JPH08259473A - Production of cycloolefin - Google Patents

Production of cycloolefin

Info

Publication number
JPH08259473A
JPH08259473A JP6413595A JP6413595A JPH08259473A JP H08259473 A JPH08259473 A JP H08259473A JP 6413595 A JP6413595 A JP 6413595A JP 6413595 A JP6413595 A JP 6413595A JP H08259473 A JPH08259473 A JP H08259473A
Authority
JP
Japan
Prior art keywords
water
electric conductivity
ruthenium
reaction
monocyclic aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6413595A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
敏之 鈴木
Takeshi Matsuoka
毅 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP6413595A priority Critical patent/JPH08259473A/en
Publication of JPH08259473A publication Critical patent/JPH08259473A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium

Abstract

PURPOSE: To efficiently obtain a cycloolefin at a high reaction rate by making high-parity water having high electric conductivity exist in partially reducing a monocyclic aromatic hydrocarbon with hydrogen in the presence of a ruthenium catalyst. CONSTITUTION: A monocyclic aromatic hydrocarbon (e.g. benzene or toluene) is reduced with hydrogen in the presence of a ruthenium catalyst and water having <=1μm/cm, preferably <=0.5μs/cm electric conductivity. Metal ruthenium obtained by reducing a ruthenium compound such as ruthenium chloride is generally used as the ruthenium catalyst. The amount of the water added is preferably 0.1-5 pts.wt. based on 1 pt.wt. of the monocyclic aromatic hydrocarbon. In order to reduce electric conductivity of water, water is passed through a cationic exchange resin or an anionic exchange resin. The partial reduction reaction is preferably carried out at 100-200 deg.C under 0.5-10MPa hydrogen pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単環芳香族炭化水素を部
分還元してシクロオレフィン類を製造する方法、特にベ
ンゼンを部分還元してシクロヘキセンを製造する方法に
関する。シクロヘキセンは有機化学工業製品の中間原
料、例えば、ポリアミド原料などとして広く利用されて
いる。
TECHNICAL FIELD The present invention relates to a method for partially reducing monocyclic aromatic hydrocarbons to produce cycloolefins, and more particularly to a method for partially reducing benzene to produce cyclohexene. Cyclohexene is widely used as an intermediate raw material for organic chemical industrial products, for example, a polyamide raw material.

【0002】[0002]

【従来の技術】シクロオレフィン類、特にシクロヘキセ
ンの製造方法は様々な方法が知られており、その中で
も、単環芳香族炭化水素をルテニウム触媒と水の存在下
で、水素により部分還元する方法が最も一般的であり、
シクロヘキセンの選択率、収率を改良する方法として、
触媒成分や担体の種類、あるいは反応系への添加物とし
ての金属塩などについて検討した結果が多く報告されて
いる(特公昭56ー22850、特開昭57−1309
26、特公昭57−7607、特開昭61−4022
6、特開昭62−45544など)。
2. Description of the Related Art Various methods are known for producing cycloolefins, especially cyclohexene. Among them, a method for partially reducing a monocyclic aromatic hydrocarbon with hydrogen in the presence of a ruthenium catalyst and water is known. The most common,
As a method of improving the selectivity and yield of cyclohexene,
Many results have been reported regarding the types of catalyst components and carriers, or metal salts as additives to the reaction system (Japanese Patent Publication No. 56-22850 and Japanese Patent Publication No. 57-1309).
26, JP-B-57-7607, JP-A-61-4022
6, JP-A-62-45544).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法はいずれも何らかの問題点を抱えており、工業的に
は必ずしも有利な方法とは言えない。特に、反応系の触
媒や金属塩添加物などを改良しても必ずしも再現性のよ
い反応成績が得られなかったり、触媒の活性がなお不十
分であるなどの問題がある。
However, all the conventional methods have some problems, and are not necessarily industrially advantageous methods. In particular, there are problems such that reproducible reaction results cannot always be obtained even if the catalyst and metal salt additive in the reaction system are improved, and the activity of the catalyst is still insufficient.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上記の従
来技術の欠点を改良し、工業的により有利なシクロオレ
フィンの製造方法を提供すべく鋭意検討した結果、単環
芳香族炭化水素を部分還元反応の際の水の純度が反応成
績に特に敏感に影響していることを見いだした。さら
に、かかる水の純度を示す指標として電気伝導率を採用
することにより、反応成績の向上、安定が達成できるこ
とを見いだし本発明に到達した。
Means for Solving the Problems The present inventors have conducted extensive studies to improve the above-mentioned drawbacks of the prior art and to provide a more industrially advantageous method for producing cycloolefins. It was found that the water purity in the partial reduction reaction sensitively affects the reaction results. Further, they have found that by adopting electric conductivity as an index showing the purity of such water, the reaction results can be improved and stabilized, and the present invention has been accomplished.

【0005】すなわち、本発明の要旨は、単環芳香族炭
化水素をルテニウム触媒と水の存在下、水素により部分
還元するシクロオレフィンの製造方法において、単環芳
香族炭化水素をルテニウム触媒と水の存在下、水素によ
り部分還元するシクロオレフィンの製造方法において、
電気伝導率が1μS/cm以下である水を使用すること
を特徴とするシクロオレフィンの製造方法に存する。
That is, the gist of the present invention is to provide a method for producing a cycloolefin in which a monocyclic aromatic hydrocarbon is partially reduced with hydrogen in the presence of a ruthenium catalyst and water. In the presence of a method for producing a cycloolefin which is partially reduced by hydrogen,
A method for producing a cycloolefin is characterized in that water having an electric conductivity of 1 μS / cm or less is used.

【0006】以下、本発明を更に詳細に説明する。本発
明で原料として用いられる単環芳香族炭化水素として
は、ベンゼン、または、トルエン、キシレンなど、通
常、炭素数1〜4程度の低級アルキル基で置換されたベ
ンゼンである。
The present invention will be described in more detail below. The monocyclic aromatic hydrocarbon used as a raw material in the present invention is benzene, or benzene substituted with a lower alkyl group having about 1 to 4 carbon atoms, such as toluene and xylene.

【0007】ルテニウム触媒としては、種々のルテニウ
ム化合物を還元して得られる金属ルテニウムが用いられ
る。ルテニウム化合物としては特に制限されないが、例
えば、塩化物、臭化物、ヨウ化物、硝酸塩、硫酸塩、水
酸化物、酸化物、あるいは各種のルテニウムを含む錯体
などを用いることができる。還元法としては、水素ガス
による接触還元法、あるいはホルマリン、水素化ホウ素
ナトリウム、ヒドラジン等による化学還元法が用いられ
る。また、ルテニウム化合物の還元調製段階もしくは調
製後において他の金属、例えば、亜鉛、クロム、モリブ
テン、タングステン、マンガン、コバルト、ニッケル、
鉄、銅、金などを加えることによって得られるルテニウ
ムを主体とするものが用いられる。かかる他の金属を使
用する場合は、ルテニウム原子に対する原子比として通
常0.01〜20、好ましくは0.1〜10の範囲で選
択される。
As the ruthenium catalyst, metal ruthenium obtained by reducing various ruthenium compounds is used. The ruthenium compound is not particularly limited, but for example, chloride, bromide, iodide, nitrate, sulfate, hydroxide, oxide, or a complex containing various kinds of ruthenium can be used. As the reduction method, a catalytic reduction method using hydrogen gas or a chemical reduction method using formalin, sodium borohydride, hydrazine or the like is used. Further, other metals such as zinc, chromium, molybdenum, tungsten, manganese, cobalt, nickel in the reduction preparation step or after preparation of the ruthenium compound,
A material mainly composed of ruthenium obtained by adding iron, copper, gold or the like is used. When using such other metal, the atomic ratio to the ruthenium atom is usually selected in the range of 0.01 to 20, preferably 0.1 to 10.

【0008】ルテニウム触媒はルテニウムとして単独使
用してもよいが、担体に担持させて使用してもよい。担
体としては、シリカ、アルミナ、シリカーアルミナ、あ
るいは一般的な金属酸化物、複合酸化物、水酸化物、難
水溶性金属塩等が例示される。ルテニウムの担持方法と
しては、イオン交換法、吸着法、浸漬法、共沈法、乾固
法などが例示される。ルテニウムの担持量は、通常0.
001〜20重量%、好ましくは0.1〜10重量%で
ある。
The ruthenium catalyst may be used alone as ruthenium, or may be used by supporting it on a carrier. Examples of the carrier include silica, alumina, silica-alumina, general metal oxides, complex oxides, hydroxides, sparingly water-soluble metal salts and the like. Examples of the ruthenium loading method include an ion exchange method, an adsorption method, a dipping method, a coprecipitation method, and a dry solidification method. The amount of ruthenium supported is usually 0.
It is 001 to 20% by weight, preferably 0.1 to 10% by weight.

【0009】本発明の反応系には、水の存在が必要であ
る。水の添加量としては、単環芳香族炭化水素の通常
0.01〜10重量倍であり、好ましくは0.1〜5重
量倍である。水の量が少なすぎても、多すぎても水の存
在効果が減少し、更に、水が多すぎる場合は反応器を大
きくする必要があるので好ましくない。本発明の重要な
特徴は、反応系に供給する上記の水の電気伝導率が1μ
S/cm以下、好ましくは0.5μS/cm以下である
水を使用する点にある。かかる水を使用することによっ
て、反応系においてはより高い触媒の活性が発現する。
The reaction system of the present invention requires the presence of water. The amount of water added is usually 0.01 to 10 times by weight, preferably 0.1 to 5 times by weight that of the monocyclic aromatic hydrocarbon. If the amount of water is too small or too large, the effect of the presence of water is reduced, and if the amount of water is too large, it is necessary to enlarge the reactor, which is not preferable. An important feature of the present invention is that the electric conductivity of the water supplied to the reaction system is 1 μm.
The point is to use water of S / cm or less, preferably 0.5 μS / cm or less. By using such water, higher catalytic activity is exhibited in the reaction system.

【0010】一般的に工業的に使用する水は、工業用水
をイオン交換樹脂による処理を施し、ある程度は精製さ
れている。しかしながら、かかる工業用水も、原水の性
質や処理の程度により精製度が十分でなかったり、純度
の変動がある。しかしながら、工業的に大規模な実施が
見込まれる単環芳香族炭化水素の部分還元のような反応
において、工業用水レベルでの水の純度の影響までを詳
細に検討した報告はこれまでなく、今回、本発明者等が
明らかにした工業用水レベルでの反応成績への顕著な影
響は全くの予想外の現象であった。
In general, water used industrially is purified to some extent by treating industrial water with an ion exchange resin. However, such industrial water also has an insufficient degree of purification or changes in purity depending on the nature of the raw water and the degree of treatment. However, there are no reports of detailed studies up to the effect of water purity at the industrial water level in reactions such as partial reduction of monocyclic aromatic hydrocarbons that are expected to be carried out on a large scale industrially. However, the remarkable influence on the reaction results at the industrial water level revealed by the present inventors was a totally unexpected phenomenon.

【0011】水の純度評価としては、水中の種々の微量
不純物を各々定量して不純物と触媒活性との相関を求め
ることが理想であるが、実際には煩雑であり、必ずしも
現実的な水の品質管理方法とはいえない。そこで、本発
明においては、水の純度の指標として、触媒活性の間に
は大きな相関が認められる使用する水の電気伝導率を測
定する。電気伝導率の値は、水中のイオン性の不純物の
量に対応したものと考えられるが、使用する水の電気伝
導率が、前記の1μS/cm以下であれば、水中に仮に
特定イオンが微量存在していても触媒活性への影響はほ
とんどない。
In order to evaluate the purity of water, it is ideal to quantify various trace impurities in water to obtain the correlation between the impurities and the catalytic activity, but in reality, it is complicated and is not always realistic. Not a quality control method. Therefore, in the present invention, as an index of water purity, the electrical conductivity of water to be used, which has a large correlation between catalytic activities, is measured. The electric conductivity value is considered to correspond to the amount of ionic impurities in the water, but if the electric conductivity of the water used is 1 μS / cm or less, the trace amount of specific ions in the water is assumed. Even if it exists, it has almost no effect on the catalytic activity.

【0012】水の電気伝導率を小さくする方法は、カチ
オン交換樹脂、アニオン交換樹脂に水を通液することに
よって行うことできる。使用する交換樹脂の量、及び、
水の滞留時間を適宜設定することによって、かかる電気
伝導率の水を得ることができる。水の電気伝導率の測定
は、一般的な電気伝導率測定装置を使用すればよく、通
常はJIS K0552の超純水電気伝導率試験方法に
準拠して測定すればよい。
The method for reducing the electric conductivity of water can be carried out by passing water through a cation exchange resin or an anion exchange resin. Amount of exchange resin used, and
Water having such an electric conductivity can be obtained by appropriately setting the residence time of water. The electric conductivity of water may be measured by using a general electric conductivity measuring device, and usually, it may be measured in accordance with the ultrapure water electric conductivity test method of JIS K0552.

【0013】また、本発明の反応系において、従来、知
られた方法の如く金属塩を併用してもよい。金属塩の種
類としては、周期表のリチウム、ナトリウム、カリウム
等の1族金属、マグネシウム、カルシウム等の2族金属
(族番号はIUPAC無機化学命名法改訂版(198
9)による)、あるいは亜鉛、マンガン、コバルト等の
金属の硝酸塩、塩化物、硫酸塩、酢酸塩、燐酸塩などが
例示され、特に硫酸亜鉛を併用するのが好ましい。金属
塩の使用量は、反応系の水に対して、通常1×10-5
1重量倍、好ましくは1×10-4〜0.2重量倍程度で
ある。
Further, in the reaction system of the present invention, a metal salt may be used in combination as in a conventionally known method. The types of metal salts include metals of Group 1 such as lithium, sodium and potassium in the periodic table, and metals of Group 2 such as magnesium and calcium (the group number is IUPAC Inorganic Chemical Nomenclature Revised Edition (198
9)) or nitrates, chlorides, sulfates, acetates, phosphates and the like of metals such as zinc, manganese and cobalt, and zinc sulfate is particularly preferably used in combination. The amount of the metal salt used is usually 1 × 10 −5 to water in the reaction system.
It is about 1 times by weight, preferably about 1 × 10 −4 to 0.2 times by weight.

【0014】本発明の反応条件としては、反応温度は、
通常50〜250℃、好ましくは100〜220℃であ
る。250℃を超えるとシクロオレフィンの選択率が低
下し、50℃未満では反応速度が著しく低下し好ましく
ない。また、反応時の水素の圧力は、通常0.1〜20
MPa、好ましくは0.5〜10MPaの範囲から選ば
れる。20MPaを超えると工業的に不利であり、一
方、0.1MPa未満では反応速度が著しく低下し、設
備上不経済である。反応型式は特に限定されず回分式で
も連続式でもよい。
As the reaction conditions of the present invention, the reaction temperature is
It is usually 50 to 250 ° C, preferably 100 to 220 ° C. When it exceeds 250 ° C, the selectivity of cycloolefin is lowered, and when it is less than 50 ° C, the reaction rate is remarkably lowered, which is not preferable. The pressure of hydrogen during the reaction is usually 0.1 to 20.
MPa, preferably 0.5 to 10 MPa. When it exceeds 20 MPa, it is industrially disadvantageous, while when it is less than 0.1 MPa, the reaction rate remarkably decreases, which is uneconomical in terms of equipment. The reaction type is not particularly limited and may be a batch type or a continuous type.

【0015】本発明で使用する水の電気伝導率とは、反
応系に新たに供される純水の状態での電気伝導率を意味
し、回分式においては反応系の仕込む水の溶存酸素濃
度、連続式においては反応系に適宜新たに供給される水
の電気伝導率のことである。また、予め、水と触媒や金
属塩との混合スラリ−を調製し、該混合スラリーを反応
系に供する場合は、混合スラリーに用いた原料の水の電
気伝導率が本発明の対象となることはいうまでもない。
The electric conductivity of water used in the present invention means the electric conductivity of pure water newly supplied to the reaction system, and in the batch system, the dissolved oxygen concentration of water charged to the reaction system. In the continuous system, it means the electric conductivity of water newly supplied to the reaction system. Further, when a mixed slurry of water and a catalyst or a metal salt is prepared in advance and the mixed slurry is supplied to the reaction system, the electric conductivity of the raw material water used for the mixed slurry is the subject of the present invention. Needless to say.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいて説明する
が、本発明はその要旨を越えない限り実施例に限定され
るものではない。 実施例1 シリカに硝酸ジルコニウムを含浸後、1000℃で熱処
理したジルコニア修飾シリカ(重量比でZrO2:Si
2=1:19)を担体として用い、所定量のルテニウ
ムを含有する塩化ルテニウム水溶液及び所定量の亜鉛を
含有した塩化亜鉛水溶液と上記担体を混合し、60℃に
て1時間含浸後、ロ−タリ−エバポレ−タ−にて水を留
去し、乾燥させた。このようにして得られた0.5%R
u−0.5%Zn/担体を200℃にて3時間水素気流
中にて還元、活性化した。
EXAMPLES The present invention will be described below based on examples, but the present invention is not limited to the examples as long as the gist thereof is not exceeded. Example 1 Silica was impregnated with zirconium nitrate and then heat-treated at 1000 ° C. to obtain a zirconia-modified silica (weight ratio of ZrO 2 : Si
O 2 = 1: 19) was used as a carrier, the ruthenium chloride aqueous solution containing a predetermined amount of ruthenium and the zinc chloride aqueous solution containing a predetermined amount of zinc were mixed with the above carrier, and the mixture was impregnated at 60 ° C. for 1 hour. Water was distilled off with a tarry evaporator and dried. 0.5% R thus obtained
u-0.5% Zn / carrier was reduced and activated in a hydrogen stream at 200 ° C. for 3 hours.

【0017】一方、電気伝導率が25℃で約500μS
/cmである未精製の水をイオン交換樹脂によって精製
し、電気伝導率を0.22μS/cmとした。なお、水
の電気伝導率はJIS K0552に準拠して測定を実
施した。反応器内壁及び撹拌翼にチタン材質を使用し内
容積0.5Lの反応装置に、上記水150ml、硫酸亜
鉛7水和物18g、上記触媒3.75g及びベンゼン10
0mlを仕込んだ。更に、水素ガスを57Nl/hrの
流量で導入し、反応圧力5.0MPa、温度150℃と
し、高速攪拌を行いながら部分還元反応を行った。反応
開始40分後の反応成績を、反応液の油相をガスクロマ
トグラフにて分析することにより求めた結果を表−1に
示す。
On the other hand, the electric conductivity is about 500 μS at 25 ° C.
/ Cm of unpurified water was purified by an ion exchange resin to have an electric conductivity of 0.22 μS / cm. The electric conductivity of water was measured according to JIS K0552. 150 ml of the above water, 18 g of zinc sulfate heptahydrate, 3.75 g of the above catalyst and 10 parts of benzene were used in a reactor having a reactor inner wall and a stirring blade made of titanium and having an internal volume of 0.5 L.
0 ml was charged. Further, hydrogen gas was introduced at a flow rate of 57 Nl / hr, the reaction pressure was 5.0 MPa, the temperature was 150 ° C., and the partial reduction reaction was performed while performing high-speed stirring. The results of the reaction 40 minutes after the start of the reaction are shown in Table 1 by analyzing the oil phase of the reaction solution by gas chromatography.

【0018】実施例2 電気伝導率が25℃で約500μS/cmである未精製
の水をイオン交換樹脂によって精製し、電気伝導率を
0.09μS/cmとした。かかる水を使用した以外
は、実施例1記載の方法によってベンゼンの部分還元反
応を実施した。反応開始40分後の後の反応成績を表−
1に示す。
Example 2 Unpurified water having an electric conductivity of about 500 μS / cm at 25 ° C. was purified by an ion exchange resin to have an electric conductivity of 0.09 μS / cm. The partial reduction reaction of benzene was carried out by the method described in Example 1 except that such water was used. Shows the reaction results after 40 minutes from the start of the reaction.
It is shown in FIG.

【0019】比較例1 電気伝導率が25℃で約500μS/cmである未精製
の水をイオン交換樹脂によって精製し、電気伝導率を
1.9μS/cmとした。かかる水を使用した以外は、
実施例1記載の方法によってベンゼンの部分還元反応を
実施した。反応開始40分後の反応成績を表−1に示
す。
Comparative Example 1 Unpurified water having an electric conductivity of about 500 μS / cm at 25 ° C. was purified by an ion exchange resin to have an electric conductivity of 1.9 μS / cm. Other than using such water,
The partial reduction reaction of benzene was carried out by the method described in Example 1. The reaction results 40 minutes after the start of the reaction are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明の方法により、単環芳香族炭化水
素から高い反応速度で効率よくシクロオレフィンを製造
でき、工業上有用である。
INDUSTRIAL APPLICABILITY By the method of the present invention, a cycloolefin can be efficiently produced from a monocyclic aromatic hydrocarbon at a high reaction rate and is industrially useful.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単環芳香族炭化水素をルテニウム触媒と
水の存在下、水素により部分還元するシクロオレフィン
の製造方法において、電気伝導率が1μS/cm以下で
ある水を使用することを特徴とするシクロオレフィンの
製造方法。
1. A method for producing a cycloolefin in which a monocyclic aromatic hydrocarbon is partially reduced with hydrogen in the presence of a ruthenium catalyst and water, wherein water having an electric conductivity of 1 μS / cm or less is used. A method for producing a cycloolefin.
JP6413595A 1995-03-23 1995-03-23 Production of cycloolefin Pending JPH08259473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6413595A JPH08259473A (en) 1995-03-23 1995-03-23 Production of cycloolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6413595A JPH08259473A (en) 1995-03-23 1995-03-23 Production of cycloolefin

Publications (1)

Publication Number Publication Date
JPH08259473A true JPH08259473A (en) 1996-10-08

Family

ID=13249340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6413595A Pending JPH08259473A (en) 1995-03-23 1995-03-23 Production of cycloolefin

Country Status (1)

Country Link
JP (1) JPH08259473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947859B2 (en) 2005-08-26 2011-05-24 Asahi Kasei Chemicals Corporation Process for production of cycloolefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947859B2 (en) 2005-08-26 2011-05-24 Asahi Kasei Chemicals Corporation Process for production of cycloolefin

Similar Documents

Publication Publication Date Title
EP0214530B1 (en) A method for producing cycloolefins
EP0002824A1 (en) Rhenium containing hydroalkylation catalyst, process for its production and its use
US7947859B2 (en) Process for production of cycloolefin
US5973218A (en) Process for producing cycloolefin
JPH08259473A (en) Production of cycloolefin
JPS6021126B2 (en) Manufacturing method of cyclohexene
RU2095136C1 (en) Nickel hydrogenation catalyst on carrier and method of preparing modified nickel hydrogenation catalyst on carrier
JPH07106991B2 (en) Partial hydrogenation method
CN112138724B (en) Hydroalkylation catalyst and method thereof
JPS6362525B2 (en)
JPH02275830A (en) Production of aromatic alcohol
JPH0129174B2 (en)
CN112533697A (en) Iron-magnesium silica supported catalysts, method for the production thereof and use thereof
JPH08217699A (en) Production of cycloolefin
JP2925129B2 (en) Method for producing cycloolefin
JPH01160947A (en) Method for purifying dialkylaminoethanol
JPH08193037A (en) Production of cycloolefin
JPS6281331A (en) Partial hydrogenation of monocyclic aromatic hydrocarbon
JPS60184031A (en) Production of cycloolefin
JPH0259809B2 (en)
JP4033980B2 (en) Method for producing cycloolefin
JP3125913B2 (en) Method for producing cycloolefin
KR20220123085A (en) Method for reactivation of noble metal-iron catalyst and carrying out chemical reaction
JPS59186929A (en) Production of cycloolefin
JP2646986B2 (en) Method for producing cycloolefin