JPH0543206A - Production of hydrogen peroxide - Google Patents
Production of hydrogen peroxideInfo
- Publication number
- JPH0543206A JPH0543206A JP313692A JP313692A JPH0543206A JP H0543206 A JPH0543206 A JP H0543206A JP 313692 A JP313692 A JP 313692A JP 313692 A JP313692 A JP 313692A JP H0543206 A JPH0543206 A JP H0543206A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- producing hydrogen
- catalyst
- carrier
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は反応媒体中で酸素と水素
を触媒と接触的に反応させ、過酸化水素を製造する改良
された方法に関するものである。更に詳しくは、酸素と
水素を助触媒を含む反応媒体中で、固体酸担体または超
強酸性を有する固体酸担体に担持された白金族触媒と接
触的に反応せしめる過酸化水素の製造方法である。FIELD OF THE INVENTION The present invention relates to an improved process for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen with a catalyst in a reaction medium. More specifically, it is a method for producing hydrogen peroxide in which oxygen and hydrogen are catalytically reacted with a platinum group catalyst supported on a solid acid carrier or a solid acid carrier having super strong acidity in a reaction medium containing a cocatalyst. ..
【0002】[0002]
【従来の技術】現在、工業的に行われている過酸化水素
の主な製造方法は、アルキルアンスラキノンを媒体とす
る自動酸化法である。この方法の問題点として、還元、
酸化、水抽出分離、精製、濃縮等のプロセスが複雑であ
り、装置費、運転費が大きいという事が挙げられる。更
には、アルキルアンスラキノンの劣化による損失、水素
添加触媒の劣化等の問題もある。これらの問題点を改善
するために、上記製造方法以外の製造方法が試みられて
いるが、その一つに、反応媒体中で触媒を用いて、酸素
と水素から直接的に過酸化水素を製造する方法がある。
既に、白金族金属を触媒として用い、酸素と水素から過
酸化水素を製造する方法が提案されており、かなりの濃
度の過酸化水素が生成することが示されている(特公昭
56-47121号、特公昭55-18646号、特公平1-23401 号、特
開昭63-156005 号の各公報参照)。これらでは、いずれ
も反応媒体として酸や無機塩を溶存させた水溶液が使用
されており、特に反応媒体中にハロゲンイオンを含むこ
とにより触媒の活性が抑制され過酸化水素生成の選択性
が大幅に向上し、高濃度の過酸化水素が得られている。
例えば特開昭63-156005 号公報には、白金族触媒を用
い、酸性水溶液中で加圧下酸素及び水素から過酸化水素
を製造する方法において、水溶液中に臭素イオン等のハ
ロゲンイオンを共存させることによって、選択的に高濃
度の過酸化水素を製造できることが開示されている。2. Description of the Related Art Currently, the main method of industrially producing hydrogen peroxide is an autoxidation method using alkylanthraquinone as a medium. As a problem of this method, reduction,
The processes such as oxidation, water extraction / separation, purification, and concentration are complicated, and the equipment cost and operation cost are high. Further, there are problems such as loss due to deterioration of alkyl anthraquinone and deterioration of hydrogenation catalyst. In order to improve these problems, production methods other than the above production methods have been attempted. One of them is to produce hydrogen peroxide directly from oxygen and hydrogen using a catalyst in a reaction medium. There is a way to do it.
A method for producing hydrogen peroxide from oxygen and hydrogen using a platinum group metal as a catalyst has already been proposed, and it has been shown that a considerable concentration of hydrogen peroxide is produced (Japanese Patent Publication No.
56-47121, Japanese Patent Publication No. 55-18646, Japanese Patent Publication No. 1-23401, and Japanese Patent Publication No. 63-156005). In each of these, an aqueous solution in which an acid or an inorganic salt is dissolved is used as a reaction medium, and in particular, the inclusion of a halogen ion in the reaction medium suppresses the activity of the catalyst and significantly increases the selectivity of hydrogen peroxide generation. Improved and higher concentrations of hydrogen peroxide have been obtained.
For example, in JP-A-63-156005, in a method of producing hydrogen peroxide from oxygen and hydrogen under pressure in an acidic aqueous solution using a platinum group catalyst, halogen ions such as bromine ions are allowed to coexist in the aqueous solution. Discloses that a high concentration of hydrogen peroxide can be selectively produced.
【0003】[0003]
【発明が解決しようとする課題】反応媒体中で酸素と水
素を触媒と接触的に反応させて過酸化水素を製造する方
法において、従来の公知技術では実用上、高濃度の過酸
化水素を得るためには反応媒体中に高濃度の酸とハロゲ
ンイオンを共存させる必要があった。この場合反応媒体
としてハロゲンイオンの存在する高濃度の酸性水溶液を
用いる場合にはその取扱に使用できる装置の材質が制限
されると共に、触媒金属の酸性水溶液中への溶出が問題
となる。この触媒金属の溶出は触媒活性の低下、及び触
媒寿命の低減をもたらす。更に、酸性水溶液中に溶出し
た触媒金属は、製品過酸化水素の品質を低下させると共
に、溶出した低濃度の金属の回収が極めて困難であるこ
とも大きな問題となる。このように、従来法では耐蝕性
の高価な材質の反応装置が必要であったり、また得られ
た過酸化水素の用途によっては高濃度の酸やハロゲンイ
オンを除去するための後処理が必要となること等のため
経済的にも問題であった。In a method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen with a catalyst in a reaction medium, a high concentration of hydrogen peroxide can be practically obtained by the conventional known techniques. For this purpose, it was necessary to make a high concentration of acid and halogen ions coexist in the reaction medium. In this case, when a high-concentration acidic aqueous solution containing halogen ions is used as the reaction medium, the material of the apparatus that can be used for handling the same is limited, and elution of the catalyst metal into the acidic aqueous solution becomes a problem. The elution of the catalytic metal causes a decrease in catalytic activity and a reduction in catalyst life. Further, the catalytic metal eluted in the acidic aqueous solution deteriorates the quality of the product hydrogen peroxide, and it is extremely difficult to collect the eluted low-concentration metal, which is a serious problem. As described above, the conventional method requires a reactor made of a corrosion-resistant and expensive material, and depending on the use of the obtained hydrogen peroxide, requires post-treatment to remove high-concentration acid or halogen ions. It was also a financial problem because
【0004】[0004]
【課題を解決するための手段】本発明者らは、酸素及び
水素から触媒を用いて接触的に過酸化水素を製造する方
法において、酸を添加しない中性反応媒体を用いて高濃
度の過酸化水素を得る製造方法の検討を続けた結果、白
金族元素を活性成分とする触媒の担体として固体酸性を
有する酸化物を用いることにより、この目的を達成でき
ることを見いだし、更に、固体酸の中でも特に超強酸性
を有する固体酸(固体超強酸と呼ぶことがある。)を担
体として用いることにより、その効果がより一層著しい
ことを見いだし本発明を完成した。The present inventors have proposed a method of catalytically producing hydrogen peroxide from oxygen and hydrogen by using a neutral reaction medium without addition of acid in a method for catalytically producing hydrogen peroxide. As a result of continuing the study on the production method for obtaining hydrogen oxide, it was found that this object can be achieved by using an oxide having a solid acidity as a carrier of a catalyst having a platinum group element as an active component, and further, among solid acids. In particular, by using a solid acid having a super strong acidity (sometimes referred to as a solid super strong acid) as a carrier, it was found that the effect was more remarkable, and the present invention was completed.
【0005】即ち、本発明の第1の目的は、酸素と水素
を触媒と反応媒体として酸を含まない中性水溶液中で接
触的に反応せしめて高濃度の過酸化水素を得ることを可
能とした過酸化水素の製造方法を提供することである。
また、本発明の第2の目的は本発明では反応媒体中に酸
を存在させる必要がないので得られた過酸化水素から酸
を除く工程が不要であり従って従来法よりも過酸化水素
の精製工程の簡略化された過酸化水素の製造方法を提供
することである。更に本発明の第3の目的は酸素と水素
を触媒と接触的に反応させて過酸化水素を製造する方法
の商業的実施を可能とする新規な過酸化水素の製造方法
を提供することである。That is, the first object of the present invention is to obtain a high concentration of hydrogen peroxide by catalytically reacting oxygen and hydrogen with a catalyst as a reaction medium in a neutral aqueous solution containing no acid. A method for producing hydrogen peroxide is provided.
The second object of the present invention is to eliminate the step of removing the acid from the obtained hydrogen peroxide because it is not necessary to allow the acid to be present in the reaction medium in the present invention. It is an object of the present invention to provide a method for producing hydrogen peroxide with simplified steps. A third object of the present invention is to provide a novel method for producing hydrogen peroxide, which enables commercial implementation of the method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen with a catalyst. ..
【0006】本発明において用いられる触媒の担体であ
る固体酸の一種である固体超強酸とは、表面酸性を示す
固体であり、指示薬を吸着させたときの色、塩基の吸着
などによってその存在を確認することができるもので酸
性度が100%硫酸より強い酸性度(酸性度関数:HO
<−11.0〜−11.9)を示す固体酸である。本発
明において用いられる触媒担体である固体超強酸として
は硫酸担持超強酸、金属酸化物担持超強酸等が使用でき
る。A solid superacid, which is a kind of solid acid that is a carrier of the catalyst used in the present invention, is a solid exhibiting surface acidity, and its presence depends on the color when an indicator is adsorbed, the adsorption of a base, and the like. It can be confirmed that the acidity is stronger than 100% sulfuric acid (acidity function: H 2 O
It is a solid acid showing <-11.0 to -11.9). As the solid superacid which is a catalyst carrier used in the present invention, a sulfuric acid-supporting superacid, a metal oxide-supporting superstrong acid or the like can be used.
【0007】具体的に硫酸担持超強酸とは、ジルコニ
ア、チタニア、アルミナ等に硫酸を担持したものであ
り、ジルコニウム、チタニウム、アルミニウム等の水酸
化物に0.05〜0.5モル/リットルの硫酸を全体に
十分にいきわたるように添加して乾燥した後、200〜
800℃、好ましくは400〜600℃の温度で焼成す
ることにより得ることができる。また、金属酸化物担持
超強酸とは、ジルコニア担持モリブデン、ジルコニア担
持タングステン等であり、これらは含浸法、共沈法等に
より0.1〜50重量%、好ましくは1〜30重量%の
モリブデンまたはタングステンを添加したジルコニア
を、200〜1000℃、好ましくは600〜800℃
で焼成することにより得ることができる。Specifically, the sulfuric acid-carrying super-strong acid is one in which sulfuric acid is carried on zirconia, titania, alumina, etc., and 0.05-0.5 mol / liter of hydroxide such as zirconium, titanium, aluminum, etc. After adding sulfuric acid so that it spreads over the entire surface and drying,
It can be obtained by firing at a temperature of 800 ° C, preferably 400 to 600 ° C. The metal oxide-supported super strong acid is zirconia-supported molybdenum, zirconia-supported tungsten, etc., and these are 0.1 to 50% by weight, preferably 1 to 30% by weight of molybdenum or molybdenum by the impregnation method, the coprecipitation method or the like. Zirconia added with tungsten is 200 to 1000 ° C., preferably 600 to 800 ° C.
It can be obtained by firing at.
【0008】固体超強酸を担体として使用する場合の形
状としては微紛状、粒状、ペレット状等任意に選択する
ことができる。硫酸担持超強酸は、還元雰囲気に長時間
置かれた場合に硫酸イオンの脱離が問題となる場合もあ
ることから、当該反応においては金属酸化物担持超強酸
を用いることが好ましい。また、超強酸以外でも結晶構
造中の珪素とアルミニウムの比(Si/Al)が3より
も大きな高シリカゼオライトであるプロトン型のMFI
タイプのゼオライトやプロトン型のモルデナイト等の固
体酸(酸性度関数HO が−12<HO <−3程度)を担
体として用いることにより、酸を含まない反応媒体中で
選択性よく過酸化水素を生成することができる。即ち、
本発明で担体として使用される固体酸は、酸性度関数が
−3よりも小さな値を示す(HO <−3)固体酸であ
り、好ましくはHO <−11〜−11.9である固体超
強酸である。固体酸を担体として使用する場合の形状も
特に限定されず、粒状、ペレット状等任意に選択するこ
とができる。When a solid super strong acid is used as a carrier, the shape thereof may be any of fine powder, granules, pellets and the like. The sulfuric acid-supported super strong acid may cause a problem of elimination of sulfate ion when it is placed in a reducing atmosphere for a long time, and therefore it is preferable to use the metal oxide-supported super strong acid in the reaction. Further, in addition to the super strong acid, a proton type MFI which is a high silica zeolite in which the ratio of silicon to aluminum (Si / Al) in the crystal structure is larger than 3.
-Type zeolite and proton-type mordenite and other solid acids (with an acidity function H O of -12 <H O <-3) are used as a carrier, so that hydrogen peroxide can be selectively selected in a reaction medium containing no acid. Can be generated. That is,
The solid acid used as a carrier in the present invention is a solid acid having an acidity function smaller than -3 (H O <-3), preferably H O <-11 to -11.9. It is a solid superacid. The shape of the solid acid used as a carrier is not particularly limited, and it may be selected in the form of granules or pellets.
【0009】一方、アルミナ−マグネシア、マグネシ
ア、カーボン等、固体酸性を示さないものを担体として
用いた場合には同一条件下においても本発明のような水
素選択率は全く得られない。On the other hand, when a carrier which does not exhibit solid acidity such as alumina-magnesia, magnesia and carbon is used as the carrier, the hydrogen selectivity as in the present invention cannot be obtained even under the same conditions.
【0010】本発明において使用される触媒は、白金族
元素を主体とする活性成分を前述の固体酸または超強酸
性を示す固体酸からなる担体に担持して使用される。白
金族元素としては具体的にはパラジウム、白金を単独も
しくは混合物または合金として用いることができる。更
にそれらを主体とするルテニウム、オスミウム、ロジウ
ム、イリジウムとの混合物もしくは合金の使用も可能で
ある。好ましくはパラジウム又は白金が用いられるが、
特にパラジウムが好ましい。これらの活性金属成分の担
体への担持量は0.1〜10wt%が使用される。ま
た、固体酸担体または固体超強酸担体への白金族金属の
担持方法としては含浸法などの公知の方法が採用され
る。酸素と水素から過酸化水素を製造する場合の本発明
の白金族触媒の使用量は反応媒体1リットル当たり1g
〜200g,好ましくは5g〜50gが使用される。The catalyst used in the present invention is used by supporting an active ingredient mainly composed of a platinum group element on a carrier made of the above-mentioned solid acid or solid acid exhibiting super strong acidity. As the platinum group element, specifically, palladium or platinum can be used alone or as a mixture or alloy. Further, it is also possible to use a mixture or alloy containing ruthenium, osmium, rhodium, or iridium as the main component. Preferably palladium or platinum is used,
Palladium is particularly preferable. The supported amount of these active metal components on the carrier is 0.1 to 10% by weight. As a method for supporting the platinum group metal on the solid acid carrier or the solid superacid carrier, a known method such as an impregnation method is adopted. When hydrogen peroxide is produced from oxygen and hydrogen, the platinum group catalyst of the present invention is used in an amount of 1 g per liter of reaction medium.
~ 200 g, preferably 5-50 g are used.
【0011】本発明において用いられる助触媒を含む反
応媒体としては、ハロゲン化合物(但しフッ素のみを含
む化合物を除く。)あるいはノルロイシン等のアミノ酸
など公知のいろいろの助触媒を含む中性水溶液が使用さ
れる。助触媒としては特にハロゲン化合物が好ましい
が、ハロゲン化合物としては具体的には塩化ナトリウ
ム、塩化カリウム、塩化アンモニウム等の塩素化合物、
臭素酸ナトリウム、臭化ナトリウム、臭化カリウム、臭
化アンモニウム、臭化水素等の臭素化合物、ヨウ化ナト
リウム、ヨウ化カリウム、ヨウ化アンモニウム等のヨウ
素化合物などが使用されるが、好ましくは臭素酸ナトリ
ウム、臭化ナトリウム、臭化カリウム、臭化アンモニウ
ムまたは塩化アンモニウムである。尚、本発明では助触
媒として塩化水素、臭化水素などを使用することもでき
るが、この場合には反応媒体として使用される水溶液が
酸性になる。しかし、このような酸性水溶液中において
も本発明の担体を使用して調製した触媒は優れた結果を
与える。また、公知の過酸化水素分解防止のための安定
剤、例えばエチレンジアミンテトラ(メチレンホスホン
酸)等を反応媒体に添加することは何ら差し支えない。
過酸化水素の安定剤としては前記のもののほかアミノト
リ(メチレンホスホン酸)、1−ヒドロキシエチリデン
−1、1−ジホスホン酸またはこれらのナトリウム塩、
ピロリン酸ナトリウムなどが好適に使用し得る。As the reaction medium containing a co-catalyst used in the present invention, a neutral aqueous solution containing various known co-catalysts such as halogen compounds (excluding compounds containing only fluorine) or amino acids such as norleucine is used. It As the cocatalyst, a halogen compound is particularly preferable, but as the halogen compound, specifically, a chlorine compound such as sodium chloride, potassium chloride or ammonium chloride,
Bromine compounds such as sodium bromate, sodium bromide, potassium bromide, ammonium bromide and hydrogen bromide, and iodine compounds such as sodium iodide, potassium iodide and ammonium iodide are used, and preferably bromic acid Sodium, sodium bromide, potassium bromide, ammonium bromide or ammonium chloride. In the present invention, hydrogen chloride, hydrogen bromide or the like can be used as a co-catalyst, but in this case, the aqueous solution used as the reaction medium becomes acidic. However, even in such an acidic aqueous solution, the catalyst prepared using the carrier of the present invention gives excellent results. Further, there is no problem in adding a known stabilizer for preventing decomposition of hydrogen peroxide, such as ethylenediaminetetra (methylenephosphonic acid), to the reaction medium.
As the stabilizer of hydrogen peroxide, in addition to the above, aminotri (methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid or their sodium salts,
Sodium pyrophosphate and the like can be preferably used.
【0012】次に助触媒の使用量は使用される触媒の量
にもよるが、通常反応媒体1リットル当たり0.001
ミリモル以上、好ましくは0.1ミリモル以上である。
上限量は特に限定されるものではないが、大過剰に添加
しても添加量の増加に見合う効果は得られない。助触媒
の使用量は触媒量および使用する助触媒の種類によって
それぞれの場合について最適量が決められる。Next, the amount of the cocatalyst used depends on the amount of the catalyst used, but is usually 0.001 per liter of the reaction medium.
It is at least mmol, preferably at least 0.1 mmol.
The upper limit is not particularly limited, but even if added in a large excess, the effect corresponding to the increase in the added amount cannot be obtained. The optimum amount of the co-catalyst is determined in each case depending on the amount of the catalyst and the type of the co-catalyst used.
【0013】本発明の過酸化水素の製造は酸素と水素を
窒素などの本反応に障害とならないような不活性ガスの
存在下または不存在下に反応媒体中で触媒と通常反応圧
力3〜150kg/cm2 ・G、反応温度0〜50℃、
反応時間30分〜6時間の条件で接触せしめることによ
って実施される。In the production of hydrogen peroxide of the present invention, oxygen and hydrogen are present in the reaction medium in the presence or absence of an inert gas such as nitrogen which does not interfere with the present reaction, and the reaction pressure is usually 3 to 150 kg. / Cm 2 · G, reaction temperature 0 to 50 ° C,
It is carried out by bringing them into contact with each other under a reaction time of 30 minutes to 6 hours.
【0014】[0014]
【実施例】以下、実施例及び比較例によって本発明を更
に詳細に説明する。実施例中で用いられているガス組成
の分析値は、ガスクロマトグラフによる値である。ま
た、反応溶液中の過酸化水素濃度の測定は、硫酸酸性−
過マンガン酸カリウム溶液による滴定法により行った。EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. The analysis value of the gas composition used in the examples is a value obtained by gas chromatography. Further, the concentration of hydrogen peroxide in the reaction solution is measured by sulfuric acid acidity-
It was performed by a titration method using a potassium permanganate solution.
【0015】実施例1 触媒担体の調製を以下の方法により行った。即ち、市販
の水酸化ジルコニウム(三津和化学社製)に対して、完
全に純水中に溶解した市販のモリブデン酸アンモニウム
(小宗化学社製)水溶液を加え、酸化モリブデンの量が
酸化ジルコニウムに対し5重量%の割合となるよう含浸
法により担持した。乾燥器中で110℃にて一昼夜乾燥
した後、空気中で600℃、3時間焼成してジルコニア
−モリブデン固体超強酸担体〔酸性度関数(HO )はジ
ルコニア−タングステンとほぼ同等である。〕を得た。
ここで得られた担体に対し、硝酸パラジウム水溶液を用
いた含浸法により、活性成分としてパラジウムの量が担
体に対し1重量%の割合となるよう担持し、400℃に
て空気気流中で2時間焼成後、200℃にて水素気流中
で1時間還元して触媒を得た。Example 1 A catalyst carrier was prepared by the following method. That is, to a commercially available zirconium hydroxide (manufactured by Mitsuwa Chemical Co., Ltd.), an aqueous solution of commercially available ammonium molybdate (manufactured by Kosou Chemical Co., Ltd.) completely dissolved in pure water was added to change the amount of molybdenum oxide to zirconium oxide. The loading was carried out by the impregnation method so that the ratio was 5% by weight. After drying in a drier at 110 ° C. for a whole day and night, it was calcined in air at 600 ° C. for 3 hours, and a zirconia-molybdenum solid superacid carrier [acidity function (H 2 O 2 ) is almost the same as that of zirconia-tungsten. ]
The carrier thus obtained was supported by an impregnation method using an aqueous solution of palladium nitrate so that the amount of palladium as an active ingredient was 1% by weight of the carrier, and the carrier was heated at 400 ° C. for 2 hours in an air stream. After calcination, the catalyst was obtained by reducing at 200 ° C. in a hydrogen stream for 1 hour.
【0016】酸素と水素から過酸化水素を製造する反応
は以下のようにして実施した。内容積65mlのガラス
容器に、臭素酸ナトリウム0.5ミリモル/リットルを
含む水溶液10gを入れた。この水溶液に前述のように
して調製した担持パラジウム触媒50mgを加え、この
ガラス容器を100mlの容積のオートクレーブに入
れ、次いで水素ガスが4容積%、酸素ガスが40容積
%、窒素ガスが56容積%の組成からなる混合ガスでオ
ートクレーブ中の空気を置換した後、同じ組成のガスで
50kg/cm2 ・G迄加圧した。温度を10℃に保ち
ながら2000rpmで1時間撹拌した。1時間の撹拌
終了後、反応溶液中の過酸化水素濃度は0.97wt
%、水素選択率は84%であった。水素選択率は次式に
よって計算した。The reaction for producing hydrogen peroxide from oxygen and hydrogen was carried out as follows. A glass container having an internal volume of 65 ml was charged with 10 g of an aqueous solution containing 0.5 mmol / liter of sodium bromate. To this aqueous solution was added 50 mg of the supported palladium catalyst prepared as described above, the glass container was placed in an autoclave having a volume of 100 ml, and then hydrogen gas was 4% by volume, oxygen gas was 40% by volume, and nitrogen gas was 56% by volume. After the air in the autoclave was replaced with the mixed gas having the composition No. 1, the gas having the same composition was pressurized to 50 kg / cm 2 · G. The mixture was stirred at 2000 rpm for 1 hour while maintaining the temperature at 10 ° C. After stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.97 wt.
%, And the hydrogen selectivity was 84%. The hydrogen selectivity was calculated by the following formula.
【0017】水素選択率(%)=〔(反応により生成し
た過酸化水素の量 mol )÷(消費された水素量から算
出した過酸化水素の理論生成量 mol )〕×100 また、反応後の溶液から触媒を濾別し、反応溶液中のパ
ラジウム濃度を誘導結合型プラズマ発光分析法(セイコ
ー電子工業社製1200VR型分析計使用。)で測定し
た結果、0.0ppmであった。Hydrogen selectivity (%) = [(amount of hydrogen peroxide produced by the reaction mol) / (theoretical amount of hydrogen peroxide produced from the amount of hydrogen consumed)] × 100 The catalyst was filtered off from the solution, and the palladium concentration in the reaction solution was measured by the inductively coupled plasma emission spectrometry (1200VR type analyzer manufactured by Seiko Instruments Inc.). As a result, it was 0.0 ppm.
【0018】実施例2 市販の水酸化ジルコニウム(三津和化学社製)に対し
て、完全に純水中に溶解した市販のタングステン酸アン
モニウム(小宗化学社製)水溶液を加え、酸化タングス
テンの量が酸化ジルコニウムに対し5重量%の割合とな
るよう含浸法により担持し、乾燥器中で110℃にて一
昼夜乾燥した後、空気中で600℃、3時間焼成したジ
ルコニア−タングステン固体超強酸(HO ≦−14.5
2)を触媒担体として用いたことを除き、実施例1と同
様の操作を行い触媒調製および過酸化水素の製造反応を
行った。1時間の撹拌終了後、反応溶液中の過酸化水素
濃度は1.06wt%であり、水素選択率は99%であ
った。また、反応後の溶液から触媒を濾別し、反応溶液
中のパラジウム濃度を誘導結合型プラズマ発光分析法
(セイコー電子工業社製1200VR型分析計使用。)
で測定した結果、0.1ppmであった。Example 2 To a commercially available zirconium hydroxide (manufactured by Mitsuwa Chemical Co., Ltd.), an aqueous solution of commercially available ammonium tungstate (manufactured by Kosou Chemical Co., Ltd.) completely dissolved in pure water was added to obtain the amount of tungsten oxide. Of the zirconia-tungsten solid superacid (H) which was carried by the impregnation method so that the ratio was 5% by weight with respect to zirconium oxide, dried in a dryer at 110 ° C. for one day and then calcined in air at 600 ° C. for 3 hours. O ≤ -14.5
Catalyst preparation and hydrogen peroxide production reaction were carried out in the same manner as in Example 1 except that 2) was used as the catalyst carrier. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 1.06 wt% and the hydrogen selectivity was 99%. Further, the catalyst was filtered off from the solution after the reaction, and the palladium concentration in the reaction solution was measured by inductively coupled plasma emission spectrometry (using a 1200 VR type analyzer manufactured by Seiko Instruments Inc.).
It was 0.1 ppm as a result of measurement.
【0019】比較例1 触媒担体として市販の二酸化珪素(水沢化学社製)を用
い、反応媒体として臭素酸ナトリウム0.5ミリモル/
リットルを含む水溶液10gの代わりに硫酸0.1モル
/リットルおよび臭素酸ナトリウム0.5ミリモル/リ
ットルを含む水溶液10gを用いたことを除き実施例1
と同様の操作を行い触媒調製および過酸化水素の製造反
応を行った。1時間の撹拌終了後、反応溶液中の過酸化
水素濃度は0.97wt%であり、水素選択率は90%
であった。また、反応後の溶液から触媒を濾別し、反応
溶液中のパラジウム濃度を誘導結合型プラズマ発光分析
法(セイコー電子工業社製1200VR型分析計使
用。)で測定した結果、1.5ppmであった。実施例
1および2の結果と比較して公知方法のように硫酸を使
用するとパラジウムの溶出量がかなり大きいことが分か
る。Comparative Example 1 Commercially available silicon dioxide (manufactured by Mizusawa Chemical Co., Ltd.) was used as a catalyst carrier, and sodium bromate (0.5 mmol / mol) was used as a reaction medium.
Example 1 except that 10 g of an aqueous solution containing 0.1 mol / liter of sulfuric acid and 0.5 mmol / liter of sodium bromate was used instead of 10 g of an aqueous solution containing liter.
The same operation as above was carried out to carry out a catalyst preparation and a hydrogen peroxide production reaction. After stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.97 wt% and the hydrogen selectivity was 90%.
Met. Further, the catalyst was filtered off from the solution after the reaction, and the palladium concentration in the reaction solution was measured by an inductively coupled plasma emission spectrometry (1200VR type analyzer manufactured by Seiko Instruments Inc.). It was Compared with the results of Examples 1 and 2, it can be seen that the amount of palladium eluted is considerably large when sulfuric acid is used as in the known method.
【0020】実施例3 実施例1に用いたジルコニア−モリブデン固体超強酸を
空気中800℃にて3時間焼成したものを触媒担体とし
て用いたことを除き、実施例1と同様の操作を行い触媒
調製および過酸化水素の製造反応を行った。1時間の撹
拌終了後、反応溶液中の過酸化水素濃度は0.78wt
%であり、水素選択率は80%であった。Example 3 A catalyst was prepared in the same manner as in Example 1 except that the zirconia-molybdenum solid superacid used in Example 1 was calcined in air at 800 ° C. for 3 hours and used as a catalyst carrier. Preparation and hydrogen peroxide production reaction were performed. After stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.78 wt.
%, And the hydrogen selectivity was 80%.
【0021】実施例4 実施例2に用いたジルコニア−タングステン固体超強酸
を空気中800℃にて3時間焼成したものを触媒担体と
して用いたことを除き、実施例1と同様の操作を行い触
媒調製および過酸化水素の製造反応を行った。1時間の
撹拌終了後、反応溶液中の過酸化水素濃度は0.77w
t%であり、水素選択率は72%であった。Example 4 A catalyst was prepared in the same manner as in Example 1 except that the zirconia-tungsten solid superacid used in Example 2 was calcined in air at 800 ° C. for 3 hours and used as a catalyst carrier. Preparation and hydrogen peroxide production reaction were performed. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.77w
t%, and the hydrogen selectivity was 72%.
【0022】実施例5 触媒担体の調製を以下の方法により行った。即ち、濾紙
上にとった市販の水酸化ジルコニウム(三津和化学社
製)2gに対して、0.5モル/リットルの硫酸30m
lを注ぎ、そのまま風乾した後、乾燥器中で110℃に
て一昼夜乾燥した後、空気中で600℃、3時間焼成し
てジルコニア担持硫酸固体超強酸担体(HO ≦−16.
04)を得た。ここで得られた担体を用いたことを除
き、実施例1と同様の操作を行い触媒調製および過酸化
水素の製造反応を行った。1時間の撹拌終了後、反応溶
液中の過酸化水素濃度は0.25wt%であり、水素選
択率は67%であった。Example 5 A catalyst carrier was prepared by the following method. That is, with respect to 2 g of commercially available zirconium hydroxide (manufactured by Mitsuwa Chemical Co., Ltd.) on filter paper, 30 m of sulfuric acid of 0.5 mol / liter
1, poured in air, dried in a dryer at 110 ° C. for 24 hours, and then calcined in air at 600 ° C. for 3 hours to give a zirconia-supported sulfuric acid solid superacid carrier (H 2 O ≦ −16.
04) was obtained. Except that the carrier obtained here was used, the same procedure as in Example 1 was carried out to carry out the catalyst preparation and hydrogen peroxide production reaction. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.25 wt% and the hydrogen selectivity was 67%.
【0023】実施例6 反応溶液として臭素酸ナトリウム0.5ミリモル/リッ
トルを含む水溶液10gの代わりに0.2モル/リット
ルの塩化アンモニウムを含む水溶液10gを用いたこと
を除き、実施例2と同様の操作を行い触媒調製および過
酸化水素の製造反応を行った。1時間の撹拌終了後、反
応溶液中の過酸化水素濃度は0.70wt%であり、水
素選択率は61%であった。Example 6 Similar to Example 2 except that 10 g of an aqueous solution containing 0.2 mol / liter of ammonium chloride was used as the reaction solution instead of 10 g of an aqueous solution containing 0.5 mmol / liter of sodium bromate. Then, the catalyst preparation and hydrogen peroxide production reaction were performed. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.70 wt% and the hydrogen selectivity was 61%.
【0024】実施例7 実施例1に用いたジルコニア−モリブデン固体超強酸担
体に対しヘキサクロロ白金酸水溶液を用いた含浸法によ
り、活性成分として白金の量が担体に対し0.5重量%
の割合となるよう担持した触媒を用い、反応溶液として
臭素酸ナトリウム0.5ミリモル/リットルを含む水溶
液10gの代わりに、0.5ミリモル/リットルのヨウ
化カリウムを含む水溶液10gを用いたことを除き、実
施例1と同様の操作を行い触媒調製および過酸化水素の
製造反応を行った。1時間の撹拌終了後、反応溶液中の
過酸化水素濃度は0.58wt%であり、水素選択率は
48%であった。EXAMPLE 7 The zirconia-molybdenum solid superacid carrier used in Example 1 was impregnated with an aqueous solution of hexachloroplatinic acid to obtain an amount of platinum as an active ingredient of 0.5% by weight based on the carrier.
Using a catalyst supported so as to have a ratio of 10 mM, 10 g of an aqueous solution containing 0.5 mmol / liter of potassium iodide was used as the reaction solution instead of 10 g of an aqueous solution containing 0.5 mmol / liter of sodium bromate. Except for the above, the same operation as in Example 1 was carried out to carry out a catalyst preparation and a hydrogen peroxide production reaction. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.58 wt% and the hydrogen selectivity was 48%.
【0025】実施例8 触媒担体にプロトン型のモルデナイト(Si/Al=1
8、HO <−5.6)を用いたことを除き実施例1と同
様の操作を行い触媒調製および過酸化水素の製造反応を
行った。1時間の撹拌終了後、反応溶液中の過酸化水素
濃度は0.64wt%であり、水素選択率は38%であ
った。Example 8 Proton-type mordenite (Si / Al = 1) was used as a catalyst carrier.
8, the same operation as in Example 1 was carried out except that H 2 O <-5.6) was used to carry out a catalyst preparation and a hydrogen peroxide production reaction. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.64 wt% and the hydrogen selectivity was 38%.
【0026】実施例9 触媒担体にプロトン型のMFIタイプのゼオライト(S
i/Al=15、HO <−5.6)を用いたことを除き
実施例1と同様の操作を行い触媒調製および過酸化水素
の製造反応を行った。1時間の撹拌終了後、反応溶液中
の過酸化水素濃度は0.49wt%であり、水素選択率
は46%であった。Example 9 Proton-type MFI-type zeolite (S
The same operations as in Example 1 were carried out except that i / Al = 15 and H 2 O <−5.6) were used to carry out a catalyst preparation and a hydrogen peroxide production reaction. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.49 wt% and the hydrogen selectivity was 46%.
【0027】比較例2 触媒担体の調製方法として含浸法を用い以下の操作を行
った。即ち、市販の酸化アルミニウム(関東化学社製)
に対し、別に市販の硝酸マグネシウム(関東化学社製)
を完全に溶解した水溶液を調製し、アルミナとマグネシ
アの重量比が85:15となるように加え、2時間撹拌
混合した後ホットプレート上で蒸発乾固し、更に乾燥器
中で110℃にて一昼夜乾燥させた後、空気気流中で5
00℃にて2時間焼成して担体を得た。ここで得た担体
を用いたことを除き、実施例1と同様の操作を行い触媒
調製及び過酸化水素の製造反応を行った。1時間の撹拌
終了後、反応溶液中の過酸化水素濃度は0.01wt%
であり、水素選択率は2%であった。Comparative Example 2 The following operation was carried out using an impregnation method as a method for preparing the catalyst carrier. That is, commercially available aluminum oxide (manufactured by Kanto Chemical Co., Inc.)
In contrast, separately sold magnesium nitrate (manufactured by Kanto Chemical Co., Inc.)
Was completely dissolved, and the mixture was added so that the weight ratio of alumina to magnesia was 85:15, and the mixture was stirred and mixed for 2 hours, evaporated to dryness on a hot plate, and further dried at 110 ° C in a dryer. After drying overnight, 5 in air flow
The carrier was obtained by baking at 00 ° C. for 2 hours. Except that the carrier obtained here was used, the same operations as in Example 1 were carried out to carry out the catalyst preparation and hydrogen peroxide production reaction. After stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.01 wt%
And the hydrogen selectivity was 2%.
【0028】比較例3 触媒担体に市販の酸化マグネシウム(関東化学社製)を
用いたことを除き実施例1と同様の操作を行い触媒調製
及び過酸化水素の製造反応を行った。1時間の撹拌終了
後、反応溶液中の過酸化水素濃度は0.00wt%であ
り、水素選択率は0%であった。Comparative Example 3 Catalyst preparation and hydrogen peroxide production reaction were performed in the same manner as in Example 1 except that commercially available magnesium oxide (manufactured by Kanto Chemical Co., Inc.) was used as the catalyst carrier. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.00 wt% and the hydrogen selectivity was 0%.
【0029】比較例4 触媒として、5重量%のパラジウムを担持したカーボン
粉末(N.Eケムキャット社製:含水率=52.24%
品)を21mg加えたことを除き、実施例1と同様の操
作を行い過酸化水素の製造反応を行った。1時間の撹拌
終了後、反応溶液中の過酸化水素濃度は0.02wt%
であり、水素選択率は1%であった。Comparative Example 4 Carbon powder supporting 5% by weight of palladium as a catalyst (manufactured by NE Chemcat: water content = 52.24%)
The same operation as in Example 1 was performed except that 21 mg of the product) was added to carry out a hydrogen peroxide production reaction. After stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.02 wt%
And the hydrogen selectivity was 1%.
【0030】比較例5 触媒担体にプロトン型のA型ゼオライト(Si/Al=
1、−3.0<HO<+3.3)を用いたことを除き実
施例1と同様の操作を行い触媒調製および過酸化水素の
製造反応を行った。1時間の撹拌終了後、反応溶液中の
過酸化水素濃度は0.15wt%であり、水素選択率は
18%であった。Comparative Example 5 Proton type A-type zeolite (Si / Al =
Catalyst preparation and hydrogen peroxide production reaction were carried out in the same manner as in Example 1 except that 1, -3.0 <H 2 O <+3.3) was used. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.15 wt% and the hydrogen selectivity was 18%.
【0031】比較例6 触媒担体にナトリウム型のモルデナイト(Si/Al=
18、−3.0<HO <+3.3)を用いたことを除き
実施例1と同様の操作を行い触媒調製および過酸化水素
の製造反応を行った。1時間の撹拌終了後、反応溶液中
の過酸化水素濃度は0.08wt%であり、水素選択率
は5%であった。Comparative Example 6 Sodium mordenite (Si / Al =
18, the same operation as in Example 1 was carried out except that -3.0 <H 2 O <+3.3) was used to carry out catalyst preparation and hydrogen peroxide production reaction. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.08 wt% and the hydrogen selectivity was 5%.
【0032】比較例7 触媒担体にナトリウム型のMFIタイプのゼオライト
(Si/Al=15、−3.0<HO <+3.3)を用
いたことを除き実施例1と同様の操作を行い触媒調製お
よび過酸化水素の製造反応を行った。1時間の撹拌終了
後、反応溶液中の過酸化水素濃度は0.10wt%であ
り、水素選択率は8%であった。Comparative Example 7 The same operation as in Example 1 was carried out except that sodium type MFI type zeolite (Si / Al = 15, −3.0 <H 2 O <+3.3) was used as the catalyst carrier. Catalyst preparation and hydrogen peroxide production reaction were performed. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.10 wt% and the hydrogen selectivity was 8%.
【0033】実施例10 反応溶液として臭素酸ナトリウム0.5ミリモル/リッ
トルを含む水溶液10gの代わりに75ppmのエチレ
ンジアミンテトラ(メチレンホスホン酸)および0.5
ミリモル/リットルの臭素酸ナトリウムを含む水溶液1
0gを用いたことを除き、実施例2と同様の操作を行い
触媒調製および過酸化水素の製造反応を行った。1時間
の撹拌終了後、反応溶液中の過酸化水素濃度は1.04
wt%であり、水素選択率は90%であった。Example 10 Instead of 10 g of an aqueous solution containing 0.5 mmol / liter of sodium bromate as a reaction solution, 75 ppm of ethylenediaminetetra (methylenephosphonic acid) and 0.5 ppm were added.
Aqueous solution containing 1 mmol / l sodium bromate
The same operations as in Example 2 were carried out except that 0 g was used to prepare a catalyst and carry out a hydrogen peroxide production reaction. After stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 1.04.
wt%, and the hydrogen selectivity was 90%.
【0034】実施例11 反応溶液として臭素酸ナトリウム0.5ミリモル/リッ
トルを含む水溶液10gの代わりに60ppmのピロリ
ン酸ナトリウムおよび0.5ミリモル/リットルの臭素
酸ナトリウムを含む水溶液10gを用いたことを除き、
実施例1と同様の操作を行い触媒調製および過酸化水素
の製造反応を行った。1時間の撹拌終了後、反応溶液中
の過酸化水素濃度は0.98wt%であり、水素選択率
は87%であった。Example 11 As a reaction solution, 10 g of an aqueous solution containing 60 ppm of sodium pyrophosphate and 0.5 mmol / liter of sodium bromate was used instead of 10 g of an aqueous solution containing 0.5 mmol / liter of sodium bromate. Except
The same operations as in Example 1 were carried out to prepare a catalyst and carry out a hydrogen peroxide production reaction. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the reaction solution was 0.98 wt% and the hydrogen selectivity was 87%.
【0035】実施例12 反応溶液として臭素酸ナトリウム0.5ミリモル/リッ
トルを含む水溶液10gの代わりに0.1ミリモル/リ
ットルの臭化ナトリウムを含む水溶液10gを用いたこ
とを除き、実施例2と同様の操作を行い触媒調製および
過酸化水素の製造反応を行った。1時間の撹拌終了後、
反応溶液中の過酸化水素濃度は0.78wt%であり、
水素選択率は89%であった。Example 12 As Example 2, except that 10 g of an aqueous solution containing 0.1 mmol / liter of sodium bromide was used in place of 10 g of an aqueous solution containing 0.5 mmol / liter of sodium bromate as a reaction solution. The same operation was performed to carry out a catalyst preparation and a hydrogen peroxide production reaction. After stirring for 1 hour,
The hydrogen peroxide concentration in the reaction solution was 0.78 wt%,
The hydrogen selectivity was 89%.
【0036】比較例8 反応溶液として臭素酸ナトリウム0.5ミリモル/リッ
トルを含む水溶液10gの代わりに50ミリモル/リッ
トルのフッ化アンモニウムを含む水溶液10gを用いた
ことを除き実施例1と同様の操作を行い触媒調製および
過酸化水素の製造反応を行った。1時間の攪拌終了後、
反応溶液中の過酸化水素濃度は0.00wt%であり、
また水素選択率は0%であった。Comparative Example 8 The same operation as in Example 1 except that 10 g of an aqueous solution containing 50 mmol / liter of ammonium fluoride was used as the reaction solution instead of 10 g of an aqueous solution containing 0.5 mmol / liter of sodium bromate. Then, catalyst preparation and hydrogen peroxide production reaction were carried out. After stirring for 1 hour,
The hydrogen peroxide concentration in the reaction solution is 0.00 wt%,
The hydrogen selectivity was 0%.
【0037】[0037]
【発明の効果】比較例に対して本発明の実施例では、過
酸化水素の取得濃度、水素選択率が非常に高くなってお
り、本発明の白金族触媒を使用することによって反応媒
体中に酸を共存させなくとも選択的に高濃度の過酸化水
素が製造できる。このように本発明では反応媒体中に高
濃度の酸を共存させる必要がないので、従来法のような
反応装置の材質や触媒の反応媒体中への溶出などの問題
点を軽減できる。EFFECTS OF THE INVENTION In the examples of the present invention as compared with the comparative examples, the obtained concentration of hydrogen peroxide and the hydrogen selectivity are very high. By using the platinum group catalyst of the present invention, it is possible to obtain Highly concentrated hydrogen peroxide can be selectively produced without the presence of acid. As described above, in the present invention, since it is not necessary to allow a high concentration of acid to coexist in the reaction medium, it is possible to reduce problems such as the material of the reactor and elution of the catalyst into the reaction medium unlike the conventional method.
Claims (12)
接触的に反応させ、過酸化水素を製造する方法におい
て、助触媒を含む反応媒体中で、固体酸担体または超強
酸性を有する固体酸担体に担持された白金族触媒を用い
ることを特徴とする過酸化水素の製造方法。1. A method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen with a platinum group catalyst in a reaction medium, comprising a solid acid carrier or super-strong acidity in a reaction medium containing a cocatalyst. A method for producing hydrogen peroxide, which comprises using a platinum group catalyst supported on a solid acid carrier.
る請求項1記載の過酸化水素の製造方法。2. The method for producing hydrogen peroxide according to claim 1, wherein the platinum group catalyst is palladium or platinum.
超強酸担体または金属酸化物担持超強酸担体である請求
項1記載の過酸化水素の製造方法。3. The method for producing hydrogen peroxide according to claim 1, wherein the solid acid carrier having super strong acidity is a sulfuric acid-supporting super strong acid carrier or a metal oxide-supporting super strong acid carrier.
ニア、アルミナ、チタニアに硫酸を担持したものである
請求項3記載の過酸化水素の製造方法。4. The method for producing hydrogen peroxide according to claim 3, wherein the sulfuric acid-carrying superacid carrier according to claim 3 is one in which sulfuric acid is carried on zirconia, alumina, and titania.
ジルコニア担持モリブデンまたはジルコニア担持タング
ステンである請求項3記載の過酸化水素の製造方法。5. The method for producing hydrogen peroxide according to claim 3, wherein the metal oxide-supported super strong acid carrier according to claim 3 is zirconia-supported molybdenum or zirconia-supported tungsten.
またはプロトン型のMFIタイプのゼオライトである請
求項1記載の過酸化水素の製造方法。6. The method for producing hydrogen peroxide according to claim 1, wherein the solid acid carrier is a proton type mordenite or a proton type MFI type zeolite.
みを含む化合物を除く)である請求項1記載の過酸化水
素の製造方法。7. The method for producing hydrogen peroxide according to claim 1, wherein the co-catalyst is a halogen compound (excluding compounds containing only fluorine).
リウム、臭化ナトリウム、臭化カリウム、臭化アンモニ
ウムまたは塩化アンモニウムである請求項7記載の過酸
化水素の製造方法。8. The method for producing hydrogen peroxide according to claim 7, wherein the halogen compound according to claim 7 is sodium bromate, sodium bromide, potassium bromide, ammonium bromide or ammonium chloride.
求項1記載の過酸化水素の製造方法。9. The method for producing hydrogen peroxide according to claim 1, wherein the reaction medium is an aqueous solution containing a cocatalyst.
剤を含んだ水溶液である請求項1記載の過酸化水素の製
造方法。10. The method for producing hydrogen peroxide according to claim 1, wherein the reaction medium is an aqueous solution containing a cocatalyst and a stabilizer for hydrogen peroxide.
チレンホスホン酸)、1−ヒドロキシエチリデン−1,
1−ジホスホン酸、エチレンジアミンテトラ(メチレン
ホスホン酸)またはこれらのナトリウム塩、ピロリン酸
ナトリウムからなる群から選ばれた一種以上の化合物で
ある請求項10記載の過酸化水素の製造方法。11. The stabilizer of claim 10 is aminotri (methylenephosphonic acid), 1-hydroxyethylidene-1,
The method for producing hydrogen peroxide according to claim 10, which is one or more compounds selected from the group consisting of 1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid) or their sodium salts, and sodium pyrophosphate.
は不存在下に反応媒体中で触媒の存在下で反応温度0℃
〜50℃、反応圧力3kg/cm2 ・G〜150kg/
cm2 ・Gで反応せしめる請求項1記載の過酸化水素の
製造方法。12. Oxygen and hydrogen in the presence or absence of an inert gas in a reaction medium in the presence of a catalyst at a reaction temperature of 0 ° C.
-50 ° C, reaction pressure 3 kg / cm 2 · G-150 kg /
The method for producing hydrogen peroxide according to claim 1, wherein the reaction is performed at cm 2 · G.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP313692A JPH0543206A (en) | 1991-03-20 | 1992-01-10 | Production of hydrogen peroxide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-81907 | 1991-03-20 | ||
JP8190791 | 1991-03-20 | ||
JP313692A JPH0543206A (en) | 1991-03-20 | 1992-01-10 | Production of hydrogen peroxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0543206A true JPH0543206A (en) | 1993-02-23 |
Family
ID=26336648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP313692A Pending JPH0543206A (en) | 1991-03-20 | 1992-01-10 | Production of hydrogen peroxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0543206A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994012428A1 (en) * | 1992-11-20 | 1994-06-09 | Showa Denko K.K. | Process for producing hydrogen peroxide |
-
1992
- 1992-01-10 JP JP313692A patent/JPH0543206A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994012428A1 (en) * | 1992-11-20 | 1994-06-09 | Showa Denko K.K. | Process for producing hydrogen peroxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0504741B1 (en) | A method for producing hydrogen peroxide | |
JPH05270806A (en) | Production of hydrogen peroxide | |
US6284213B1 (en) | Catalyst, process for the production of hydrogen peroxide and its use in oxidation processes | |
US5496532A (en) | Process for producing hydrogen peroxide | |
KR100445847B1 (en) | Catalyst and process for the direct synthesis of hydrogen peroxide | |
JPH06305715A (en) | Production of hydrogen peroxide | |
KR20140093701A (en) | A catalyst for direct synthesis of hydrogen peroxide comprising zirconium oxide | |
WO2013068340A1 (en) | A catalyst for direct synthesis of hydrogen peroxide | |
EP0539846B1 (en) | Process for the preparation of hydrogen peroxide | |
JP4169070B2 (en) | Method for producing phenol | |
JP2004528261A (en) | Direct synthesis of hydrogen peroxide in multicomponent solvent systems | |
JP2015533344A (en) | Direct synthesis of hydrogen peroxide | |
JPH0543206A (en) | Production of hydrogen peroxide | |
JPH06191804A (en) | Production of hydrogen peroxide | |
JPH0570107A (en) | Production of hydrogen peroxide | |
JPH0733410A (en) | Production of hydrogen peroxide | |
JPH0769605A (en) | Production of hydrogen peroxide | |
JP3620193B2 (en) | Method for producing hydrogen peroxide | |
JPH11180701A (en) | Production of chlorine | |
JPS63154636A (en) | Production of cyclic alcohol | |
JPH0769604A (en) | Production of hydrogen peroxide | |
JP2002505246A (en) | Method for producing hydroxylammonium salt | |
JPH04238802A (en) | Production of hydrogen peroxide | |
JPH04285003A (en) | Production of hydrogen peroxide | |
JPH08259473A (en) | Production of cycloolefin |