JP3620193B2 - Method for producing hydrogen peroxide - Google Patents

Method for producing hydrogen peroxide Download PDF

Info

Publication number
JP3620193B2
JP3620193B2 JP01231297A JP1231297A JP3620193B2 JP 3620193 B2 JP3620193 B2 JP 3620193B2 JP 01231297 A JP01231297 A JP 01231297A JP 1231297 A JP1231297 A JP 1231297A JP 3620193 B2 JP3620193 B2 JP 3620193B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
reaction
producing hydrogen
alcohol
pdbr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01231297A
Other languages
Japanese (ja)
Other versions
JPH107408A (en
Inventor
文郷 後藤
浩三 田中
俊夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP01231297A priority Critical patent/JP3620193B2/en
Publication of JPH107408A publication Critical patent/JPH107408A/en
Application granted granted Critical
Publication of JP3620193B2 publication Critical patent/JP3620193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は過酸化水素を製造する方法に関する。さらに詳しくは、本発明は水素と酸素を直接反応させて過酸化水素を製造する方法に関する。
【0002】
【従来の技術】
過酸化水素は、漂白剤(紙・パルプ、天然繊維)、工業薬品(酸化剤および可塑剤、ゴム薬品、公害処理などの還元剤)、医薬品(酸化剤)、食品(水産加工の漂白殺菌剤、その他の各種漂白剤)など、用途が多岐にわたる最も重要な工業製品の一つである。
【0003】
現在最も一般的な過酸化水素の工業的製造法は、アルキルアントラキノンを用いる自動酸化法によっている。しかしこの方法の問題点として、アルキルアントラキノンの還元、酸化や生成過酸化水素の抽出分離、精製、濃縮等多くの工程が必要であり、プロセスが複雑になるという点があげられる。またアルキルアントラキノンの損失や還元触媒の劣化なども問題となっている。
【0004】
これらの問題点を解決するために従来、白金族金属担持触媒存在下に水性媒体中で水素と酸素を接触させ、過酸化水素を直接合成する方法が提案されている(特公昭55−18646号公報、特公昭56−47121号公報、特公平1−23401号公報、特開昭63−156005号公報等)。これらでは、いずれも反応媒体として酸や無機塩を添加した溶液が使用されている。
【0005】
例えば特開昭63−156005号公報においては支持体に白金族金属を担持した金属触媒を用い、高圧条件下水性媒体中で水素と酸素からある程度高い濃度の過酸化水素を製造できるとしているが、高濃度となる量の酸を添加する必要、および解離してハロゲンイオンを生成する化合物、例えば臭化ナトリウム等を共存させる必要があり、これらを加える工程が必要である。
【0006】
特開昭57−92506号公報には反応媒体としてアルコール、ケトン、エーテル、エステル、アミドなどを用いることができるが、特にメタノールが優れている点が記載されている。しかしながらここで用いられている触媒系は、やはり、支持体に白金族金属を担持した金属、酸およびハロゲンイオンであり、さらに、生成する過酸化水素の分解を抑えるためにメタノール中にホルムアルデヒドを共存させる必要があった。したがって、これらを添加する工程、および場合によってはホルムアルデヒドを取り除くための工程が必要となり、工業的に不利となる。
【0007】
【発明が解決しようとする課題】
本発明が解決しようとする課題、即ち本発明の目的は、酸やハロゲンイオン、そしてホルムアルデヒド等の添加剤のいずれをも添加せずとも、生成する過酸化水素の分解も抑制され、高濃度の過酸化水素を製造する方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、上記の状況に鑑み、反応媒体中で水素と酸素を直接反応させる過酸化水素の製造方法について鋭意研究を続け、本発明を完成させるに至った。即ち本発明は、白金族金属のハロゲン化合物を含有する反応媒体中で、水素と酸素を反応させる過酸化水素の製造方法にかかるものである。
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明で使用する白金族金属のハロゲン化合物における白金族金属としては、ロジウム、イリジウム、白金、パラジウム等が挙げられる。好ましくは白金、パラジウムであり、さらに好ましくはパラジウムが使用される。またハロゲン化合物としては、フッ素化合物、塩素化合物、臭素化合物、ヨウ素化合物が用いられるが、好ましくは塩素化合物、臭素化合物が用いられる。かかる白金族金属のハロゲン化合物の具体例としては、塩化ロジウム、臭化ロジウム、塩化イリジウム、臭化イリジウム、塩化白金、臭化白金、フッ化パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、ジクロロジアンミンパラジウム等が挙げられる。好ましくは、臭化白金、塩化白金、塩化パラジウム、臭化パラジウム、ジクロロジアンミンパラジウムであり、特に好ましくは塩化パラジウム、臭化パラジウム、ジクロロジアンミンパラジウムである。
【0010】
本発明においては反応媒体を使用するが、例えば反応系内で液状である水や有機化合物、それらの混合液などである。かかる有機化合物としては、例えばアルコール、ケトン、エーテル、エステル、アミド等が挙げられる。本発明で使用する反応媒体として好ましくは、水および/またはアルコールである。さらに好ましくは、アルコール単独またはアルコールと水との混合液であり、該混合液の場合、好ましくは容積にしてアルコールを80%以上、さらにはアルコールを90%以上含むことが好ましい。
【0011】
アルコールの具体例としては、メタノール、エタノール、イソプロピルアルコールなどの炭素原子数1〜8、好ましくは炭素原子数1〜4のアルコールや、エチレングリコールなどのグリコールなどが挙げられ、これらは単独で用いても混合して用いてもかまわない。好ましくはメタノール、エタノールであり、さらに好ましくはメタノールである。
【0012】
本発明においては酸を添加せずとも高濃度の過酸化水素溶液を得ることができるが、反応後の過酸化水素溶液への酸の共存が問題とならない場合には、硫酸、塩酸、りん酸などの酸を添加してもよい。
【0013】
白金族金属のハロゲン化合物の使用量は特に制限はないが、通常、反応液100mlに対して1mg以上、好ましくは10mg以上で実施される。白金族金属のハロゲン化合物の形態は微粉状、ペレット等任意のものでよいが、微粉状のものが好ましく、その表面積が0.01〜10000m/gのものが好ましく使用される。本発明においては、白金族金属のハロゲン化合物を単一で用いることも、適当な担体に担持して用いることも可能である。一般には担持した方が金属重量あたりの活性は大きい。
【0014】
担体としては、例えば、アルミナ、シリカ、チタニア、マグネシア、ジルコニア、セリア、ゼオライト、グラファイト、活性炭、シリカゲル、含水ケイ酸、炭化ケイ素等があげられ、アルミナ、シリカ、チタニア、ゼオライト、グラファイト、活性炭が好ましく用いられる。
【0015】
担体に担持する方法としては、例えば、白金族金属のハロゲン化合物の溶液に担体を懸濁させ蒸発乾固する方法など、担持できれば特に制限はない。
【0016】
本発明の反応は連続式、バッチ式のどちらも可能で、反応装置は懸濁床式や固定床式等を用いることができる。これらはいずれも特に限定されるものではない。
【0017】
例えば本発明の反応は、白金族金属のハロゲン化合物を反応媒体中に入れ、その中に水素および酸素のガスをバブリングさせる方法により実施され得る。このような方法を実施する際には、反応ガスの泡をより長時間反応媒体に接触させるなどの目的で、反応媒体とは相溶しない溶媒をさらに添加して、強撹袢下に反応を行うこともある。このような溶媒としては、例えば反応媒体にメタノールを用いた場合にはオクタン等を選ぶことができる。また、このような溶媒の使用量は、反応を阻害しない限り幾らでもよいが、一般には容積にして80%以下、好ましくは70%以下の量で使用される。
【0018】
酸素と水素の分圧比は、1対50から50対1の範囲で実施することができる。不活性ガスで希釈して反応を行うことも、酸素の代わりに空気を用いて反応を行うことも可能であるが、安全上、爆発範囲外で反応を行うことが好ましい。反応温度は5℃〜70℃、好ましくは10℃〜50℃の範囲で一般に実施される。また反応圧力は特に制限はないが、大気圧〜150kg/cm・G、特に5〜50kg/cm・Gの範囲で実施される。
【0019】
【実施例】
以下、実施例および比較例によって本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
【0020】
実施例1〜4および比較例1〜2における過酸化水素濃度は、硫酸酸性(0.2N)条件下で、容量分析用0.02mol/l過マンガン酸カリウム溶液(和光純薬工業株式会社製)を用いた滴定法で室温において求めた。滴定には、京都電子工業株式会社製電位差自動測定装置AT−310を使用した。
【0021】
実施例5〜15および比較例3における過酸化水素濃度は、硫酸酸性(0.2N)条件下でヨウ化カリウム(和光純薬工業株式会社製)を過剰に添加し、遊離したヨウ素を容量分析用0.1mol/1チオ硫酸ナトリウム溶液(和光純薬工業株式会社製)を用いた滴定法で室温において求めた。滴定には、京都電子工業株式会社製電位差自動測定装置AT−310を使用した。
【0022】
また比表面積はマイクロメリティックス社製フローソーブII2300形を用いて測定した。
【0023】
実施例1
PdBr(ナカライテスク株式会社製:比表面積0.4m/g)30mgと反応媒体としてイオン交換水120gを仕込んだ内容積300mlのガラス製内筒を、内容積400mlのオートクレーブに装着した。ガス吹き込み管により水素ガスを80ml/min、酸素ガスを800ml/minで各々流入した。安全のため、気相部に窒素ガスを2500ml/minで導入、希釈した。オートクレーブ内圧が9kg/cm・Gになるように圧力を保持し、外部冷却により反応液を20℃に保った。
反応開始から2時間後の反応液中の過酸化水素濃度は0.05wt%であった。なおPdBr 1mgあたりの過酸化水素生成量は0.06mmolであった。
【0024】
比較例1
PdBrをPd粉末(田中貴金属工業製:比表面積10.8m/g)30mgにしたことを除いて、実施例1と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は検出限界以下(0.00wt%)であった。
【0025】
実施例2
反応媒体を1N−HSO水溶液6gとイオン交換水114gの混合物にしたことを除いて、実施例1と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.09wt%であった。なおPdBr 1mgあたりの過酸化水素生成量は0.10mmolであった。
【0026】
比較例2
PdBrをPd/C(エヌ・イー・ケムキャット株式会社製:Pd含量5wt%:比表面積800m/g)30mgにしたことを除いて、実施例2と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は検出限界以下(0.00wt%)であった。
【0027】
実施例3
PdBrをPdCl(和光純薬工業株式会社製:比表面積0.4m/g)30mgにしたことを除いて、実施例1と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.05wt%であった。なおPdCl 1mgあたりの過酸化水素生成量は0.06mmolであった。
【0028】
実施例4
PdBrをPd(NHCl(アルドリッチ社製)30mgにしたことを除いて、実施例1と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.09wt%であった。なおPd(NHCl 1mgあたりの過酸化水素生成量は0.10mmolであった。
【0029】
実施例5
反応媒体をメタノール120mlにしたことを除いて、実施例1と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.15wt%であった。なおPdBr 1mgあたりの過酸化水素生成量は0.12mmolであった。
【0030】
実施例6
PdBrをPdCl(和光純薬工業株式会社製:比表面積0.4m/g)30mgにしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.33wt%であった。なおPdCl 1mgあたりの過酸化水素生成量は0.26mmolであった。
【0031】
実施例7
PdBrをPtBr(アクロス社製)30mgにしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.08wt%であった。なおPtBr 1mgあたりの過酸化水素生成量は0.06mmolであった。
【0032】
実施例8
PdBrをPtCl(和光純薬工業株式会社製)30mgにしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.02wt%であった。なおPtCl 1mgあたりの過酸化水素生成量は0.02mmolであった。
【0033】
実施例9
反応媒体をイオン交換水60mlとメタノール60mlの混合物にしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.06wt%であった。なおPdBr 1mgあたりの過酸化水素生成量は0.05mmolであった。
【0034】
実施例10
反応媒体をイオン交換水18mlとメタノール102mlの混合物にしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.11wt%であった。なおPdBr 1mgあたりの過酸化水素生成量は0.10mmolであった。
【0035】
実施例11
反応媒体をメタノール60mlとn−オクタン60mlの混合物にしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後のメタノール相中の過酸化水素濃度は0.39wt%であった。なおPdBr 1mgあたりの過酸化水素生成量は0.15mmolであった。
【0036】
実施例12
反応媒体をエチレングリコール60mlとn−オクタン60mlの混合物にしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後のエチレングリコール相中の過酸化水素濃度は0.07wt%であった。なおPdBr 1mgあたりの過酸化水素生成量は0.04mmolであった。
【0037】
実施例13
反応媒体をエタノール120mlにしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.09wt%であった。なおPdBr 1mgあたりの過酸化水素生成量は0.07mmolであった。
【0038】
実施例14
反応媒体をイソプロパノール120mlにしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.03wt%であった。なおPdBr 1mgあたりの過酸化水素生成量は0.02mmolであった。
【0039】
実施例15
(1)担持PdBrの調製
チタノシリケートへのPdBrの担持調製を以下の方法により行った。即ちPdBr(ナカライテスク株式会社製)50mgを臭化水素酸(和光純薬製、47.0〜49.0%)1.5gに溶解した後にイオン交換水20mlで希釈した溶液に、チタノシリケート(エヌ・イー・ケムキャット株式会社製:Si/Ti原子比100)1gを懸濁させた。この懸濁液を1時間攪拌した後、ホットプレート上で蒸発乾固した。イオン交換水およびエタノールで洗浄してろ過した後、乾燥機中で100℃にて1時間乾燥して、PdBr/チタノシリケート(5wt%−PdBr)を得た。
【0040】
(2)過酸化水素の製造
PdBrを上記(1)で調製したPdBr/チタノシリケート(5wt%−PdBr)30mgにしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は0.06wt%であった。なおPdBr/チタノシリケート 1mgあたりの過酸化水素生成量は0.04mmolであり、PdBr 1mgあたりの過酸化水素生成量は0.83mmolであった。
【0041】
比較例3
PdBrをPd/C(エヌ・イー・ケムキャット株式会社製:Pd含量5%:比表面積800m/g)30mgにしたことを除いて、実施例5と同じ条件で反応を行った。反応開始から2時間後の反応液中の過酸化水素濃度は検出限界以下(0.00wt%)であった。
【発明の効果】
本発明の過酸化水素の製造方法は、酸やハロゲンイオンを添加する工程を必要とせず、かつ調製工程の少ない化合物を用いることにより反応が進行し、該化合物あたりの過酸化水素生成量も多い。その結果、はるかに簡略化されたプロセスでの過酸化水素の製造が可能となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hydrogen peroxide. More specifically, the present invention relates to a method for producing hydrogen peroxide by directly reacting hydrogen and oxygen.
[0002]
[Prior art]
Hydrogen peroxide is bleach (paper / pulp, natural fiber), industrial chemicals (oxidizers and plasticizers, rubber chemicals, reducing agents such as pollution treatment), pharmaceuticals (oxidizers), foods (fishery processing bleach fungicides) And various other bleaching agents) and is one of the most important industrial products with a wide variety of uses.
[0003]
At present, the most common industrial production method of hydrogen peroxide is based on an autoxidation method using alkylanthraquinone. However, as a problem of this method, many steps such as reduction of alkyl anthraquinone, oxidation, extraction separation of purified hydrogen peroxide, purification and concentration are necessary, and the process is complicated. In addition, loss of alkyl anthraquinone and deterioration of the reduction catalyst are also problematic.
[0004]
In order to solve these problems, a method for directly synthesizing hydrogen peroxide by bringing hydrogen and oxygen into contact with each other in an aqueous medium in the presence of a platinum group metal supported catalyst has been proposed (Japanese Patent Publication No. 55-18646). Gazette, Japanese Examined Patent Publication No. 56-47121, Japanese Examined Patent Publication No. 1-23401, Japanese Unexamined Patent Publication No. 63-156005). In any of these, a solution to which an acid or an inorganic salt is added is used as a reaction medium.
[0005]
For example, in Japanese Patent Application Laid-Open No. 63-156005, a metal catalyst having a platinum group metal supported on a support can be used to produce hydrogen peroxide having a certain high concentration from hydrogen and oxygen in an aqueous medium under high pressure conditions. It is necessary to add a high amount of acid and a compound that dissociates to generate a halogen ion, such as sodium bromide, and a step of adding these is necessary.
[0006]
JP-A-57-92506 discloses alcohols, ketones, ethers, esters, amides and the like as a reaction medium, and particularly describes that methanol is excellent. However, the catalyst system used here is still a metal with a platinum group metal supported on the support, acid and halogen ions, and formaldehyde is also present in methanol to suppress the decomposition of the hydrogen peroxide produced. It was necessary to let them. Therefore, a process for adding these and, in some cases, a process for removing formaldehyde is necessary, which is industrially disadvantageous.
[0007]
[Problems to be solved by the invention]
The problem to be solved by the present invention, i.e., the object of the present invention, is to suppress the decomposition of hydrogen peroxide produced without adding any of acids, halogen ions, and additives such as formaldehyde. It is to provide a method for producing hydrogen peroxide.
[0008]
[Means for Solving the Problems]
In view of the above situation, the present inventors have continued earnestly research on a method for producing hydrogen peroxide in which hydrogen and oxygen are directly reacted in a reaction medium, and have completed the present invention. That is, the present invention relates to a method for producing hydrogen peroxide in which hydrogen and oxygen are reacted in a reaction medium containing a halogen compound of a platinum group metal.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of the platinum group metal in the halogen compound of the platinum group metal used in the present invention include rhodium, iridium, platinum, and palladium. Preferred are platinum and palladium, and more preferred is palladium. As the halogen compounds, fluorine compounds, chlorine compounds, bromine compounds and iodine compounds are used, but chlorine compounds and bromine compounds are preferably used. Specific examples of such a platinum group metal halogen compound include rhodium chloride, rhodium bromide, iridium chloride, iridium bromide, platinum chloride, platinum bromide, palladium fluoride, palladium chloride, palladium bromide, palladium iodide, dichloro. Diammine palladium etc. are mentioned. Preferred are platinum bromide, platinum chloride, palladium chloride, palladium bromide and dichlorodiammine palladium, and particularly preferred are palladium chloride, palladium bromide and dichlorodiammine palladium.
[0010]
In the present invention, a reaction medium is used, and examples thereof include water and organic compounds that are liquid in the reaction system, and mixtures thereof. Examples of such organic compounds include alcohols, ketones, ethers, esters, amides and the like. The reaction medium used in the present invention is preferably water and / or alcohol. More preferably, it is alcohol alone or a mixed solution of alcohol and water. In the case of the mixed solution, it is preferable that the volume is preferably 80% or more, more preferably 90% or more of alcohol.
[0011]
Specific examples of the alcohol include alcohols having 1 to 8 carbon atoms such as methanol, ethanol and isopropyl alcohol, preferably alcohols having 1 to 4 carbon atoms, glycols such as ethylene glycol, and the like. May also be used as a mixture. Methanol and ethanol are preferable, and methanol is more preferable.
[0012]
In the present invention, a high-concentration hydrogen peroxide solution can be obtained without adding an acid. However, if the coexistence of the acid in the hydrogen peroxide solution after the reaction does not matter, sulfuric acid, hydrochloric acid, phosphoric acid An acid such as may be added.
[0013]
The amount of the platinum group metal halogen compound is not particularly limited, but is usually 1 mg or more, preferably 10 mg or more, per 100 ml of the reaction solution. The form of the platinum group metal halogen compound may be any fine powder, pellet, or the like, but a fine powder is preferable, and a surface area of 0.01 to 10,000 m 2 / g is preferably used. In the present invention, a platinum group metal halogen compound may be used singly or supported on a suitable carrier. In general, the support has a higher activity per metal weight.
[0014]
Examples of the carrier include alumina, silica, titania, magnesia, zirconia, ceria, zeolite, graphite, activated carbon, silica gel, hydrous silicic acid, silicon carbide, etc., and alumina, silica, titania, zeolite, graphite, activated carbon are preferable. Used.
[0015]
The method of supporting the carrier is not particularly limited as long as it can be supported, for example, a method of suspending the carrier in a solution of a halogen compound of a platinum group metal and evaporating to dryness.
[0016]
The reaction of the present invention can be either a continuous type or a batch type, and the reaction apparatus can be a suspension bed type, a fixed bed type, or the like. None of these are particularly limited.
[0017]
For example, the reaction of the present invention can be carried out by a method in which a halogen compound of a platinum group metal is put in a reaction medium and hydrogen and oxygen gases are bubbled therein. When carrying out such a method, for the purpose of bringing the reaction gas bubbles into contact with the reaction medium for a longer period of time, a solvent that is incompatible with the reaction medium is further added to carry out the reaction under strong stirring. Sometimes. As such a solvent, for example, when methanol is used as a reaction medium, octane or the like can be selected. The amount of such a solvent used may be any amount as long as it does not inhibit the reaction, but is generally used in an amount of 80% or less, preferably 70% or less in volume.
[0018]
The partial pressure ratio of oxygen and hydrogen can be implemented in the range of 1:50 to 50: 1. The reaction can be carried out by diluting with an inert gas or using air instead of oxygen, but for safety reasons, it is preferable to carry out the reaction outside the explosion range. The reaction temperature is generally 5 ° C to 70 ° C, preferably 10 ° C to 50 ° C. The reaction pressure is not particularly limited, but is carried out in the range of atmospheric pressure to 150 kg / cm 2 · G, particularly 5 to 50 kg / cm 2 · G.
[0019]
【Example】
Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these.
[0020]
The hydrogen peroxide concentrations in Examples 1 to 4 and Comparative Examples 1 to 2 were 0.02 mol / l potassium permanganate solution for volumetric analysis (manufactured by Wako Pure Chemical Industries, Ltd.) under sulfuric acid acidity (0.2N) conditions. ) At room temperature. For the titration, an automatic potentiometer AT-310 manufactured by Kyoto Electronics Industry Co., Ltd. was used.
[0021]
The hydrogen peroxide concentrations in Examples 5 to 15 and Comparative Example 3 were obtained by adding potassium iodide (manufactured by Wako Pure Chemical Industries, Ltd.) excessively under sulfuric acid acidity (0.2N) conditions, and analyzing the volume of free iodine. It was determined at room temperature by a titration method using a 0.1 mol / 1 sodium thiosulfate solution (manufactured by Wako Pure Chemical Industries, Ltd.). For the titration, an automatic potentiometer AT-310 manufactured by Kyoto Electronics Industry Co., Ltd. was used.
[0022]
The specific surface area was measured by using Flowsorb II2300 manufactured by Micromeritics.
[0023]
Example 1
A 300-ml glass inner cylinder charged with 30 mg of PdBr 2 (manufactured by Nacalai Tesque, Inc .: specific surface area 0.4 m 2 / g) and 120 g of ion-exchanged water as a reaction medium was attached to an autoclave with an inner volume of 400 ml. Hydrogen gas was introduced at a rate of 80 ml / min and oxygen gas at a rate of 800 ml / min. For safety, nitrogen gas was introduced and diluted at 2500 ml / min in the gas phase. The pressure was maintained so that the internal pressure of the autoclave was 9 kg / cm 2 · G, and the reaction solution was kept at 20 ° C. by external cooling.
The hydrogen peroxide concentration in the reaction solution after 2 hours from the start of the reaction was 0.05 wt%. The amount of hydrogen peroxide produced per 1 mg of PdBr 2 was 0.06 mmol.
[0024]
Comparative Example 1
The reaction was carried out under the same conditions as in Example 1 except that PdBr 2 was changed to 30 mg of Pd powder (manufactured by Tanaka Kikinzoku Kogyo: specific surface area 10.8 m 2 / g). The hydrogen peroxide concentration in the reaction solution 2 hours after the start of the reaction was below the detection limit (0.00 wt%).
[0025]
Example 2
The reaction was performed under the same conditions as in Example 1 except that the reaction medium was a mixture of 6 g of 1N—H 2 SO 4 aqueous solution and 114 g of ion-exchanged water. The hydrogen peroxide concentration in the reaction solution after 2 hours from the start of the reaction was 0.09 wt%. The amount of hydrogen peroxide produced per 1 mg of PdBr 2 was 0.10 mmol.
[0026]
Comparative Example 2
The reaction was carried out under the same conditions as in Example 2 except that PdBr 2 was changed to 30 mg Pd / C (manufactured by N.E. Chemcat Co., Ltd .: Pd content 5 wt%: specific surface area 800 m 2 / g). The hydrogen peroxide concentration in the reaction solution 2 hours after the start of the reaction was below the detection limit (0.00 wt%).
[0027]
Example 3
The reaction was performed under the same conditions as in Example 1 except that PdBr 2 was changed to 30 mg PdCl 2 (manufactured by Wako Pure Chemical Industries, Ltd .: specific surface area 0.4 m 2 / g). The hydrogen peroxide concentration in the reaction solution after 2 hours from the start of the reaction was 0.05 wt%. The amount of hydrogen peroxide produced per 1 mg of PdCl 2 was 0.06 mmol.
[0028]
Example 4
The reaction was performed under the same conditions as in Example 1 except that PdBr 2 was changed to 30 mg of Pd (NH 3 ) 2 Cl 2 (manufactured by Aldrich). The hydrogen peroxide concentration in the reaction solution after 2 hours from the start of the reaction was 0.09 wt%. The amount of hydrogen peroxide produced per 1 mg of Pd (NH 3 ) 2 Cl 2 was 0.10 mmol.
[0029]
Example 5
The reaction was carried out under the same conditions as in Example 1 except that the reaction medium was 120 ml of methanol. The hydrogen peroxide concentration in the reaction solution 2 hours after the start of the reaction was 0.15 wt%. The amount of hydrogen peroxide produced per 1 mg of PdBr 2 was 0.12 mmol.
[0030]
Example 6
The reaction was performed under the same conditions as in Example 5, except that PdBr 2 was changed to 30 mg PdCl 2 (manufactured by Wako Pure Chemical Industries, Ltd .: specific surface area 0.4 m 2 / g). The hydrogen peroxide concentration in the reaction solution 2 hours after the start of the reaction was 0.33 wt%. The amount of hydrogen peroxide produced per 1 mg of PdCl 2 was 0.26 mmol.
[0031]
Example 7
The reaction was performed under the same conditions as in Example 5 except that PdBr 2 was changed to 30 mg of PtBr 2 (manufactured by Acros). The hydrogen peroxide concentration in the reaction solution 2 hours after the start of the reaction was 0.08 wt%. The amount of hydrogen peroxide produced per 1 mg of PtBr 2 was 0.06 mmol.
[0032]
Example 8
The reaction was performed under the same conditions as in Example 5 except that PdBr 2 was changed to 30 mg of PtCl 2 (manufactured by Wako Pure Chemical Industries, Ltd.). The hydrogen peroxide concentration in the reaction solution after 2 hours from the start of the reaction was 0.02 wt%. The amount of hydrogen peroxide produced per 1 mg of PtCl 2 was 0.02 mmol.
[0033]
Example 9
The reaction was performed under the same conditions as in Example 5 except that the reaction medium was a mixture of 60 ml of ion-exchanged water and 60 ml of methanol. The hydrogen peroxide concentration in the reaction solution after 2 hours from the start of the reaction was 0.06 wt%. The amount of hydrogen peroxide produced per 1 mg of PdBr 2 was 0.05 mmol.
[0034]
Example 10
The reaction was carried out under the same conditions as in Example 5 except that the reaction medium was a mixture of 18 ml of ion-exchanged water and 102 ml of methanol. The hydrogen peroxide concentration in the reaction solution after 2 hours from the start of the reaction was 0.11 wt%. The amount of hydrogen peroxide produced per 1 mg of PdBr 2 was 0.10 mmol.
[0035]
Example 11
The reaction was carried out under the same conditions as in Example 5 except that the reaction medium was a mixture of 60 ml of methanol and 60 ml of n-octane. The hydrogen peroxide concentration in the methanol phase 2 hours after the start of the reaction was 0.39 wt%. The amount of hydrogen peroxide produced per 1 mg of PdBr 2 was 0.15 mmol.
[0036]
Example 12
The reaction was carried out under the same conditions as in Example 5 except that the reaction medium was a mixture of 60 ml of ethylene glycol and 60 ml of n-octane. The hydrogen peroxide concentration in the ethylene glycol phase 2 hours after the start of the reaction was 0.07 wt%. The amount of hydrogen peroxide produced per 1 mg of PdBr 2 was 0.04 mmol.
[0037]
Example 13
The reaction was performed under the same conditions as in Example 5 except that the reaction medium was 120 ml of ethanol. The hydrogen peroxide concentration in the reaction solution after 2 hours from the start of the reaction was 0.09 wt%. The amount of hydrogen peroxide produced per 1 mg of PdBr 2 was 0.07 mmol.
[0038]
Example 14
The reaction was performed under the same conditions as in Example 5 except that the reaction medium was 120 ml of isopropanol. The hydrogen peroxide concentration in the reaction solution after 2 hours from the start of the reaction was 0.03 wt%. The amount of hydrogen peroxide produced per 1 mg of PdBr 2 was 0.02 mmol.
[0039]
Example 15
(1) a supported preparation of PdBr 2 in the preparation titanosilicate carrying PdBr 2 was carried out by the following method. That is, 50 mg of PdBr 2 (manufactured by Nacalai Tesque Co., Ltd.) was dissolved in 1.5 g of hydrobromic acid (manufactured by Wako Pure Chemicals, 47.0-49.0%) and then diluted with 20 ml of ion-exchanged water. 1 g of silicate (manufactured by N.E. Chemcat Co., Ltd .: Si / Ti atomic ratio 100) was suspended. The suspension was stirred for 1 hour and then evaporated to dryness on a hot plate. After washing with ion-exchanged water and ethanol and filtering, it was dried in a dryer at 100 ° C. for 1 hour to obtain PdBr 2 / titanosilicate (5 wt% -PdBr 2 ).
[0040]
(2) the production PdBr 2 of hydrogen peroxide, except that the PdBr 2 / titanosilicate (5wt% -PdBr 2) 30mg prepared in the above (1) The reaction was carried out under the same conditions as in Example 5 . The hydrogen peroxide concentration in the reaction solution after 2 hours from the start of the reaction was 0.06 wt%. The amount of hydrogen peroxide produced per 1 mg of PdBr 2 / titanosilicate was 0.04 mmol, and the amount of hydrogen peroxide produced per 1 mg of PdBr 2 was 0.83 mmol.
[0041]
Comparative Example 3
The reaction was carried out under the same conditions as in Example 5 except that PdBr 2 was changed to 30 mg Pd / C (manufactured by N.E. Chemcat Co., Ltd .: Pd content 5%: specific surface area 800 m 2 / g). The hydrogen peroxide concentration in the reaction solution 2 hours after the start of the reaction was below the detection limit (0.00 wt%).
【The invention's effect】
The method for producing hydrogen peroxide according to the present invention does not require a step of adding an acid or a halogen ion, and the reaction proceeds by using a compound with a small number of preparation steps, and the amount of hydrogen peroxide generated per compound is large. . As a result, it is possible to produce hydrogen peroxide in a much simplified process.

Claims (10)

白金族金属のハロゲン化合物と、アルコールとを含有する反応媒体中で、水素と酸素を反応させることを特徴とする過酸化水素の製造方法。A method for producing hydrogen peroxide, comprising reacting hydrogen and oxygen in a reaction medium containing a halogen compound of a platinum group metal and an alcohol . 白金族金属のハロゲン化合物を投入した反応媒体であって、アルコールを含有する反応媒体中で、水素と酸素を反応させることを特徴とする過酸化水素の製造方法。A method for producing hydrogen peroxide, characterized by reacting hydrogen and oxygen in a reaction medium containing a halogen compound of a platinum group metal and containing an alcohol . 白金族金属のハロゲン化合物が、担体に担持されていることを特徴とする請求項1または2記載の過酸化水素の製造方法。The method for producing hydrogen peroxide according to claim 1 or 2, wherein a platinum group metal halogen compound is supported on a carrier. アルコールを含有する反応媒体が、水およびアルコール(炭素原子数1〜8)の混合液であるかまたはアルコール(炭素原子数1〜8)単独であることを特徴とする請求項1〜3のいずれかに記載の過酸化水素の製造方法。 The reaction medium containing alcohol is a mixed solution of water and alcohol (1 to 8 carbon atoms) or an alcohol (1 to 8 carbon atoms) alone. A method for producing hydrogen peroxide according to claim 1. アルコールを含有する反応媒体が、アルコール(炭素原子数1〜8)単独であることを特徴とする請求項1〜3のいずれかに記載の過酸化水素の製造方法。The method for producing hydrogen peroxide according to any one of claims 1 to 3, wherein the reaction medium containing alcohol is alcohol (C1-8) alone. アルコールを含有する反応媒体が、メタノール単独、メタノールとn−オクタンの混合物、エチレングリコールとn−オクタンの混合物またはエタノール単独のいずれかであることを特徴とする請求項1〜3のいずれかに記載の過酸化水素の製造方法。The reaction medium containing an alcohol is any one of methanol alone, a mixture of methanol and n-octane, a mixture of ethylene glycol and n-octane, or ethanol alone. Method for producing hydrogen peroxide. 担体がチタノシリケートであることを特徴とする請求項3記載の過酸化水素の製造方法。4. The method for producing hydrogen peroxide according to claim 3, wherein the carrier is titanosilicate. 白金族金属がパラジウムまたは白金であることを特徴とする請求項1〜のいずれかに記載の過酸化水素の製造方法。The method for producing hydrogen peroxide according to any one of claims 1 to 7 , wherein the platinum group metal is palladium or platinum. 白金族金属のハロゲン化合物がパラジウムまたは白金のいずれかの塩化物または臭化物であることを特徴とする請求項1〜のいずれかに記載の過酸化水素の製造方法。The method for producing hydrogen peroxide according to any one of claims 1 to 7 , wherein the halogen compound of the platinum group metal is a chloride or bromide of either palladium or platinum. 白金族金属のハロゲン化合物がパラジウムの塩化物または臭化物であることを特徴とする請求項1〜のいずれかに記載の過酸化水素の製造方法。Method for producing hydrogen peroxide according to any one of claims 1 to 7, wherein the halogen compound of the platinum group metal is a chloride or bromide of palladium.
JP01231297A 1996-01-30 1997-01-27 Method for producing hydrogen peroxide Expired - Fee Related JP3620193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01231297A JP3620193B2 (en) 1996-01-30 1997-01-27 Method for producing hydrogen peroxide

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1412196 1996-01-30
JP10747196 1996-04-26
JP8-107471 1996-04-26
JP8-14121 1996-04-26
JP01231297A JP3620193B2 (en) 1996-01-30 1997-01-27 Method for producing hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPH107408A JPH107408A (en) 1998-01-13
JP3620193B2 true JP3620193B2 (en) 2005-02-16

Family

ID=27279787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01231297A Expired - Fee Related JP3620193B2 (en) 1996-01-30 1997-01-27 Method for producing hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP3620193B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1318679B1 (en) * 2000-08-11 2003-08-27 Enichem Spa PROCESS FOR THE PRODUCTION OF OXYGEN WATER.
ITMI20032553A1 (en) * 2003-12-22 2005-06-23 Polimeri Europa Spa PROCEDURE FOR THE REMOVAL OF INORGANIC ACIDS AND METAL IMPURITIES PRESENT IN ESSENTIALLY ALCOHOLIC SOLUTIONS OF H202 ARISING FROM SYNTHESIS SYNTHESIS

Also Published As

Publication number Publication date
JPH107408A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
US5965101A (en) Process for producing hydrogen peroxide
US6649140B2 (en) Process for the continuous production of hydrogen peroxide
KR100445847B1 (en) Catalyst and process for the direct synthesis of hydrogen peroxide
RU2131395C1 (en) Method and catalyst for preparing hydrogen peroxide
CA2615076C (en) Improvements in catalysts
JPH0532404A (en) Production of hydrogen peroxide
KR20140093701A (en) A catalyst for direct synthesis of hydrogen peroxide comprising zirconium oxide
KR100851688B1 (en) Direct synthesis of hydrogen peroxide in a multicomponent solvent system
RU2270165C2 (en) Direct synthesis of hydrogen peroxide in multicomponent solvent system
JP3620193B2 (en) Method for producing hydrogen peroxide
JP5048643B2 (en) Direct production method of hydrogen peroxide using ionic liquid
JP3405125B2 (en) Process for producing epoxidized olefins
JPH10330103A (en) Production of aqueous hydrogen peroxide solution
JPH10324507A (en) Production of hydrogen peroxide
JPH05238703A (en) Manufacture of hydrogen preoxide
JPWO2018016359A1 (en) Noble metal catalyst for hydrogen peroxide production and method for producing hydrogen peroxide
JP6088760B2 (en) Method for producing hydrogen peroxide
JPH04238802A (en) Production of hydrogen peroxide
JPH0543206A (en) Production of hydrogen peroxide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees