JPH0733410A - Production of hydrogen peroxide - Google Patents

Production of hydrogen peroxide

Info

Publication number
JPH0733410A
JPH0733410A JP17530993A JP17530993A JPH0733410A JP H0733410 A JPH0733410 A JP H0733410A JP 17530993 A JP17530993 A JP 17530993A JP 17530993 A JP17530993 A JP 17530993A JP H0733410 A JPH0733410 A JP H0733410A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
catalyst
platinum group
reaction medium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17530993A
Other languages
Japanese (ja)
Inventor
Hiromitsu Nagashima
広光 長島
Takeshi Tomita
健 富田
Masao Ishiuchi
征夫 石内
Michiya Kawakami
道也 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP17530993A priority Critical patent/JPH0733410A/en
Publication of JPH0733410A publication Critical patent/JPH0733410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high concn. hydrogen peroxide in high selectivity without the presence of a halogen ion by using a platinum group metal catalyst modified with a specified metallic element and allowing oxygen to react catalystically with hydrogen in a reaction medium. CONSTITUTION:This reaction catalyst is obtained by depositing a platinum group metal catalyst which is obtained by modifying 1-10wt.% platinum group element such as palladium and platinum per catalyst carrier with more than 1/2 times, by wt., at least one kind of element selected among lead, zinc, gallium and bismuth on the catalyst carrier such as titanium oxide. The acidic aq. soln. which is obtained by adding the inorg. acid such as sulfuric acid, nitric acid, phosphoric acid which does not contain a halogen ion is used as the reaction medium, and >=1g reaction catalyst per 1l reaction medium and a stabilizing agent in need are added to the reaction medium, and the gaseous mixture of gaseous hydrogen, oxygen and nitrogen on volume base is fed into an autoclave, and the hydrogen peroxide is produced by allowing to react under agitation at a pressure of 3-150kg/cm<2>.G and a temp. of 0-50 deg.C for 30min-6hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は反応媒体中で酸素と水素
を接触的に反応させ、過酸化水素を製造する改良された
方法に関するものである。さらに詳しくは、本発明はハ
ロゲンイオン等の助触媒を含まない反応媒体中で、酸素
と水素を白金族触媒の存在下に反応させることにより過
酸化水素を製造する方法に関するものである。
FIELD OF THE INVENTION The present invention relates to an improved process for catalytically reacting oxygen and hydrogen in a reaction medium to produce hydrogen peroxide. More specifically, the present invention relates to a method for producing hydrogen peroxide by reacting oxygen and hydrogen in the presence of a platinum group catalyst in a reaction medium containing no cocatalyst such as halogen ions.

【0002】[0002]

【従来の技術】現在、工業的に行われている過酸化水素
の主な製造方法は、アルキルアンスラキノンを媒体とす
る自動酸化法である。この方法の問題点としては、アル
キルアンスラキノンの還元、酸化、生成した過酸化水素
の抽出分離及び精製そして濃縮等の多くの工程が必要で
ありプロセスが複雑となるために、装置費、運転費が大
きいという事が挙げられる。更には、アルキルアンスラ
キノンの劣化による損失、還元用触媒の活性の劣化等の
問題もある。これらの問題点を改善するために、上記製
造法以外の製造方法が試みられているが、その一つに、
反応媒体中で触媒を用いて、酸素と水素から直接的に過
酸化水素を製造する方法がある。例えば、白金族金属を
触媒として用い、酸素と水素から過酸化水素を製造する
方法が提案されており、かなり高濃度の過酸化水素が生
成する事が知られている(例えば、特公昭56-47121号、
特公昭55-18646号、特公平1-23401 号、特開昭63-15600
5 号)。これらでは、いずれも反応媒体として酸や無機
塩を溶存させた水溶液を用いている。特に反応媒体中に
ハロゲンイオンを含むことにより触媒の活性が抑制され
て過酸化水素生成反応の選択性が大幅に向上し、取得過
酸化水素の濃度が高くなることが示されている。特開昭
63-156005 号公報には、白金族触媒を用い、硫酸酸性水
溶液中で加圧下酸素及び水素から過酸化水素を製造する
方法に於いて、水溶液中に臭化物イオン等のハロゲンイ
オンを共存させる事によって、選択的に高濃度の過酸化
水素を製造出来る事を示している。即ち従来の技術で
は、酸素と水素を反応媒体中で接触的に反応させて過酸
化水素を製造する方法に於いて、高い選択率で過酸化水
素を取得するためには、ハロゲンイオン等の助触媒を用
いる必要があった。
2. Description of the Related Art Currently, the main method of industrially producing hydrogen peroxide is an autoxidation method using alkylanthraquinone as a medium. The problem with this method is that it requires many steps such as reduction of alkylanthraquinone, oxidation, extraction and separation of the produced hydrogen peroxide, purification and concentration, which complicates the process, resulting in equipment costs and operating costs. Is large. Further, there are problems such as loss due to deterioration of alkyl anthraquinone and deterioration of activity of the reduction catalyst. In order to improve these problems, a manufacturing method other than the above manufacturing method has been attempted, and one of them is
There is a method of producing hydrogen peroxide directly from oxygen and hydrogen using a catalyst in a reaction medium. For example, a method of producing hydrogen peroxide from oxygen and hydrogen using a platinum group metal as a catalyst has been proposed, and it is known that a considerably high concentration of hydrogen peroxide is produced (for example, Japanese Patent Publication No. No. 47121,
JP-B-55-18646, JP-B-1-23401, JP-A-63-15600
No. 5). In each of these, an aqueous solution in which an acid or an inorganic salt is dissolved is used as a reaction medium. In particular, it has been shown that by including a halogen ion in the reaction medium, the activity of the catalyst is suppressed, the selectivity of the hydrogen peroxide generation reaction is significantly improved, and the concentration of hydrogen peroxide obtained is increased. JPA
63-156005 discloses a method for producing hydrogen peroxide from oxygen and hydrogen under pressure in a sulfuric acid acidic aqueous solution using a platinum group catalyst by coexisting halogen ions such as bromide ion in the aqueous solution. , Shows that high concentration hydrogen peroxide can be selectively produced. That is, in the conventional technique, in the method of producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in a reaction medium, in order to obtain hydrogen peroxide with a high selectivity, it is necessary to use a halogen ion or the like. It was necessary to use a catalyst.

【0003】[0003]

【発明が解決しようとする課題】反応媒体中で酸素と水
素を接触的に反応させ過酸化水素を製造する方法に於い
て、従来の公知技術では、実用的な濃度の過酸化水素を
得るためには反応媒体中に酸とハロゲンイオンを共存さ
せる必要があった。このように、酸性反応媒体中に高濃
度のハロゲンイオンが存在する場合には、その取り扱い
において使用できる装置の材質が制限され、その結果、
高価な耐蝕性の反応容器が必要となり経済的な問題があ
った。更に、触媒の活性成分である白金族金属が反応媒
体中に溶出するという問題も生じる。特に、白金族金属
の溶出量はハロゲンイオンの濃度に対して比例的に増加
する。この白金族金属成分の溶出は触媒活性の低下及び
触媒寿命の低減の原因となり、工業的な連続操作により
過酸化水素を製造する場合には、経済的に大きな問題と
なる。この様に、ハロゲンイオンの存在下で反応を行う
従来の技術は、製品からハロゲンイオンを除去するため
の精製工程が必要であることも含めて種々の経済的な問
題があった。
DISCLOSURE OF THE INVENTION In a method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in a reaction medium, the conventional known technique is to obtain a practical concentration of hydrogen peroxide. It was necessary to coexist an acid and a halogen ion in the reaction medium. Thus, when a high concentration of halogen ions is present in the acidic reaction medium, the material of the equipment that can be used in its handling is limited, and as a result,
There is an economical problem because an expensive corrosion-resistant reaction container is required. Further, there is a problem that the platinum group metal, which is the active component of the catalyst, is eluted in the reaction medium. In particular, the amount of platinum group metal eluted increases in proportion to the concentration of halogen ions. The elution of the platinum group metal component causes a decrease in catalyst activity and a decrease in catalyst life, and becomes a serious economic problem when hydrogen peroxide is produced by an industrial continuous operation. As described above, the conventional technique of carrying out the reaction in the presence of halogen ions has various economic problems including the necessity of a purification step for removing halogen ions from the product.

【0004】[0004]

【課題を解決するための手段】本発明者らは、本反応に
悪影響を及ぼさない窒素などの不活性ガスの存在下また
は不存在下に白金族触媒を用いて反応媒体中で酸素と水
素を接触的に反応させて過酸化水素を製造する方法に於
いて、ハロゲンイオンを含まない反応媒体中で高濃度の
過酸化水素を得る製造方法の検討を続けた結果、鉛、亜
鉛、ガリウム及びビスマスから選ばれた少なくとも一つ
以上の元素で修飾した白金族金属触媒を用いることによ
り、ハロゲンイオンを含まない酸性水溶液を反応媒体と
して高濃度の過酸化水素が得られることを見いだした。
DISCLOSURE OF THE INVENTION The inventors of the present invention used a platinum group catalyst in the presence or absence of an inert gas such as nitrogen, which does not adversely affect the present reaction, to produce oxygen and hydrogen in a reaction medium. In the method of producing hydrogen peroxide by reacting catalytically, as a result of continuing the examination of the production method for obtaining a high concentration of hydrogen peroxide in a reaction medium containing no halogen ion, lead, zinc, gallium and bismuth It was found that by using a platinum group metal catalyst modified with at least one element selected from the above, a high concentration of hydrogen peroxide can be obtained using an acidic aqueous solution containing no halogen ion as a reaction medium.

【0005】即ち、本発明は、白金族金属を鉛、亜鉛、
ガリウム及びビスマスから選ばれた少なくとも一つ以上
の元素で修飾した触媒を用いハロゲンイオンを含まない
酸性水溶液を反応媒体として、窒素などの本反応に悪影
響を及ぼさない不活性なガスの存在下または不存在下に
接触的に反応せしめることにより高濃度の過酸化水素を
得ることを可能とした過酸化水素の製造方法を提供する
ものである。本発明により、反応容器の材質の問題やハ
ロゲンイオンの共存による触媒活性の低下等の問題点が
解決された。
That is, in the present invention, the platinum group metal is lead, zinc,
Using a catalyst modified with at least one element selected from gallium and bismuth, and using an acidic aqueous solution containing no halogen ions as a reaction medium, in the presence or in the presence of an inert gas such as nitrogen, which does not adversely affect this reaction. The present invention provides a method for producing hydrogen peroxide, which makes it possible to obtain a high concentration of hydrogen peroxide by reacting catalytically in the presence of hydrogen peroxide. INDUSTRIAL APPLICABILITY The present invention has solved the problems of the material of the reaction vessel and the deterioration of catalytic activity due to the coexistence of halogen ions.

【0006】本発明に於いては、白金族元素を担体に担
持した触媒が使用される。白金族元素として、具体的に
はパラジウム、白金などを単独もしくは混合物または合
金として用いることができる。更にそれらを主体とする
ルテニウム、オスミウム、ロジウム、イリジウム、金と
の混合物もしくは合金の使用も可能である。特にパラジ
ウムを主体とする触媒が好適に使用される。
In the present invention, a catalyst in which a platinum group element is supported on a carrier is used. As the platinum group element, specifically, palladium, platinum or the like can be used alone or as a mixture or alloy. Further, it is also possible to use a mixture or alloy containing ruthenium, osmium, rhodium, iridium or gold, which is mainly composed of them. Particularly, a catalyst containing palladium as a main component is preferably used.

【0007】本発明における触媒の調製法としては、特
に制限はないが、好ましくは、通常の触媒調製に使用さ
れる担体に、白金族元素の塩および鉛、亜鉛、ガリウム
またはビスマスの塩を同時に担持した後、これを焼成、
還元処理することにより触媒を調製する方法が採用でき
る。また、白金族元素を予め担持した触媒に鉛、亜鉛、
ガリウムまたはビスマスの塩を担持した後、これを焼
成、還元処理することにより触媒を調製してもよい。本
発明の触媒に用いる担体としての特別な制限はなく、任
意の触媒担体を用いることが可能であるが、中でも、触
媒の機械的強度あるいは比表面積が大きい担体、すなわ
ち、酸化アルミニウム、酸化珪素、酸化ジルコニウム、
酸化チタン、ゼオライト、シリカ−アルミナ、活性炭、
吸着樹脂、イオン交換樹脂が好ましい。
The method for preparing the catalyst in the present invention is not particularly limited, but it is preferable to simultaneously add a salt of a platinum group element and a salt of lead, zinc, gallium or bismuth to a carrier used for ordinary catalyst preparation. After carrying, it is baked,
A method of preparing a catalyst by performing a reduction treatment can be adopted. In addition, lead, zinc, and
The catalyst may be prepared by carrying a salt of gallium or bismuth and then calcining and carrying out a reduction treatment. There is no particular limitation as a carrier used for the catalyst of the present invention, and any catalyst carrier can be used. Among them, a carrier having a large mechanical strength or specific surface area of the catalyst, that is, aluminum oxide, silicon oxide, Zirconium oxide,
Titanium oxide, zeolite, silica-alumina, activated carbon,
Adsorption resins and ion exchange resins are preferred.

【0008】白金族元素の塩としては、パラジウム、白
金、ルテニウム、オスミウム、ロジウム、イリジウムま
たは金の塩または錯体が例示され、好ましくは、パラジ
ウムもしくは金の硝酸塩、塩酸塩もしくは酢酸塩、また
は、パラジウムもしくは金のテトラアンミン錯体が使用
される。白金族元素の担持量は、担体に対して、通常、
0.1〜10重量%である。鉛、亜鉛、ガリウムまたは
ビスマスの塩としては、たとえば、鉛、亜鉛、ガリウム
またはビスマスの硝酸塩、塩酸塩、硫酸塩または酢酸塩
が挙げられる。本発明に於いて用いられる修飾した白金
族金属触媒中の鉛、亜鉛、ガリウムまたはビスマスの量
は、重量比で白金族金属の1/2倍量以上、好ましくは
10倍量以上である。
Examples of the salt of the platinum group element include salts or complexes of palladium, platinum, ruthenium, osmium, rhodium, iridium or gold, preferably, nitrates, hydrochlorides or acetates of palladium or gold, or palladium. Alternatively, a gold tetraammine complex is used. The loading amount of the platinum group element is usually, with respect to the carrier,
It is 0.1 to 10% by weight. Examples of the lead, zinc, gallium or bismuth salt include lead, zinc, gallium or bismuth nitrate, hydrochloride, sulfate or acetate. The amount of lead, zinc, gallium or bismuth in the modified platinum group metal catalyst used in the present invention is at least 1/2 times the weight of the platinum group metal, preferably at least 10 times the weight of the platinum group metal.

【0009】本発明の過酸化水素の製造における触媒の
使用量は通常、反応媒体1リットル当たり1グラム以上
が使用され、スラリー状で使用することができる。本発
明の過酸化水素の製造における反応媒体は通常、水が使
用されるが、硫酸、硝酸または燐酸等のハロゲンイオン
を含まない無機酸を添加した酸性水溶液が好適に使用さ
れる。公知の過酸化水素分解防止のための安定剤(例え
ば、アミノトリ(メチレンホスホン酸)、1−ヒドロキ
シエチリデン−1,1−ジホスホン酸、エチレンジアミ
ンテトラ(メチレンホスホン酸)、ピロリン酸、または
これらの塩等を反応媒体に添加することもまた、好まし
い。本発明の過酸化水素の製造における反応条件として
は、通常、反応圧力3〜150kg/cm2 ・G、反応
温度0〜50℃、反応時間30分〜6時間の条件で実施
される。
The amount of the catalyst used in the production of hydrogen peroxide of the present invention is usually 1 gram or more per 1 liter of the reaction medium, and it can be used in the form of a slurry. Water is usually used as the reaction medium in the production of hydrogen peroxide of the present invention, but an acidic aqueous solution containing an inorganic acid containing no halogen ion such as sulfuric acid, nitric acid or phosphoric acid is preferably used. Known stabilizers for preventing decomposition of hydrogen peroxide (eg, aminotri (methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), pyrophosphoric acid, or salts thereof. It is also preferable to add to the reaction medium: The reaction conditions in the production of hydrogen peroxide of the present invention are usually a reaction pressure of 3 to 150 kg / cm 2 · G, a reaction temperature of 0 to 50 ° C., and a reaction time of 30 minutes. It is carried out under the condition of ~ 6 hours.

【0010】[0010]

【実施例】以下、実施例及び比較例によって本発明を更
に詳細に説明する。実施例及び比較例において、ガス組
成の分析はガスクロマトグラフにより行い、溶液中の過
酸化水素濃度の測定は硫酸酸性下過マンガン酸カリウム
溶液による滴定法により行った。 実施例1 触媒の調製を以下の方法により行った。即ち、市販の酸
化チタン(TAYCA(株)製、アナターゼ型)10g
を100ミリリットルの水に懸濁させた懸濁液中に、市
販の硝酸鉛(小宗化学薬品(株)製)2.40gを50
ミリリットルの水に溶解した水溶液と硝酸パラジウム溶
液の希釈液(石福金属興業(株)製、1g−Pd/リッ
トル)50ミリリットルの混合溶液を滴下した。滴下終
了後、この縣濁液をホットプレート上で蒸発・乾固し、
さらに乾燥器中で110℃にて一昼夜乾燥した。その
後、空気気流中で500℃にて2時間焼成し、次いで水
素気流中で120℃にて1時間還元して触媒を得た。酸
素と水素より直接的に過酸化水素を製造する反応方法と
して以下の操作を行った。内容積65ミリリットルのガ
ラス容器に、硫酸0.1モル/リットルとなるように調
製した水溶液10gを入れた。この水溶液に前述のよう
に調製した担持パラジウム触媒50mgを加え、ガラス
容器を100ミリリットルの容積のオートクレーブに入
れ、水素ガスが3.5容積%、酸素ガスが35容積%、
窒素ガスが61.5容積%の組成からなる混合ガスで圧
力テストを行った後、同じ組成のガスで50kg/cm
2 ・G迄加圧した。温度を10℃に保ちながら2,00
0rpmで1時間攪拌した。攪拌終了後、水溶液中の過
酸化水素濃度は0.62重量%、水素選択率は94%で
あった。水素選択率は次式によって計算した。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. In Examples and Comparative Examples, the gas composition was analyzed by gas chromatography, and the concentration of hydrogen peroxide in the solution was measured by titration with a potassium permanganate solution under sulfuric acid acidity. Example 1 A catalyst was prepared by the following method. That is, 10 g of commercially available titanium oxide (TAYCA Corporation, anatase type)
50 ml of commercially available lead nitrate (manufactured by Komune Chemical Co., Ltd.) in a suspension of 100 ml of water.
A mixed solution of 50 ml of an aqueous solution dissolved in milliliter of water and a diluted solution of a palladium nitrate solution (manufactured by Ishifuku Metal Industry Co., Ltd., 1 g-Pd / liter) was added dropwise. After the dropping is completed, this suspension is evaporated and dried on a hot plate,
Further, it was dried in a dryer at 110 ° C. for 24 hours. Then, it was calcined in an air stream at 500 ° C. for 2 hours and then reduced in a hydrogen stream at 120 ° C. for 1 hour to obtain a catalyst. The following operation was performed as a reaction method for directly producing hydrogen peroxide from oxygen and hydrogen. In a glass container having an inner volume of 65 ml, 10 g of an aqueous solution prepared so as to have a sulfuric acid content of 0.1 mol / liter was placed. To this aqueous solution, 50 mg of the supported palladium catalyst prepared as described above was added, and the glass container was placed in an autoclave having a volume of 100 ml. Hydrogen gas was 3.5% by volume, oxygen gas was 35% by volume,
After performing a pressure test with a mixed gas of nitrogen gas having a composition of 61.5% by volume, 50 kg / cm 2 with a gas of the same composition
Until 2 · G pressurized. 2,000 while keeping the temperature at 10 ℃
The mixture was stirred at 0 rpm for 1 hour. After completion of stirring, the hydrogen peroxide concentration in the aqueous solution was 0.62% by weight, and the hydrogen selectivity was 94%. The hydrogen selectivity was calculated by the following formula.

【数1】水素選択率(%)=[(反応により生成した過酸
化水素のmol量)÷(消費された水素量から算出した過酸
化水素の理論生成mol量)]×100
[Equation 1] Hydrogen selectivity (%) = [(mol amount of hydrogen peroxide produced by reaction) / (mol amount of theoretical production of hydrogen peroxide calculated from the amount of hydrogen consumed)] x 100

【0011】実施例2 触媒調製に際して、市販の酸化チタン(TAYCA
(株)製、アナターゼ型)10gの代わりに市販の酸化
ジルコニウム(小宗化学薬品(株)製)10gを用いた
ことを除き、実施例1と同様の操作により触媒調製およ
び反応を行った。1時間の攪拌終了後、水溶液中の過酸
化水素濃度は0.56重量%であり、水素選択率は51
%であった。
Example 2 When preparing a catalyst, commercially available titanium oxide (TAYCA
Catalyst preparation and reaction were performed in the same manner as in Example 1 except that 10 g of commercially available zirconium oxide (manufactured by Komune Chemical Co., Ltd.) was used instead of 10 g of anatase type manufactured by Co., Ltd. After stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.56% by weight, and the hydrogen selectivity was 51.
%Met.

【0012】実施例3 触媒調製に際して、市販の硝酸鉛2.40gの代わりに
市販の硝酸亜鉛(小宗化学薬品(株)製)6.80gを
用いたことを除き、実施例2と同様の操作により触媒調
製および反応を行った。1時間の攪拌終了後、水溶液中
の過酸化水素濃度は0.44重量%であり、水素選択率
は64%であった。
Example 3 Similar to Example 2, except that 6.80 g of commercially available zinc nitrate (manufactured by Komune Chemical Co., Ltd.) was used in place of 2.40 g of commercially available lead nitrate in preparing the catalyst. The catalyst was prepared and reacted by the operation. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.44% by weight, and the hydrogen selectivity was 64%.

【0013】実施例4 触媒調製に際して、担体として市販の酸化ジルコニウム
の代わりに市販の酸化アルミニウム(水沢化学(株)
製、活性アルミナ)を用いたことを除き、実施例3と同
様の操作により触媒調製および反応を行った。1時間の
攪拌終了後、水溶液中の過酸化水素濃度は0.22重量
%であり、水素選択率は23%であった。
Example 4 In preparing the catalyst, a commercially available aluminum oxide (Mizusawa Chemical Co., Ltd.) was used as a carrier instead of the commercially available zirconium oxide.
Catalyst preparation and reaction were carried out by the same operations as in Example 3, except that the active alumina produced was used. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.22% by weight, and the hydrogen selectivity was 23%.

【0014】実施例5 触媒調製に際して、担体として市販の酸化ジルコニウム
の代わりに市販の二酸化珪素(水沢化学(株)製)を用
いたことを除き、実施例3と同様の操作により触媒調製
および反応を行った。1時間の攪拌終了後、水溶液中の
過酸化水素濃度は0.21重量%であり、水素選択率は
20%であった。
Example 5 Catalyst preparation and reaction were carried out in the same manner as in Example 3 except that commercially available silicon dioxide (manufactured by Mizusawa Chemical Co., Ltd.) was used as a carrier instead of commercially available zirconium oxide in the preparation of the catalyst. I went. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.21% by weight, and the hydrogen selectivity was 20%.

【0015】実施例6 触媒調製に際して、担体として市販の酸化ジルコニウム
の代わりに市販の酸化チタン(TAYCA(株)製、ア
ナターゼ型)を用いたことを除き、実施例3と同様の操
作により触媒調製および反応を行った。1時間の攪拌終
了後、水溶液中の過酸化水素濃度は0.25重量%であ
り、水素選択率は26%であった。
Example 6 In preparing the catalyst, the catalyst was prepared in the same manner as in Example 3 except that a commercially available titanium oxide (manufactured by TAYCA Corporation, anatase type) was used as the carrier instead of the commercially available zirconium oxide. And the reaction was carried out. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.25% by weight, and the hydrogen selectivity was 26%.

【0016】実施例7 触媒調製に際して、担体として市販の酸化ジルコニウム
の代わりに市販の水酸化ジルコニウム(三津和化学薬品
(株)製)を用いたことを除き、実施例3と同様の操作
により触媒調製および反応を行った。1時間の攪拌終了
後、水溶液中の過酸化水素濃度は0.50重量%であ
り、水素選択率は60%であった。
Example 7 A catalyst was prepared in the same manner as in Example 3 except that a commercially available zirconium hydroxide (manufactured by Mitsuwa Chemical Co., Ltd.) was used as a carrier in place of the commercially available zirconium oxide in preparing the catalyst. Preparation and reaction were performed. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.50% by weight, and the hydrogen selectivity was 60%.

【0017】実施例8 触媒調製に際して、市販の硝酸鉛2.40gを溶解した
水溶液と硝酸パラジウム溶液の希釈液(1g−Pd/リ
ットル)50ミリリットルの混合溶液を滴下する代わり
に市販の硝酸ビスマス(関東化学(株)製)3.46g
を溶解した水溶液と硝酸パラジウム溶液の希釈液(2g
−Pd/リットル)50ミリリットルの混合溶液を滴下
することを除き、実施例2と同様の操作により触媒調製
を行った。ここで調製した触媒500mgを用いたこと
を除き、実施例1と同様な方法により反応を行った。1
時間の攪拌終了後、水溶液中の過酸化水素濃度は0.5
3重量%であり、水素選択率は89%であった。
Example 8 In preparing the catalyst, instead of adding a mixed solution of 50 ml of a dilute solution (1 g-Pd / liter) of a palladium nitrate solution and an aqueous solution containing 2.40 g of commercially available lead nitrate, commercially available bismuth nitrate ( Kanto Chemical Co., Ltd.) 3.46 g
A diluted solution of an aqueous solution in which is dissolved and a palladium nitrate solution (2 g
-Pd / l) A catalyst was prepared in the same manner as in Example 2, except that 50 ml of the mixed solution was added dropwise. The reaction was carried out by the same method as in Example 1 except that 500 mg of the catalyst prepared here was used. 1
After stirring for an hour, the concentration of hydrogen peroxide in the aqueous solution is 0.5
The hydrogen selectivity was 3% by weight and the hydrogen selectivity was 89%.

【0018】実施例9 触媒調製に際して、担体として市販の酸化ジルコニウム
の代わりに市販の酸化アルミニウム(水沢化学(株)
製、活性アルミナ)を用いたことを除き、実施例8と同
様の操作により触媒調製および反応を行った。1時間の
攪拌終了後、水溶液中の過酸化水素濃度は0.35重量
%であり、水素選択率は40%であった。
Example 9 In preparing a catalyst, a commercially available aluminum oxide (Mizusawa Chemical Co., Ltd.) was used as a carrier instead of the commercially available zirconium oxide.
Catalyst preparation and reaction were carried out by the same operations as in Example 8 except that activated alumina) was used. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.35% by weight, and the hydrogen selectivity was 40%.

【0019】実施例10 触媒調製に際して、市販の硝酸鉛2.40gの代わりに
市販の硝酸ガリウム(添川理化学(株)製、ガリウム含
有量18.9%)7.94gを用いたことを除き、実施
例1と同様の操作により触媒調製を行った。ここで調製
した触媒500mgを用いたことを除き、実施例1と同
様な方法により反応を行った。1時間の攪拌終了後、水
溶液中の過酸化水素濃度は0.79重量%であり、水素
選択率は90%であった。
Example 10 In the preparation of the catalyst, 7.94 g of commercially available gallium nitrate (manufactured by Soegawa Rikagaku Co., Ltd., gallium content 18.9%) was used instead of 2.40 g of commercially available lead nitrate, except that The catalyst was prepared in the same manner as in Example 1. The reaction was carried out by the same method as in Example 1 except that 500 mg of the catalyst prepared here was used. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.79% by weight, and the hydrogen selectivity was 90%.

【0020】実施例11 触媒調製に際して、市販の硝酸鉛2.40gを溶解した
水溶液の代わりに市販の硝酸鉛1.20gと市販の硝酸
亜鉛3.40gを溶解した水溶液を用いたことを除き、
実施例1と同様の操作により触媒調製および反応を行っ
た。1時間の攪拌終了後、水溶液中の過酸化水素濃度は
0.55重量%であり、水素選択率は85%であった。
Example 11 Except that in preparing the catalyst, an aqueous solution containing 1.20 g of commercially available lead nitrate and 3.40 g of commercially available zinc nitrate was used in place of the aqueous solution containing 2.40 g of commercially available lead nitrate.
Catalyst preparation and reaction were carried out in the same manner as in Example 1. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.55% by weight, and the hydrogen selectivity was 85%.

【0021】実施例12 触媒調製に際して、市販の硝酸ビスマス3.46gを溶
解した水溶液の代わりに市販の硝酸ビスマス1.73g
と市販の硝酸ガリウム3.97gを溶解した水溶液を用
いたことを除き、実施例8と同様の操作により触媒調製
および反応を行った。1時間の攪拌終了後、水溶液中の
過酸化水素濃度は0.70重量%であり、水素選択率は
90%であった。
Example 12 In preparing the catalyst, 1.73 g of commercially available bismuth nitrate was used instead of the aqueous solution in which 3.46 g of commercially available bismuth nitrate was dissolved.
Catalyst preparation and reaction were performed in the same manner as in Example 8 except that an aqueous solution in which 3.97 g of commercially available gallium nitrate was dissolved was used. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.70% by weight, and the hydrogen selectivity was 90%.

【0022】比較例1(実施例1、6、10、11に対
する) 触媒調製に際して、市販の硝酸鉛を用いずに酸化チタン
担体にパラジウムのみを担持したことを除き、実施例1
と同様の操作により触媒調製および反応を行った。1時
間の攪拌終了後水溶液中の過酸化水素濃度は0.00重
量%であり、水素選択率は0%であった。
Comparative Example 1 (Compared to Examples 1, 6, 10 and 11) Example 1 was repeated except that palladium was supported on the titanium oxide support without using commercially available lead nitrate in preparing the catalyst.
Catalyst preparation and reaction were performed by the same operation as above. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.00% by weight, and the hydrogen selectivity was 0%.

【0023】比較例2(実施例2、3、8、12に対す
る) 触媒調製に際して、酸化チタンの代わりに酸化ジルコニ
ウムを用いたことを除き、比較例1と同様の操作により
触媒調製および反応を行った。1時間の攪拌終了後水溶
液中の過酸化水素濃度は0.00重量%であり、水素選
択率は0%であった。
Comparative Example 2 (Comparative with Examples 2, 3, 8 and 12) Catalyst preparation and reaction were carried out in the same manner as in Comparative Example 1 except that zirconium oxide was used instead of titanium oxide in the catalyst preparation. It was After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.00% by weight, and the hydrogen selectivity was 0%.

【0024】比較例3(実施例4、9に対する) 触媒調製に際して、酸化チタンの代わりに酸化アルミニ
ウムを用いたことを除き、比較例1と同様の操作により
触媒調製および反応を行った。1時間の攪拌終了後水溶
液中の過酸化水素濃度は0.00重量%であり、水素選
択率は0%であった。
Comparative Example 3 (Compared to Examples 4 and 9) Catalyst preparation and reaction were carried out in the same manner as in Comparative Example 1 except that aluminum oxide was used instead of titanium oxide in the catalyst preparation. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.00% by weight, and the hydrogen selectivity was 0%.

【0025】比較例4(実施例5に対する) 触媒調製に際して、酸化チタンの代わりに二酸化珪素を
用いたことを除き、比較例1と同様の操作により触媒調
製および反応を行った。1時間の攪拌終了後水溶液中の
過酸化水素濃度は0.00重量%であり、水素選択率は
0%であった。
Comparative Example 4 (Comparative to Example 5) Catalyst preparation and reaction were carried out in the same manner as in Comparative Example 1 except that silicon dioxide was used instead of titanium oxide in preparing the catalyst. After completion of stirring for 1 hour, the hydrogen peroxide concentration in the aqueous solution was 0.00% by weight, and the hydrogen selectivity was 0%.

【0026】[0026]

【発明の効果】本発明により、非常に高い水素選択率で
高濃度の過酸化水素が製造される。また、本発明におい
ては、反応媒体である水溶液中にハロゲンイオンを存在
させる必要がなく、従来法のような反応媒体中に高濃度
のハロゲンイオンが共存することにより生ずる種々の問
題点が解決される。
According to the present invention, a high concentration of hydrogen peroxide can be produced with a very high hydrogen selectivity. Further, in the present invention, it is not necessary to allow halogen ions to exist in an aqueous solution which is a reaction medium, and various problems caused by the coexistence of a high concentration of halogen ions in a reaction medium as in the conventional method are solved. It

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月21日[Submission date] July 21, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】白金族元素の塩としては、パラジウム、白
金、ルテニウム、オスミウム、ロジウム、イリジウムま
たは金の塩または錯体が例示され、好ましくは、パラジ
ウムもしくは白金の硝酸塩、塩酸塩もしくは酢酸塩、ま
たは、パラジウムもしくは白金のテトラアンミン錯体が
使用される。白金族元素の担持量は、担体に対して、通
常、0.1〜10重量%である。鉛、亜鉛、ガリウムま
たはビスマスの塩としては、たとえば、鉛、亜鉛、ガリ
ウムまたはビスマスの硝酸塩、塩酸塩、硫酸塩または酢
酸塩が挙げられる。本発明に於いて用いられる修飾した
白金族金属触媒中の鉛、亜鉛、ガリウムまたはビスマス
の量は、重量比で白金族金属の1/2倍量以上、好まし
くは10倍量以上である。
Examples of the salt of the platinum group element include salts or complexes of palladium, platinum, ruthenium, osmium, rhodium, iridium or gold, preferably, nitrates, hydrochlorides or acetates of palladium or platinum , or palladium. Alternatively, platinum tetraammine complex is used. The loading amount of the platinum group element is usually 0.1 to 10% by weight with respect to the carrier. Examples of the lead, zinc, gallium or bismuth salt include lead, zinc, gallium or bismuth nitrate, hydrochloride, sulfate or acetate. The amount of lead, zinc, gallium or bismuth in the modified platinum group metal catalyst used in the present invention is at least 1/2 times the weight of the platinum group metal, preferably at least 10 times the weight of the platinum group metal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河上 道也 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michiya Kawakami 6-1-1, Shinjuku, Katsushika-ku, Tokyo Mitsubishi Gas Chemical Co., Ltd. Tokyo Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸素と水素を反応媒体中で接触的に反応
させて過酸化水素を製造する方法に於いて、鉛、亜鉛、
ガリウム及びビスマスから選ばれた少なくとも一種の元
素で修飾した白金族金属触媒を用いることを特徴とする
過酸化水素の製造方法。
1. A method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in a reaction medium, wherein lead, zinc,
A method for producing hydrogen peroxide, which comprises using a platinum group metal catalyst modified with at least one element selected from gallium and bismuth.
【請求項2】 白金族金属がパラジウムである請求項1
記載の過酸化水素の製造方法。
2. The platinum group metal is palladium.
The method for producing hydrogen peroxide described above.
【請求項3】 白金族金属触媒が、鉛、亜鉛、ガリウム
及びビスマスから選ばれた少なくとも一種の元素と白金
族金属とが共に担体上に担持されている触媒であること
を特徴とする請求項1記載の過酸化水素の製造方法。
3. The platinum group metal catalyst is a catalyst in which at least one element selected from lead, zinc, gallium and bismuth and a platinum group metal are both supported on a carrier. 1. The method for producing hydrogen peroxide according to 1.
【請求項4】 反応媒体が酸性水溶液である請求項1記
載の過酸化水素の製造方法。
4. The method for producing hydrogen peroxide according to claim 1, wherein the reaction medium is an acidic aqueous solution.
【請求項5】 反応媒体が過酸化水素の安定剤を含む水
溶液である請求項1記載の過酸化水素の製造方法。
5. The method for producing hydrogen peroxide according to claim 1, wherein the reaction medium is an aqueous solution containing a stabilizer for hydrogen peroxide.
【請求項6】 過酸化水素の安定剤が、アミノトリ(メ
チレンホスホン酸)、1−ヒドロキシエチリデン−1,
1−ジホスホン酸、エチレンジアミンテトラ(メチレン
ホスホン酸)、ピロリン酸、およびこれらの塩からなる
群から選ばれた少なくとも一種である請求項5記載の過
酸化水素の製造方法。
6. A stabilizer of hydrogen peroxide is aminotri (methylenephosphonic acid), 1-hydroxyethylidene-1,
The method for producing hydrogen peroxide according to claim 5, which is at least one selected from the group consisting of 1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), pyrophosphoric acid, and salts thereof.
JP17530993A 1993-07-15 1993-07-15 Production of hydrogen peroxide Pending JPH0733410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17530993A JPH0733410A (en) 1993-07-15 1993-07-15 Production of hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17530993A JPH0733410A (en) 1993-07-15 1993-07-15 Production of hydrogen peroxide

Publications (1)

Publication Number Publication Date
JPH0733410A true JPH0733410A (en) 1995-02-03

Family

ID=15993844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17530993A Pending JPH0733410A (en) 1993-07-15 1993-07-15 Production of hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPH0733410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683577B1 (en) 2019-10-03 2020-06-16 King Saud University Method of producing hydrogen peroxide using nanostructured bismuth oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683577B1 (en) 2019-10-03 2020-06-16 King Saud University Method of producing hydrogen peroxide using nanostructured bismuth oxide
US11807948B2 (en) 2019-10-03 2023-11-07 King Saud University Method of producing hydrogen peroxide using nanostructured bismuth oxide
US11898255B2 (en) 2019-10-03 2024-02-13 King Saud University Method of producing hydrogen peroxide using nanostructured bismuth oxide

Similar Documents

Publication Publication Date Title
US5236692A (en) Method for producing hydrogen peroxide
US6284213B1 (en) Catalyst, process for the production of hydrogen peroxide and its use in oxidation processes
JPH05270806A (en) Production of hydrogen peroxide
US6630118B2 (en) Process for the direct synthesis of hydrogen peroxide
RU2486006C2 (en) Temperature-resistant catalyst for gas-phase oxidation of hydrogen chloride
US5011980A (en) Process for preparation of allyl acetate
US5378450A (en) Process for producing hydrogen peroxide
US5292496A (en) Process for the preparation of hydrogen peroxide
JP2015533344A (en) Direct synthesis of hydrogen peroxide
US3996165A (en) Process for preparing platinum metal catalysts
JPH0733410A (en) Production of hydrogen peroxide
JPH0769605A (en) Production of hydrogen peroxide
JPH0570107A (en) Production of hydrogen peroxide
JPH0769604A (en) Production of hydrogen peroxide
JPH04285003A (en) Production of hydrogen peroxide
JPH06191804A (en) Production of hydrogen peroxide
JP3748588B2 (en) Method for producing glycolic acid
JPH0543206A (en) Production of hydrogen peroxide
JPH04238802A (en) Production of hydrogen peroxide
US5002921A (en) Catalyzer for decomposing ammonia
JP2002505246A (en) Method for producing hydroxylammonium salt
JP2005272255A (en) Method for directly synthesizing hydrogen peroxide
JPH10139422A (en) Production of hydroxylammonium salt
JPH0338542A (en) Preparation of carbonyl compound
JPH08217699A (en) Production of cycloolefin