内で1
6pO℃、1時間加熱溶融しカレットを造り該カレット
を74μm以下に粉砕し、再び白金皿に入れ電気炉内で
1600℃、1時間加熱溶融した後歪除去処理を行った
。この歪除去処理は、上記電気炉とは別の予め500℃
に保持した炉内に収納されたステンレス容蕃内にコーク
ス粉を入れ、該コークス粉の中にカーボン製底板及びカ
ーボン製の分割式側板用仕切板を入れそれら底板と仕切
板とにより囲まれる内部空間に、上記白金皿内の溶融状
混合物を注入し、施蓋状態下に30分間保持後徐冷する
という方法を採った。
A mixed powder with such a composition was placed in a platinum dish and heated for 1 hour in an electric furnace.
The cullet was heated and melted at 6 pO<0>C for 1 hour to produce a cullet, which was crushed to 74 μm or less, placed in a platinum dish again, heated and melted at 1600<0>C for 1 hour in an electric furnace, and then subjected to strain removal treatment. This strain removal treatment is carried out in advance at 500°C, separate from the electric furnace.
Coke powder is placed in a stainless steel container housed in a furnace held at A method was adopted in which the molten mixture in the platinum dish was poured into the space, held with the lid closed for 30 minutes, and then slowly cooled.

この様にして得られたガラスを切断、研磨して5 x 
5 X 15(+am)の試料を作り、その後500〜
800℃の各点に12時間及び24時間保持した後徐冷
した製品の熱膨張係数を図面に示す。
The glass thus obtained was cut and polished to 5x
Make a sample of 5 x 15 (+am), then 500 ~
The drawings show the thermal expansion coefficients of the products that were kept at 800°C for 12 and 24 hours and then slowly cooled.

この図面に示す結果から、24時間保持の場合は550
℃で、熱膨張係数は負の値となす、580〜600℃間
でその絶対値が最も大きくなり、以後温度を上げるに従
って絶対値が序々に小さくなっているが、800℃迄は
いずれも負の値を示している事、及び12時間程の場合
には24時間の場合と比し、全体的に高温鋼へ移行し、
かつ熱膨張係数の絶対値は小となってはいるが、800
℃迄はいずれも負の値を示している事が判る。
From the results shown in this drawing, in the case of 24-hour retention, 550
The coefficient of thermal expansion has a negative value at 580 to 600 degrees Celsius, and its absolute value is the largest between 580 and 600 degrees Celsius. After that, the absolute value gradually decreases as the temperature increases, but up to 800 degrees Celsius, the coefficient of thermal expansion is negative. , and in the case of about 12 hours, compared to the case of 24 hours, the overall temperature shifts to high temperature steel,
Although the absolute value of the coefficient of thermal expansion is small, it is 800
It can be seen that all values up to ℃ show negative values.

ll1士 上記第1表に示した吉日シラス末水洗品粉末86.07
g、市販A I、03粉末15.41g、市販Li2O
粉末8.03gを調合し下記第2表に示す如き組成の混
合粉末を得た。
ll1 Shirasu powder washed with water as shown in Table 1 above 86.07
g, commercially available A I, 03 powder 15.41g, commercially available Li2O
8.03 g of powder was mixed to obtain a mixed powder having the composition shown in Table 2 below.

なお上記混合粉末は、吉川シラス78.6重量%。The above mixed powder contains 78.6% by weight of Yoshikawa Shirasu.

Al2O314.1重量%、Li207.3重量%の組
み合わせとなる。
This is a combination of 14.1% by weight of Al2O3 and 7.3% by weight of Li.

この様な組成の混合粉末を、上記実施例1と同一条件下
に、加熱溶融してカレットを得る→カレトを粉砕し再び
加熱溶融→歪除去処理−徐冷して得たガラスから、同じ
(5X 5 X 15(mm)の試料を作り、該試料を
600℃、24時間再加熱した後に徐冷して得た製品に
つき、その熱膨張係数を測定した結果、−18X 10
1/’cであった。
A mixed powder having such a composition was heated and melted to obtain cullet under the same conditions as in Example 1, and the same ( A sample of 5 x 5 x 15 (mm) was made, and the sample was reheated at 600°C for 24 hours and then slowly cooled.The thermal expansion coefficient of the product was measured, and the result was -18 x 10
It was 1/'c.

〈発明の効果〉 以上述べて来た如く、本発明によれば従来では存在しな
かった負の熱膨張係数を有するガラスを得る事が出来る
。従ってこのガラスを再度粉砕し通常の正の熱膨張係数
を有するガラスやセラミック粉と適量組合わせた原料粉
末を焼結すれば、その組み合わせに応じ熱膨張が非常に
少ないあるいは全く熱膨張をしない焼結体を得る事が可
能で、その焼結体の強度は本発明方法で得られるガラス
に組み合わせる相手材により維持すればよいので高強度
の焼結体を得る事も出来る。
<Effects of the Invention> As described above, according to the present invention, it is possible to obtain a glass having a negative coefficient of thermal expansion, which did not exist in the past. Therefore, if this glass is re-pulverized and the raw material powder is sintered in combination with an appropriate amount of ordinary glass or ceramic powder that has a positive coefficient of thermal expansion, the sintered material will have very little or no thermal expansion depending on the combination. It is possible to obtain a sintered body, and since the strength of the sintered body can be maintained by the mating material combined with the glass obtained by the method of the present invention, a high-strength sintered body can also be obtained.

従って温度変化によりその寸法精度が変化しない事が要
求される部材、又は逆に温度上昇に伴い収縮する事が要
求される部材への応用が出来るものである。
Therefore, it can be applied to members whose dimensional accuracy is not required to change due to temperature changes, or conversely, which are required to shrink as temperature rises.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明実施例1で得たガラスの熱膨張係数を示す
グラフ。 特許出願人 工業技術院長(他1名) 復代理人  有吉 教晴 熱処理1度じC)
The drawing is a graph showing the thermal expansion coefficient of the glass obtained in Example 1 of the present invention. Patent applicant Director of the Agency of Industrial Science and Technology (1 other person) Sub-agent Noriharu Ariyoshi Heat treatment 1 degree C)

Claims (1)

【特許請求の範囲】[Claims] 1、Al_2O_3粉末14〜30重量%、Li_2O
粉末7〜15重量%、残部火山ガラス質堆積物粉末から
なる配合の混合粉末を、加熱溶融した後、歪除去処理を
施し、更に550〜800℃の温度下で12〜24時間
再加熱した後徐冷することを特徴とする負の熱膨張係数
を有する結晶化ガラスの製造法。
1. Al_2O_3 powder 14-30% by weight, Li_2O
After heating and melting a mixed powder composition consisting of 7 to 15% by weight powder and the balance consisting of volcanic glassy deposit powder, strain removal treatment was performed, and the mixture was further heated at a temperature of 550 to 800°C for 12 to 24 hours. A method for producing crystallized glass having a negative coefficient of thermal expansion, which comprises slow cooling.
JP2941687A 1987-02-10 1987-02-10 Production of crystallized glass having negative thermal expansion coefficient Granted JPS63201034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2941687A JPS63201034A (en) 1987-02-10 1987-02-10 Production of crystallized glass having negative thermal expansion coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2941687A JPS63201034A (en) 1987-02-10 1987-02-10 Production of crystallized glass having negative thermal expansion coefficient

Publications (2)

Publication Number Publication Date
JPS63201034A true JPS63201034A (en) 1988-08-19
JPH0432020B2 JPH0432020B2 (en) 1992-05-28

Family

ID=12275525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2941687A Granted JPS63201034A (en) 1987-02-10 1987-02-10 Production of crystallized glass having negative thermal expansion coefficient

Country Status (1)

Country Link
JP (1) JPS63201034A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365532A (en) * 1989-07-31 1991-03-20 Narumi China Corp Lustered crystallized glass
EP0995723A1 (en) * 1998-10-23 2000-04-26 Kabushiki Kaisha Ohara Negative thermal expansion glass ceramic and method for producing the same
WO2000055659A1 (en) * 1999-03-12 2000-09-21 Nippon Electric Glass Co., Ltd. Temperature compensation device for optical communication
EP1174398A1 (en) * 1999-02-24 2002-01-23 Nippon Electric Glass Co., Ltd Material for thermal compensation and optical communication device using the material
EP1193227A1 (en) 2000-09-28 2002-04-03 Kabushiki Kaisha Ohara Glass ceramic and temperature compensating member
CN102826756A (en) * 2012-09-24 2012-12-19 绍兴杰龙玻璃有限公司 Preparation method of white jade glass tableware
CN109678342A (en) * 2019-01-22 2019-04-26 襄阳金晶光学材料有限公司 A kind of crystal glass embryo material and preparation method thereof stable by using the old vial quality of production

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11772517B2 (en) 2020-11-09 2023-10-03 Ford Global Technologies, Llc Vehicular system capable of adjusting a passenger compartment from a child seat arrangement to a second arrangement
US11904732B2 (en) 2020-11-09 2024-02-20 Ford Global Technologies, Llc Vehicular system capable of adjusting a passenger compartment from a first arrangement to a child care arrangement
US12077068B2 (en) 2020-11-09 2024-09-03 Ford Global Technologies, Llc Authorization-based adjustment of passenger compartment arrangement

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365532A (en) * 1989-07-31 1991-03-20 Narumi China Corp Lustered crystallized glass
US6506699B1 (en) 1998-10-23 2003-01-14 Kabushiki Kaisha Ohara Negative thermal expansion glass ceramic and method for producing the same
EP0995723A1 (en) * 1998-10-23 2000-04-26 Kabushiki Kaisha Ohara Negative thermal expansion glass ceramic and method for producing the same
USRE39437E1 (en) * 1998-10-23 2006-12-19 Kabushiki Kaisha Ohara Negative thermal expansion glass ceramic
US6521556B2 (en) 1998-10-23 2003-02-18 Kabushiki Kaisha Ohara Negative thermal expansion glass ceramic
EP1174398A1 (en) * 1999-02-24 2002-01-23 Nippon Electric Glass Co., Ltd Material for thermal compensation and optical communication device using the material
EP1174398A4 (en) * 1999-02-24 2004-12-15 Nippon Electric Glass Co Material for thermal compensation and optical communication device using the material
US7013062B1 (en) 1999-02-24 2006-03-14 Nippon Electric Glass Co., Ltd. Material for thermal compensation and optical communication device using the material
WO2000055659A1 (en) * 1999-03-12 2000-09-21 Nippon Electric Glass Co., Ltd. Temperature compensation device for optical communication
US6492288B2 (en) 2000-09-28 2002-12-10 Kabushiki Kaisha Ohara Glass ceramic and temperature compensating member
EP1193227A1 (en) 2000-09-28 2002-04-03 Kabushiki Kaisha Ohara Glass ceramic and temperature compensating member
CN102826756A (en) * 2012-09-24 2012-12-19 绍兴杰龙玻璃有限公司 Preparation method of white jade glass tableware
CN109678342A (en) * 2019-01-22 2019-04-26 襄阳金晶光学材料有限公司 A kind of crystal glass embryo material and preparation method thereof stable by using the old vial quality of production

Also Published As

Publication number Publication date
JPH0432020B2 (en) 1992-05-28

Similar Documents

Publication Publication Date Title
US3113877A (en) Partially devitrified glasses
EP0156479B1 (en) Lithium alumino-silicate glass ceramics
JPS62105937A (en) Glass ceramic product containing cristobalite and potassium fluorotichterite and manufacture
CN107847399A (en) Increase the method for the intensity of lithium metasilicate glass ceramics formed body
JPS63201034A (en) Production of crystallized glass having negative thermal expansion coefficient
US3241935A (en) Bone china and method of making it
JP2000500730A (en) High rigid transparent mica-glass ceramic
JPH04275947A (en) Transparent blue/black glass ceramic article and method for manufacture thereof
JPS6212637A (en) Crown of tooth made of glass ceramic and production thereof
CALVERT et al. Liquidus Behavior in the Silica‐Rich Region of the System PbO‐SiO2
US3834911A (en) Glass composition and method of making
US4022627A (en) Crystallizable glasses and nephetine glass-ceramics containing ZrO2 and ZnO
US1623301A (en) Heat-resisting glass
JP3669019B2 (en) Dark gray glass
JPS6158824A (en) Preparation of transparent quartz glass
JPS62128938A (en) Production of reinforced glass
JP2000044253A (en) PRODUCTION OF SnO-CONTAINING GLASS
JPS63201035A (en) Production of tempered glass
US3883358A (en) Copper aluminoborate glasses
US3667973A (en) Spontaneous fluoride opal glasses with thermally reversible opacity
JPS5924100B2 (en) Method for manufacturing crystallized glass using aluminum red mud as the main raw material
US3163513A (en) Method of making a semicrystalline ceramic body
JPS6183648A (en) Crystallized glass and its production
JPS59203736A (en) Crystallized glass
JP3127256B2 (en) Method for producing crystallized glass

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term