JPH0542608B2 - - Google Patents

Info

Publication number
JPH0542608B2
JPH0542608B2 JP59058769A JP5876984A JPH0542608B2 JP H0542608 B2 JPH0542608 B2 JP H0542608B2 JP 59058769 A JP59058769 A JP 59058769A JP 5876984 A JP5876984 A JP 5876984A JP H0542608 B2 JPH0542608 B2 JP H0542608B2
Authority
JP
Japan
Prior art keywords
gauge
cantilever
pressure
resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59058769A
Other languages
Japanese (ja)
Other versions
JPS60201226A (en
Inventor
Toshio Aga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP5876984A priority Critical patent/JPS60201226A/en
Publication of JPS60201226A publication Critical patent/JPS60201226A/en
Publication of JPH0542608B2 publication Critical patent/JPH0542608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 <発明の属する技術分野> 本発明は、半導体のピエゾ抵抗効果を利用した
圧力センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field to Which the Invention Pertains> The present invention relates to a pressure sensor that utilizes the piezoresistive effect of a semiconductor.

<従来技術> 一般に半導体のピエゾ抵抗効果を利用した圧力
センサは、例えばシリコンからなる単結晶半導体
基板にエツチングで受圧ダイヤフラムを形成し、
かつ受圧ダイヤフラム上に拡散技術等によりゲー
ジ抵抗を設け、受圧ダイヤフラムの両面にかかる
圧力差に基づく応力をゲージ抵抗に作用させ、ゲ
ージ抵抗の抵抗値の変化から圧力差を検出するも
のである。通常は、受圧ダイヤフラム上に2個も
しくは4個のゲージ抵抗を設け、ハーフブリツジ
あるいはフルブリツジを構成し、ダイヤフラムに
かかる圧力差を表わす信号を得ている。ところ
で、この種の圧力センサにおいては、ゲージ抵抗
の温度依存性が大きいため、周囲温度の変化によ
る影響を受け、出力が変動する欠点がある。
<Prior art> Generally, a pressure sensor that utilizes the piezoresistance effect of a semiconductor has a pressure receiving diaphragm formed by etching on a single crystal semiconductor substrate made of silicon, for example.
A gauge resistor is provided on the pressure-receiving diaphragm using diffusion technology or the like, stress based on the pressure difference applied to both sides of the pressure-receiving diaphragm is applied to the gauge resistor, and the pressure difference is detected from the change in the resistance value of the gauge resistor. Usually, two or four gauge resistors are provided on the pressure receiving diaphragm to form a half bridge or full bridge to obtain a signal representing the pressure difference across the diaphragm. However, in this type of pressure sensor, the gauge resistance has a large temperature dependence, so it is affected by changes in ambient temperature and has the disadvantage that the output fluctuates.

よつて一般には、サーミスタ,ポジスタ,トラ
ンジスタ等の感温素子を用い、温度変化に応じて
ブリツジの電源電圧を制御することによつて、出
力変動の補償を行つている。この方法で精度よく
補償を行うには、ゲージ抵抗の温度特性と補償用
感温素子の温度特性を一致させる必要があるが、
しかしながらこれらを一致させることは容易でな
く、高精度な補償は困難であつた。しかもこのよ
うな補償のための調整工数は、恒温槽を使用し、
ゲージ抵抗の温度特性および補償用感温素子の温
度特性をいちいち測定して行わなければならない
等、圧力センサの全組立工数の半分近くを占めて
いる。
Therefore, output fluctuations are generally compensated for by controlling the power supply voltage of the bridge according to temperature changes using a temperature sensing element such as a thermistor, posistor, or transistor. In order to perform accurate compensation using this method, it is necessary to match the temperature characteristics of the gauge resistance and the temperature sensing element for compensation.
However, it is not easy to match these, and highly accurate compensation is difficult. Moreover, the adjustment man-hours required for such compensation are reduced by using a constant temperature bath.
The temperature characteristics of the gauge resistance and the compensation temperature sensing element must be measured one by one, which accounts for nearly half of the total assembly man-hours of the pressure sensor.

また、基板の固定部に温度補償用ゲージ抵抗を
設けて、測定値の温度補償を行う事が行われてい
るが、ゲージ抵抗のピエゾ抵抗係数の温度係数β
まではキヤンセルできない。
In addition, a gauge resistor for temperature compensation is provided on the fixed part of the board to compensate for the temperature of the measured value, but the temperature coefficient β of the piezoresistance coefficient of the gauge resistor is
Cannot be canceled until then.

此のため、供給電源電圧に−βの温度係数を持
たせる等の工夫が必要となる。
For this reason, it is necessary to take measures such as giving the power supply voltage a temperature coefficient of -β.

<発明の目的> 本発明は、周囲温度の変化による影響を有効に
補償できる構造の圧力センサを実現するにある。
<Object of the Invention> The present invention is directed to realizing a pressure sensor having a structure that can effectively compensate for the influence of changes in ambient temperature.

<問題を解決するための手段> この目的を達成するために、本発明は、単結晶
半導体基板に設けられた受圧ダイアフラムとカン
チレバーと、該受圧ダイアフラムとカンチレバー
とにそれぞれ設けられ該受圧ダイアフラムとカン
チレバーのいずれか一方には少なくとも2個設け
られたゲージ抵抗と、前記カンチレバーに所定応
力を生ずるように該カンチレバーにあらかじめ所
定変位が与えられて前記単結晶半導体基板が固定
される基台と、前記これらの3個のゲージ抵抗の
抵抗値から得られる測定圧とゲージ抵抗の温度係
数とピエゾ抵抗係数の温度係数に関係する3個の
関係式からゲージ抵抗の温度係数とピエゾ抵抗係
数の温度係数が演算消去され測定圧を演算する演
算部とを具備する圧力センサを構成したものであ
る。
<Means for Solving the Problem> In order to achieve this object, the present invention provides a pressure receiving diaphragm and a cantilever provided on a single crystal semiconductor substrate, and a pressure receiving diaphragm and a cantilever provided on the pressure receiving diaphragm and the cantilever, respectively. at least two gauge resistors provided on either one of them; a base to which the single crystal semiconductor substrate is fixed by applying a predetermined displacement to the cantilever in advance so as to generate a predetermined stress on the cantilever; The temperature coefficient of the gauge resistance and the temperature coefficient of the piezo resistance coefficient are calculated from the three relational expressions related to the measured pressure obtained from the resistance values of the three gauge resistances, the temperature coefficient of the gauge resistance, and the temperature coefficient of the piezo resistance coefficient. The pressure sensor is configured to include a calculation section that calculates the measured pressure.

<実施例> 第1図は本発明圧力センサの一実施例を示す斜
視図、第2図は第1図の断面図である。両図にお
いて、10は面方位が(100)のシリコン等の単
結晶半導体基板、11は基板10に異方性エツチ
ングで形成された矩形の受圧ダイヤフラム、12
は基板10に異方性エツチングで形成されたカン
チレバー、13は基板10の固定部である。そし
て第3図に示すようにカンチレバー12の先端部
12aと固定部13との間にはわずかな初期段差
δ(例えば4000Å)が設けられている。21,2
2,23,24は各々拡散抵抗等のゲージ抵抗
で、21,22は受圧ダイヤフラム11の表面に
その長手方向(電流方向)が直交し、かつ近接し
て形成されており、23,24はカンチレバー1
2の表面にその長手方向が直交し、かつ近接して
形成されている。30はシリコンあるいはガラス
等の基台で、単結晶半導体基板10の固定部13
の裏面が陽極接合あるいは低融点ガラス接合など
により固定されている。この基板10と基台30
の接合により、カンチレバー12には初期段差に
基づく一定変位δがあらかじめ与えられる。また
基台30には受圧ダイヤフラム11の裏面に基準
圧P0(例えば大気圧)を与えるための開口31が
設けられている。これにより受圧ダイヤフラム1
1は、その表面に加わる被測定圧PM(基準圧P0
らの差)に感応する。なおカンチレバー12は被
測定圧PMに対して釣り合つており、またその先
端部12aは基台30とは接合されていない。
<Example> FIG. 1 is a perspective view showing an example of the pressure sensor of the present invention, and FIG. 2 is a sectional view of FIG. 1. In both figures, 10 is a single-crystal semiconductor substrate such as silicon having a (100) plane orientation, 11 is a rectangular pressure-receiving diaphragm formed on the substrate 10 by anisotropic etching, and 12
1 is a cantilever formed on the substrate 10 by anisotropic etching, and 13 is a fixing portion of the substrate 10. As shown in FIG. 3, a slight initial step δ (for example, 4000 Å) is provided between the tip 12 a of the cantilever 12 and the fixed portion 13 . 21,2
2, 23, 24 are gauge resistors such as diffused resistors, 21, 22 are formed close to each other with their longitudinal direction (current direction) perpendicular to the surface of the pressure receiving diaphragm 11, and 23, 24 are cantilevers. 1
The longitudinal direction thereof is perpendicular to the surface of 2 and is formed close to it. Reference numeral 30 denotes a base made of silicon, glass, etc., on which the fixing part 13 of the single crystal semiconductor substrate 10 is mounted.
The back side of the plate is fixed by anodic bonding or low melting point glass bonding. This board 10 and base 30
By joining, a constant displacement δ based on the initial step is given to the cantilever 12 in advance. Further, the base 30 is provided with an opening 31 for applying a reference pressure P 0 (for example, atmospheric pressure) to the back surface of the pressure receiving diaphragm 11. As a result, the pressure receiving diaphragm 1
1 is sensitive to the measured pressure P M (difference from the reference pressure P 0 ) applied to its surface. Note that the cantilever 12 is balanced with respect to the pressure to be measured P M , and its tip 12 a is not joined to the base 30 .

このように構成した本発明圧力センサにおい
て、まず受圧ダイヤフラム11に設けたゲージ抵
抗21,22には、被測定圧PMに応じてゲージ
抵抗21の長手方向に応力σMXが作用し、直角方
向に応力σMYが作用する。ゲージ抵抗21,22
の抵抗値RM1,RM2は、基準温度t0のときの初期
抵抗をR0,R0の抵抗温度係数をα、基準温度t0
のときの長手方向および直角方向のピエゾ抵抗係
数をπl0,πt0、ピエゾ抵抗係数の温度係数数をβ、
基準温度t0からの温度変化をtとするとそれぞれ
次式で与えられる。
In the pressure sensor of the present invention configured as described above, first, a stress σ MX acts on the gauge resistors 21 and 22 provided on the pressure receiving diaphragm 11 in the longitudinal direction of the gauge resistor 21 in accordance with the measured pressure P M , and a stress σ MX acts in the vertical direction. A stress σ MY acts on . Gauge resistance 21, 22
The resistance values R M1 and R M2 are R 0 the initial resistance at the reference temperature t 0 , α the resistance temperature coefficient of R 0 , and α the resistance temperature coefficient at the reference temperature t 0
When _
Letting t be the temperature change from the reference temperature t0 , each is given by the following equation.

RM1=R0(1+αt) {1+(πl0σMX+πt0σMY)(1+βt)}(1) RM2=R0(1+αt) {1+(πl0σMY+πt0σMX)(1+βt)}(2) そして、受圧ダイヤフラム11の構造やゲージ抵
抗21,22の配置位置で決まる定数をk1,k2
すると、次式の関係が成立する。
R M1 = R 0 (1+αt) {1+(π l0 σ MXt0 σ MY ) (1+βt)}(1) R M2 = R 0 (1+αt) {1+(π l0 σ MYt0 σ MX ) (1+βt) }(2) Then, if constants determined by the structure of the pressure receiving diaphragm 11 and the arrangement positions of the gauge resistors 21 and 22 are k 1 and k 2 , then the following relationship holds true.

πl0σMX+πt0σMY=k1PM (3) πl0σMY+πt0σMX=k2PM (4) 次にカンチレバー12の表面に先端からの距離
l1に設けたゲージ抵抗23,24には、初期段差
に基づく一定変位δによつて次式に示す如き応力
σSが作用する。
π l0 σ MXt0 σ MY =k 1 P M (3) π l0 σ MYt0 σ MX =k 2 P M (4) Next, the distance from the tip to the surface of the cantilever 12 is
A stress σ S as shown in the following equation acts on the gauge resistors 23 and 24 provided at l 1 due to a constant displacement δ based on the initial step difference.

σS=3/2・dE/l3・δ・l1 (4) ここで、d:カンチレバーの厚さ l:カンチレバーの有効長 E:ヤング率 この応σSの温度係数は、単結晶半導体基板10
のヤング率の温度係数でほぼ決まり、基板10が
シリコンの場合約43×10-6/℃と充分に小さく、
σSは周囲温度の変化の影響をほとんど受けない。
またカンチレバー12は被測定圧PMに対して釣
り合つており、σSはPMによつても変化しない。
すなわち、σSは周囲温度の変化や被測定圧の変化
による影響を受けない基準応力となる。したがつ
てゲージ抵抗23,24の抵抗値RS1,RS2は基準
応力σSに基づいた値となり、次式で与えられる。
σ S =3/2・dE/l 3・δ・l 1 (4) Here, d: Cantilever thickness l: Cantilever effective length E: Young's modulus The temperature coefficient of this response σ S is Substrate 10
It is almost determined by the temperature coefficient of Young's modulus of , and when the substrate 10 is silicon, it is sufficiently small at about 43
σ S is hardly affected by changes in ambient temperature.
Furthermore, the cantilever 12 is balanced against the measured pressure P M , and σ S does not change even with P M.
That is, σ S becomes a reference stress that is not affected by changes in ambient temperature or changes in measured pressure. Therefore, the resistance values R S1 and R S2 of the gauge resistors 23 and 24 are values based on the standard stress σ S and are given by the following equations.

RS1=R0(1+αt){1+πl0σS(1+βt)} (6) RS2=R0(1+αt){1+πt0σS(1+βt)} (7) よつて、ゲージ抵抗21,22,23,24の
抵抗値RM1,RM2,RS1,RS2に基づいて次式の演
算を行えば、 RM1−RM2/RS1−RS2=kPM (8) ここで、k=k1−k2/(πl0−πt0)σS となり、温度係数αとβの項を除去できる。すな
わち、周囲温度の変化による影響を受けることな
く、高精度に被測定圧PMを表わす信号を得るこ
とができる。しかも恒温槽の使用によるゲージ抵
抗の温度特性の測定も不要となり、単に基準応力
σSのチエツクだけでよいため圧力センサの組立工
数の削減もできる。
R S1 = R 0 (1+αt) {1+π l0 σ S (1+βt)} (6) R S2 = R 0 (1+αt) {1+π t0 σ S (1+βt)} (7) Therefore, gauge resistance 21, 22, 23 , 24 resistance values R M1 , R M2 , R S1 , R S2 based on the following equation, R M1 − R M2 / R S1 − R S2 = kP M (8) Here, k=k 1 −k 2 /(π l0 −π t0S , and the terms of temperature coefficients α and β can be removed. That is, a signal representing the pressure to be measured P M can be obtained with high accuracy without being affected by changes in ambient temperature. Moreover, it is no longer necessary to measure the temperature characteristics of the gauge resistance by using a constant temperature bath, and it is only necessary to check the standard stress σ S , thereby reducing the number of steps required to assemble the pressure sensor.

また、単結晶半導体基板10と基台30との接
合で生ずる残留応力などの外乱力については、通
常基板10の厚さや接合幅を大きくしてその影響
を小さくしている。しかも外乱力による応力はゲ
ージ抵抗21と22および23と24にはそれぞ
れ同じように作用するため、これによるゲージ抵
抗21と22および23と24の抵抗値変化はそ
れぞれ等しく、(8)式の演算を行うことによつて外
乱力による影響も打ち消すことができる。
Furthermore, with regard to disturbance forces such as residual stress caused by the bonding between the single crystal semiconductor substrate 10 and the base 30, the influence thereof is generally reduced by increasing the thickness of the substrate 10 and the bonding width. Furthermore, since the stress caused by the disturbance force acts on the gauge resistors 21 and 22 and 23 and 24 in the same way, the resulting changes in the resistance values of the gauge resistors 21 and 22 and 23 and 24 are the same, and the calculation of equation (8) By doing so, the effects of disturbance forces can also be canceled out.

第4図は第1図および第2図の圧力センサとと
もに用いる信号処理回路の一例を示す接続図であ
る。第4図の信号処理回路40において、41a
41b,41c,41dは各々センサアンプで、セ
ンサアンプ41aの帰還回路にゲージ抵抗21が、
センサアンプ41bの帰還回路にゲージ抵抗22
が、センサアンプ41cの帰還回路にゲージ抵抗
23が、センサアンプ41dの帰還回路にゲージ
抵抗24がそれぞれ接続されている。42は誤差
増幅器で、その出力ECが抵抗値の等しい抵抗4
a,43b,43c,43dをそれぞれ介してセン
サアンプ41a,41b,41c,41dの入力に加
えられている。44,45は各々減算回路であ
る。減算回路44は演算増幅器44aと抵抗値の
等しい4個の演算抵抗44b,44c,44d,4
eからなり、センサアンプ41cの出力ES1とセ
ンサアンプ41dの出力ES2との差ES1−ES2)を演
算して、誤差増幅器42の入力端子(−)に抵抗
42aを介して加える。減算回路45は演算増幅
器45aと抵抗値の等しい4個の演算抵抗45b
45c,45d,45eからなり、センサアンプ4
aの出力EM1とセンサアンプ41bの出力EM2との
差(EM1−EM2)を演算して、出力端子OUTに出
力電圧EOとして与える。46は基準電圧源で、
一定電圧ERを誤差増幅器42の入力端子(+)
に与える。このような構成の信号処理回路におい
ては、抵抗43a,43b,43c,43dの抵抗値
を等しく選び、その値をRCとすると各センサア
ンプ41a,41b,41c,41dの出力EM1
EM2,ES1,ES2はそれぞれ次式で与えられる。
FIG. 4 is a connection diagram showing an example of a signal processing circuit used with the pressure sensors of FIGS. 1 and 2. FIG. In the signal processing circuit 40 of FIG. 4, 41 a ,
41 b , 41 c , and 41 d are sensor amplifiers, and a gauge resistor 21 is connected to the feedback circuit of the sensor amplifier 41 a .
Gauge resistor 22 is added to the feedback circuit of sensor amplifier 41 b .
However, a gauge resistor 23 is connected to the feedback circuit of the sensor amplifier 41c , and a gauge resistor 24 is connected to the feedback circuit of the sensor amplifier 41d . 42 is an error amplifier whose output E C is connected to the resistor 4 with the same resistance value.
3 a , 43 b , 43 c , and 43 d to the inputs of sensor amplifiers 41 a , 41 b , 41 c , and 41 d , respectively. 44 and 45 are subtraction circuits, respectively. The subtraction circuit 44 includes four operational resistors 44 b , 44 c , 44 d , 4 having the same resistance value as the operational amplifier 44 a.
4 e , calculate the difference E S1 −E S2 between the output E S1 of the sensor amplifier 41 c and the output E S2 of the sensor amplifier 41 d , and connect the resistor 42 a to the input terminal (-) of the error amplifier 42. Add via. The subtraction circuit 45 includes an operational amplifier 45 a and four operational resistors 45 b having the same resistance value.
45c , 45d , 45e , sensor amplifier 4
The difference (E M1 - E M2 ) between the output E M1 of the sensor amplifier 1 a and the output E M2 of the sensor amplifier 41 b is calculated and applied to the output terminal OUT as an output voltage E O. 46 is a reference voltage source;
Connect the constant voltage E R to the input terminal (+) of the error amplifier 42
give to In the signal processing circuit having such a configuration, if the resistance values of the resistors 43 a , 43 b , 43 c , and 43 d are selected to be equal and that value is R C , then each of the sensor amplifiers 41 a , 41 b , 41 c , 41 The output of d E M1 ,
E M2 , E S1 , and E S2 are each given by the following equations.

EM1=−RM1/RCEC EM2=−RM2/RCEC ES1=−RS1/RCEC ES2=−RS2/RCEC (9) そして、誤差増幅器42により減算回路44の
出力(ES1−ES2)が基準電圧ERと等しくなるよう
に、センサアンプ41a,41b,41c,41d
入力電圧ECが制御されるので、次式の関係が成
立する。
E M1 = −R M1 /R C E C E M2 = −R M2 /R C E C E S1 = −R S1 /R C E C E S2 = −R S2 /R C E C (9) And the error Since the input voltage E C of the sensor amplifiers 41 a , 41 b , 41 c , and 41 d is controlled by the amplifier 42 so that the output (E S1 −E S2 ) of the subtraction circuit 44 becomes equal to the reference voltage E R , The following relationship holds true.

1/RC(RS1−RS2)EC=ER (10) よつて、減算回路45の出力端に得られる出力電
圧EO(=EM1−EM2)は、 EO=RM1−RM2/RS1−RS2ER (11) となり、(8)式の演算を実行でき、周囲温度の変化
の影響を受けることなく、被測定圧PMを表わす
信号電圧EOを得ることができる。なお信号処理
回路としては、各ゲージ抵抗21,22,23,
24に一定電流を流し、各ゲージ抵抗の電圧降下
をそれぞれA/D変換器でデイジタル量に変換後
マイクロコンピユータで、(8)式に相当するデイジ
タル演算を行う等種々の構成のものを用いること
ができる。さらに信号処理回路40を単結晶半導
体基板10上に形成すれば、S/N向上、小形化
を図ることができる。
1/R C (R S1 −R S2 )E C =E R (10) Therefore, the output voltage E O (=E M1 −E M2 ) obtained at the output terminal of the subtraction circuit 45 is E O =R M1 −R M2 /R S1 −R S2 E R (11) Therefore, the calculation of equation (8) can be executed, and the signal voltage E O representing the measured pressure P M can be obtained without being affected by changes in the ambient temperature. be able to. Note that the signal processing circuit includes each gauge resistor 21, 22, 23,
24, the voltage drop of each gauge resistance is converted into a digital quantity by an A/D converter, and then a microcomputer performs digital calculations corresponding to equation (8). I can do it. Furthermore, by forming the signal processing circuit 40 on the single crystal semiconductor substrate 10, it is possible to improve the S/N and reduce the size.

なお、外乱力による各ゲージ抵抗21〜24の
抵抗値変化が等しい場合には、ゲージ抵抗22お
よびゲージ抵抗24のいずれか一方を省略して次
式により被測定圧PMを算出するようにしてもよ
い。
In addition, if the change in resistance value of each gauge resistor 21 to 24 due to disturbance force is equal, either one of gauge resistor 22 and gauge resistor 24 is omitted and the measured pressure P M is calculated by the following formula. Good too.

(RM1−RS2)+k3(RS1−RS2)/k1/k1−k2(RS1−R
S2)=kPM(12) (RM1−RM2)(1+k3)/(RS1−RM2)+k2/k1−k2
(RM1−RM2)=kPM(13) ここで、k3=πt0/πl0−πt0 第5図および第6図は本発明圧力センサの他の
実施例の断面図である。第5図および第6図にお
いて第2図の実施例と異るところは、カンチレバ
ー12の先端部12aの長さhを短かくした点で
ある。これはカンチレバー12の先端部12a
基台30との接触部には、通常マサツが作用しな
いように両者の材料の選択、製作を行つている
が、しかしマサツが存在すると両者の熱膨脹係数
の差により温度に基づくマサツ力Fが発生し、カ
ンチレバー12の先端に一定モーメントM(=
Fh)が生ずる。その結果この一定モーメントM
による応力がゲージ抵抗23,24に作用し、ゲ
ージ抵抗23,24の抵抗値RS1,RS2を変動させ
る。そこで、カンチレバー12の先端部12a
長さhを短かくして、接触部にマサツが存在して
も一定モーメントMを小さくおさえ、RS1,RS2
変動を充分に小さくしたものである。なおカンチ
レバー12の先端部12aと基台30とを接合し
て、マサツ力による影響を受けないようにしても
よい。
(R M1 −R S2 )+k 3 (R S1 −R S2 )/k 1 /k 1 −k 2 (R S1 −R
S2 )=kP M (12) (R M1 − R M2 ) (1+k 3 )/(R S1 − R M2 )+k 2 /k 1 −k 2
(R M1 −R M2 )=kP M (13) Here, k 3t0l0 −π t0 FIGS. 5 and 6 are cross-sectional views of other embodiments of the pressure sensor of the present invention. 5 and 6 differ from the embodiment shown in FIG. 2 in that the length h of the tip end 12a of the cantilever 12 is shortened. This is because the materials of the cantilever 12's tip 12a and the base 30 are normally selected and manufactured so that no bulges act on the contact area, but if bulges are present, the coefficient of thermal expansion of the two will decrease. Due to the difference, a massing force F based on temperature is generated, and a constant moment M (=
Fh) occurs. As a result, this constant moment M
The stress caused by this acts on the gauge resistors 23 and 24, and changes the resistance values R S1 and R S2 of the gauge resistors 23 and 24. Therefore, the length h of the tip portion 12a of the cantilever 12 is shortened to keep the constant moment M small even if there is a lump in the contact portion, and the fluctuations in R S1 and R S2 are made sufficiently small. Note that the tip 12 a of the cantilever 12 and the base 30 may be joined to avoid being affected by the massing force.

第7図は本発明圧力センサの他の実施例の斜視
図である。第7図において、第1図の実施例と異
るところは、カンチレバー12の先端から距離l2
の位置(先端部12a附近)に長手方向が直交し、
かつ近接して形成されたゲージ抵抗25,26を
設けて、演算により、カンチレバー12の先端部
12aと基台30との接触部のマサツによる一定
モーメントMの影響を除去できるようにした点で
ある。すなわちゲージ抵抗23,24,25,2
6の抵抗値RS1,RS2,RS3,RS4は、カンチレバー
12の先端に作用する一定モーメントMによる応
力をσN(=6M/bd2)とすると、それぞれ次式で
与えられる。
FIG. 7 is a perspective view of another embodiment of the pressure sensor of the present invention. 7, the difference from the embodiment shown in FIG. 1 is that the distance l 2 from the tip of the cantilever 12
The longitudinal direction is perpendicular to the position (near the tip 12 a ),
In addition, by providing the gauge resistors 25 and 26 formed close to each other, it is possible to remove the influence of the constant moment M due to the stiffness of the contact portion between the tip 12 a of the cantilever 12 and the base 30 by calculation. be. That is, gauge resistances 23, 24, 25, 2
The resistance values R S1 , R S2 , R S3 , and R S4 of No. 6 are given by the following equations, respectively, where σ N (=6M/bd 2 ) is the stress due to the constant moment M acting on the tip of the cantilever 12.

RS1=R0(1+αt) {1+πl0(σS1+σN)(1+βt)}(14) RS2=R0(1+αt) {1+πt0(σS1+σN)(1+βt)}(15) RS3=R0(1+αt) {1+πl0(σS2+σN)(1+βt)}(16) RS4=R0(1+αt) {1+πt0(σS2+σN)(1+βt)}(17) ここで、σS1=3/2・dE/l3・δ・l1 σS2=3/2・dE/l3・δ・l2 よつて、ゲージ抵抗21,22,23,24,2
5,26の抵抗値RM1,RM2,RS1,RS2,RS3
RS4に基づいて次式の演算を行えば、 RM1−RM2/(RS1−RS2)−(RS3−RS4)=kPM (18) ここで、k=k1−k2/(πl0−πt0)σS,σS=σS1
−σS2 となり、一定モーメントMによる影響を除去でき
る。なお、外乱力によるゲージ抵抗23,24,
25,26の抵抗値変化が等しい場合には、ゲー
ジ抵抗24と26を省略することもできる。また
カンチレバー12の先端部12aと基台30とを
接合してもよい。
R S1 = R 0 (1+αt) {1+π l0S1N ) (1+βt)}(14) R S2 = R 0 (1+αt) {1+π t0S1N )(1+βt)}(15) R S3 = R 0 (1+αt) {1+π l0S2N ) (1+βt)}(16) R S4 = R 0 (1+αt) {1+π t0S2N )(1+βt)}(17) Here, σ S1 = 3/2・dE/l 3・δ・l 1 σ S2 = 3/2・dE/l 3・δ・l 2 Therefore, gauge resistance 21, 22, 23, 24, 2
5, 26 resistance values R M1 , R M2 , R S1 , R S2 , R S3 ,
If the following formula is calculated based on R S4 , R M1 − R M2 / (R S1 − R S2 ) − (R S3 − R S4 )=kP M (18) Here, k=k 1k 2 /(π l0 −π t0SSS1
−σ S2 , and the influence of the constant moment M can be removed. In addition, the gauge resistance 23, 24, due to disturbance force
If the changes in resistance values of 25 and 26 are equal, the gauge resistors 24 and 26 can be omitted. Further, the tip portion 12 a of the cantilever 12 and the base 30 may be joined.

なお上述では、単結晶半導体基板10として面
方位が(100)のものを用いる場合を例示したが、
面方位(110)のものでも、(111)のものでもよ
い。また受圧ダイヤフラム11の形状として矩形
のものを例示したが、円形のものであつてもよい
ことは言うまでもない。また、カンチレバー12
の形状としては、第8図の斜視図に示すように、
その幅bが小さいものであつてもよい。さらにゲ
ージ抵抗21,22(および23,24)とし
て、第9図に示すように一体的に形成したものを
用いれば、より特性を揃えることができ、補償精
度を上げ得る。さらにゲージ抵抗21と22を被
測定圧PMに基づく応力が差動的に変化する受圧
ダイヤフラムの2点に別々に設ける場合には、必
らずしも直交させる必要はない。
Note that in the above description, the case where a single crystal semiconductor substrate 10 having a plane orientation of (100) is used as an example,
It may be one with plane orientation (110) or (111). Further, although the shape of the pressure receiving diaphragm 11 is rectangular, it goes without saying that it may be circular. In addition, cantilever 12
As shown in the perspective view of Fig. 8, the shape of
The width b may be small. Furthermore, if the gauge resistors 21, 22 (and 23, 24) are integrally formed as shown in FIG. 9, the characteristics can be made more uniform and the compensation accuracy can be improved. Furthermore, when the gauge resistors 21 and 22 are separately provided at two points on the pressure receiving diaphragm where the stress based on the measured pressure P M differentially changes, it is not necessary that they be orthogonal to each other.

<発明の効果> 本発明においては、 (1) 受圧ダイアフラムとカンチレバーのいずれか
一方には少なくとも2個のゲージ抵抗が設けら
れたので、これら少なくとも3個のゲージ抵抗
値から、測定圧PMと、ゲージ抵抗の温度係数
αと、ピエゾ抵抗係数の温度係数βに関係する
3個の関係式が得られるので、ゲージ抵抗の温
度係数αと、ピエゾ抵抗係数の温度係数βが、
演算部により演算消去でき、周囲温度の変化に
よる影響を受けることなく、高精度に測定圧を
測定することができる。
<Effects of the Invention> In the present invention, (1) Since at least two gauge resistors are provided on either the pressure receiving diaphragm or the cantilever, the measured pressure P M can be determined from these at least three gauge resistance values. , three relational expressions related to the temperature coefficient α of the gauge resistance and the temperature coefficient β of the piezoresistance coefficient are obtained, so the temperature coefficient α of the gauge resistance and the temperature coefficient β of the piezoresistance coefficient are
Calculations can be erased by the arithmetic unit, and measurement pressure can be measured with high precision without being affected by changes in ambient temperature.

(2) 周囲温度の変化による影響を受けることがな
いため、ゲージ抵抗の温度特性を、恒温槽を使
用していちいち測定する必要もなく、組み立て
工数の大幅な削減ができる。
(2) Since it is not affected by changes in ambient temperature, there is no need to measure the temperature characteristics of the gauge resistance using a constant temperature bath, which can significantly reduce assembly man-hours.

(3) 受圧ダイアフラムの変位の影響をどうしても
受けやすい単結晶半導体基板の固定部に、補償
用感温度素子のゲージ抵抗を配置しないように
したので、より高精度に測定圧を測定すること
ができる。
(3) Since the gauge resistor of the compensation temperature-sensitive element is not placed in the fixed part of the single-crystal semiconductor substrate, which is susceptible to the effects of displacement of the pressure-receiving diaphragm, the measured pressure can be measured with higher accuracy. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明圧力センサの一実施例を示す斜
視図、第2図はその断面図、第3図は本発明圧力
センサの要部の断面図、第4図は本発明圧力セン
サの信号処理部の一実施例を示す接続図、第5図
および第6図は本発明圧力センサの他の実施例を
示す断面図、第7図および第8図は本発明圧力セ
ンサの他の実施例を示す斜視図、第9図は本発明
圧力センサに用いるゲージ抵抗の一例を示す平面
図である。 10……単結晶半導体基板、11……受圧ダイ
ヤフラム、12……カンチレバー、13……固定
部、21,22,23,24,25,26……ゲ
ージ抵抗、30……基台、40……信号処理回
路。
Fig. 1 is a perspective view showing an embodiment of the pressure sensor of the present invention, Fig. 2 is a cross-sectional view thereof, Fig. 3 is a cross-sectional view of main parts of the pressure sensor of the present invention, and Fig. 4 is a signal of the pressure sensor of the present invention. A connection diagram showing one embodiment of the processing section, FIGS. 5 and 6 are sectional views showing other embodiments of the pressure sensor of the present invention, and FIGS. 7 and 8 show other embodiments of the pressure sensor of the present invention. FIG. 9 is a perspective view showing an example of a gauge resistor used in the pressure sensor of the present invention. DESCRIPTION OF SYMBOLS 10... Single crystal semiconductor substrate, 11... Pressure receiving diaphragm, 12... Cantilever, 13... Fixed part, 21, 22, 23, 24, 25, 26... Gauge resistor, 30... Base, 40... signal processing circuit.

Claims (1)

【特許請求の範囲】 1 単結晶半導体基板に設けられた受圧ダイアフ
ラムとカンチレバーと、 該受圧ダイアフラムとカンチレバーとにそれぞ
れ設けられ該受圧ダイアフラムとカンチレバーの
いずれか一方には少なくとも2個設けられたゲー
ジ抵抗と、 前記カンチレバーに所定応力を生ずるように該
カンチレバーにあらかじめ所定変位が与えられて
前記単結晶半導体基板が固定される基台と、 前記これらの3個のゲージ抵抗の抵抗値から得
られる測定圧とゲージ抵抗の温度係数とピエゾ抵
抗係数の温度係数に関係する3個の関係式からゲ
ージ抵抗の温度係数とピエゾ抵抗係数の温度係数
が演算消去され測定圧を演算する演算部と を具備する圧力センサ。
[Scope of Claims] 1. A pressure receiving diaphragm and a cantilever provided on a single crystal semiconductor substrate; and at least two gauge resistors provided on each of the pressure receiving diaphragm and the cantilever, and at least two gauge resistors provided on either the pressure receiving diaphragm or the cantilever. a base on which the single crystal semiconductor substrate is fixed by applying a predetermined displacement to the cantilever in advance so as to generate a predetermined stress on the cantilever; and a measurement pressure obtained from the resistance values of these three gauge resistors. and a calculation section that calculates the measured pressure by calculating and eliminating the temperature coefficient of the gauge resistance and the temperature coefficient of the piezoresistance coefficient from three relational expressions related to the temperature coefficient of the gauge resistance and the temperature coefficient of the piezoresistance coefficient. sensor.
JP5876984A 1984-03-27 1984-03-27 Pressure sensor Granted JPS60201226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5876984A JPS60201226A (en) 1984-03-27 1984-03-27 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5876984A JPS60201226A (en) 1984-03-27 1984-03-27 Pressure sensor

Publications (2)

Publication Number Publication Date
JPS60201226A JPS60201226A (en) 1985-10-11
JPH0542608B2 true JPH0542608B2 (en) 1993-06-29

Family

ID=13093751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5876984A Granted JPS60201226A (en) 1984-03-27 1984-03-27 Pressure sensor

Country Status (1)

Country Link
JP (1) JPS60201226A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106331A (en) * 1979-02-09 1980-08-15 Hitachi Ltd Pressure sensor of semiconductor strain gauge
JPS5782730A (en) * 1980-11-10 1982-05-24 Mitsubishi Electric Corp Pressure sensor
JPS5826237A (en) * 1981-08-07 1983-02-16 Mitsubishi Electric Corp Pressure sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106331A (en) * 1979-02-09 1980-08-15 Hitachi Ltd Pressure sensor of semiconductor strain gauge
JPS5782730A (en) * 1980-11-10 1982-05-24 Mitsubishi Electric Corp Pressure sensor
JPS5826237A (en) * 1981-08-07 1983-02-16 Mitsubishi Electric Corp Pressure sensor

Also Published As

Publication number Publication date
JPS60201226A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
KR100741520B1 (en) Semiconductor pressure sensor having diaphragm
EP3196618B1 (en) Pseudo differential pressure sensing bridge configuration
JPH08510549A (en) Strain gauge sensor with integrated temperature signal output
JPH0777266B2 (en) Semiconductor strain detector
JPS645360B2 (en)
WO1988006719A1 (en) Transducer signal conditioner
JPH0542610B2 (en)
JPH0542608B2 (en)
RU2036445C1 (en) Pressure converter
JPH0542607B2 (en)
JPS6222272B2 (en)
JPH0542611B2 (en)
JPH0455542B2 (en)
JPH0542609B2 (en)
JPS6255629B2 (en)
JPH0542612B2 (en)
JPH04204060A (en) Semiconductor acceleration detection device
JPH0339569B2 (en)
JPH0814521B2 (en) Temperature compensation method for semiconductor pressure sensor
JPH0511479Y2 (en)
JPS60171416A (en) Resistance type converter
JPH0476047B2 (en)
JPH0554707B2 (en)
JPH0476046B2 (en)
RU2165602C2 (en) Semiconductor pressure transducer