JPH0542455B2 - - Google Patents

Info

Publication number
JPH0542455B2
JPH0542455B2 JP59155596A JP15559684A JPH0542455B2 JP H0542455 B2 JPH0542455 B2 JP H0542455B2 JP 59155596 A JP59155596 A JP 59155596A JP 15559684 A JP15559684 A JP 15559684A JP H0542455 B2 JPH0542455 B2 JP H0542455B2
Authority
JP
Japan
Prior art keywords
urea
formaldehyde
resin
water
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59155596A
Other languages
Japanese (ja)
Other versions
JPS6136312A (en
Inventor
Takeshi Kashiwa
Tsutomu Takagi
Masahiro Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP15559684A priority Critical patent/JPS6136312A/en
Publication of JPS6136312A publication Critical patent/JPS6136312A/en
Publication of JPH0542455B2 publication Critical patent/JPH0542455B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は尿素ホルムアルデヒド樹脂の製法、特
に紙の光学的特性の改善用充填剤として優れた尿
素ホルムアルデヒド樹脂の製法に関する。 (産業上の利用分野) 本発明の製法によつて得られる尿素ホルムアル
デヒド樹脂は、尿素とホルムアルデヒドのモル比
が1:1.0〜1:2.0であり、交叉結合により不溶
不融性であり、かつ1μ以下の微細な粒子の凝集
体構造を有し、紙の充填剤として用いた場合に紙
の白色度及び透明度等の光学的特性の改善に優れ
た効果を発揮するから、製紙分野において有利に
使用される。 (従来技術) 紙の白色度及び不透明度等の光学的特性の改善
に用いられる尿素樹脂としては、1μ以下の微細
な粒子の凝集体構造に形成されていて、適当な空
孔構造と光の散乱表面を有する必要があること
な、既によく知られている。 かかる尿素ホルムアルデヒド樹脂を製造するに
は、一般に尿素とホルムアルデヒドを予備縮合
し、得られた水溶性尿素樹脂に酸性の触媒水溶液
を接触させて架橋反応させ尿素ホルムアルデヒド
樹脂の粒子体にする方法が用いられている(特公
昭49−2350号、特開昭50−82195号及び特公昭57
−26686号各公報参照)。しかし、かかる方法はい
ずれも予備縮合を行なうものであつて、製造工程
が複雑で、かつ製造に要する時間も長い等の欠点
があつた。 また、尿素とホルムアルデヒドとを直接に反応
させて、多孔性の架橋体や微細な架橋体粒子の樹
脂を製造することは、他の用途分野で用いられる
樹脂の場合に試みられている。たとえば、尿素と
ホルムアルデヒドとをモル比1:0.5〜1:1.2の
割合で、酸性触媒水溶液と接触させる方法が提案
された(特公昭47−36879号公報)。しかし、この
方法で得られる樹脂は多孔質微細構造を有するも
のの、微粒子が堅固に融着した塊状のものであつ
て、解砕しにくいばかりでなく、これを紙の充填
剤として用いても不透明度等の光学的特性の改善
に優れた効果を示さない。 さらに、特開昭48−12386号公報には、ホルム
アルデヒド水溶液に酸触媒を加えたものを攪拌し
ながら、尿素水溶液を少量ずつ逐次に添加して反
応させる方法が示されている。しかし、この方法
においても堅固な融着塊が生成しやすく、得られ
る樹脂は紙の不透明度の向上に優れた効果を示さ
ない。 (発明が解決せんとする問題点) このように、従来、尿素ホルムアルデヒド樹脂
の製造法として種々の方法が知られていたが、紙
の光学的特性の改善に優れた効果を示す樹脂を、
尿素とホルムアルデヒドとを直接に反応させる簡
単な方法で容易に製造する方法がなかつた。本発
明は、白色度及び不透明度等の紙の光学的特性の
改善に対して優れた効果を発揮することのできる
尿素ホルムアルデヒド樹脂を、予備縮合等の複雑
な工程を経ることなしに、尿素とホルムアルデヒ
ド等とを直接に反応させて容易に製造する方法を
提供せんとするものである。 (問題の解決手段) 本発明者等は、上記の問題点の解決のために
種々研究を重ねた結果、尿素とホルムアルデヒド
類を特定の条件下で直接に反応させることによ
り、その目的を達成できることを知り、本発明に
到達したのである。 すなわち、本発明の尿素ホルムアルデヒド樹脂
の製法は、尿素、ホルムアルデヒド類、塩化アン
モニウム触媒及び水を保護コロイド剤の存在下で
均一に混合溶解して得られた、該尿素とホルムア
ルデヒド類の割合が尿素:ホルムアルデヒドモル
比で1:1.2〜1:2.0であり、かつ該尿素とホル
ムアルデヒド類の合計濃度が18〜40重量%である
混合水溶液を、30〜65℃の温度に保持して反応さ
せることを特徴とする方法である。 本発明におけるホルムアルデヒド類としては、
通常、ホルムアルデヒド濃度が30〜55重量%のホ
ルムアルデヒド水溶液が用いられ、そのホルムア
ルデヒド水溶液には1〜8重量%程度のメタノー
ルが含有されていてもよい。また、ホルムアルデ
ヒド類としては、パラホルムアルデヒドのような
水溶性のホルムアルデヒド重合体も使用すること
ができる。 本発明における尿素とホルムアルデヒド類との
反応させる割合は、尿素とホルムアルデヒドのモ
ル比で1:1.2〜1:2.0、好ましくは1:1.3〜
1:1.8である。同モル比が1:1.20より大きく
なると、生成尿素ホルムアルデヒド樹脂は粒子が
大きくなり、1μ以上の粒子径を有するものが多
く混在し、紙の光学的特性の改善効果が劣るもの
になる。また、同モル比が1:2.0よりも小さく
なると、ホルムアルデヒド基準の樹脂収率が低下
するばかりでなく、生成樹脂中に未反応ホルムア
ルデヒドが含まれてきて、その除去処理が必要に
なる。 本発明においては触媒として塩化アンモニウム
が使用される。塩化アンモニウム以外の触媒、た
とえば酸触媒を使用した場合には、目的とする紙
の光学的特性の改善に対して優れた効果を示すこ
とのできない樹脂しか得られない。塩化アンモニ
ウムは遊離酸を多く含むものは好ましくなく、5
〜10重量%水溶液にした場合のPHが5〜7のもの
が好ましい。塩化アンモニウム触媒の使用量は、
尿素とホルムアルデヒド類との合計量に対して
0.5〜5重量%の範囲内である。 本発明において反応させる反応系水溶液の調製
には保護コロイド剤が使用される。保護コロイド
剤を用いずに、そのほかは本発明におけると同様
にして調製した水溶液(すなわち尿素とホルムア
ルデヒド類と塩化アンモニウム触媒の均一な混合
水溶液)を用いて、本発明におけると同様に反応
させた場合に得られる尿素ホルムアルデヒド樹脂
は、1μ以上の大きな粒子径の樹脂が多くなり、
紙の白色度及び不透明度を十分に向上させること
ができない。 本発明における保護コロイド剤の使用量は、尿
素とホルムアルデヒド類の合計量に対して、通常
0.1〜5重量%、好ましくは0.5〜5重量%であ
る。保護コロイド剤の添加時期は、尿素、ホルム
アルデヒド類及び塩化アンモニウム触媒の三者が
水と混合溶解して均一な混合溶液になる前の段階
において行なうのが望ましい。すなわち、保護コ
ロイド剤は、たとえばそれを水溶液にして尿素、
ホルムアルデヒド類又は塩化アンモニウム触媒の
各水溶液のいずれかに添加してもよいし、これら
三者のうちの二者の混合水溶液に添加してもよい
が、三者が完全な混合水溶液になつた後に保護コ
ロイド剤を添加する場合には、ゲル形成が開始さ
れる以前に完全に混合しないと充分な効果を発揮
せしめることができない。 本発明における保護コロイド剤としては、水溶
性高分子化合物が用いられ、その代表的なものと
しては、カルボキシメチルセルロースのアルカリ
金属塩(特にNa塩)、カルボキシメチルセルロー
スのアルカリ金属塩(特にNa塩)、アルギン酸の
アルカリ金属塩(特にNa塩)、ポリアクリル酸の
アルカリ金属塩(特にNa塩)等の高分子電解質
類;ポリビニルアルコール、メチルセルロース、
エチルセルロース、ヒドロキシエチルセルロー
ス、コーンスターチ等の非イオン性水溶性高分子
物類があげられる。これらの保護コロイド剤は1
種を単独使用してもよいし、2種以上の併用も可
能である。 本発明の反応系に存在せしめる水は、原料の尿
素及びホルムアルデヒド類の溶媒であると同時
に、微細な尿素ホルムアルデヒド樹脂を形成せし
めるための反応媒体であり、その水の量的比率は
極めて重要である。すなわち、本発明の反応系に
は、反応体の尿素とホルムアルデヒド類の合計濃
度が18〜40重量%、好ましくは25〜40重量%にな
る割合の水を存在させる必要がある。反応体の合
計濃度が25重量%よりも低い反応系で反応させる
と生成樹脂の粒径が大きくなる傾向を示し、同濃
度が18重量%よりも低くなると1μ以上の大きな
球状粒子が生成樹脂中に混在するようになる。そ
して、かかる大きな粒子径の樹脂は紙の光学的特
性の改善効果が劣る。また、40重量%を超える反
応体濃度で反応させると、生成樹脂は固いゲルと
なり、かかる固いゲル状樹脂は紙の光学的特性の
改善用に用いる場合に複雑で困難な後処理が必要
となるし、そのような後処理をしても充分な光学
的特性改善効果が得られない場合がある。 本発明における反応温度は30〜65℃、好ましく
は30〜60℃である。反応温度が高くなりすぎると
生成樹脂は1μ以上の大きな粒子径の樹脂が多く
なり、紙の光学的特性の改善効果が劣る。また、
反応温度が低くすぎると1μ以上の大きな粒子径
の樹脂が含まれるようになる。 本発明の製造反応は種々の態様で実施すること
ができるが、代表的な態様例について述べると、
まず尿素及び塩化アンモニウム触媒は、それぞれ
別々に水に溶解させてもよいし、同時に水に溶解
させてもよい。また、保護コロイド剤は、通常、
別に水に溶解させておく。ホルムアルデヒド類
も、通常、予め水に溶解させたものを使用する。 これらの各成分の添加順序については、尿素と
ホルムアルデヒド類とアンモニウム触媒の三者の
均一な混合水溶液が形成される以前に、保護コロ
イド剤水溶液を、前記三者のうちのいずれかの水
溶液、又は三者のうちの二者の混合水溶液に添加
しておくのが望ましく、かつその三者の均一な混
合水溶液が形成される以前の段階において、ホル
ムアルデヒド類と塩化アンモニウム触媒とが混合
されないようにするのが望ましい。しかし、それ
以外には添加順序に格別の制限がない。なお、ホ
ルムアルデヒド類と塩化アンモニウム触媒とを混
合しておくと、両者が徐々に反応してPHが低下
し、結果的に酸触媒を使用するのと同じになるの
で、好ましくない。 かくして、保護コロイド剤の存在下で三者の均
一な混合水溶液が形成されれば直ちに攪拌下に30
〜65℃の範囲内の所望の反応温度に昇温させる
か、或いは予め30〜65℃の範囲内の所望の反応温
度に昇温せしめた一者の水溶液又は二者の混合水
溶液を攪拌しながらこれに他の成分水溶液を添加
して反応を行なわせる。そして、三者の均一な混
合水溶液が反応温度に達すると、塩化アンモニウ
ムとホルムアルデヒドとが反応して、混合液のPH
がゆるやかに酸性側に移り、約0.5〜3分後には
白濁が始まり、約2〜15分後には硬化した樹脂の
ゲル状物が得られる。小規模の反応の場合には、
均一な混合物が得られてから直ちに攪拌を停止
し、ゲル状の硬化物を形成させたのち、その硬化
物を取り出す。また、大規模の反応の場合には、
反応系の濃度を前記の範囲内でなるべく低く保つ
て、緩やかに攪拌して、流動状態のままでゲル化
を進め、生成樹脂を塊状ゲルのスラリーとして取
り出す。いずれの場合も次の後処理工程に移る。 すなわち、かくして得られる生成樹脂は触媒及
び微量の未反応物、水溶性の中間体等を含んでい
るから、多量の水の中に注加して、固形分濃度10
〜15重量%のスラリーとしたものを0.5〜2時間
攪拌する。この攪拌により塊状ゲルは細分化され
るから、次いで別し、必要に応じて水を注加し
て洗浄してから取出す。取出された樹脂は40〜80
重量%の水を含んでいるから、乾燥したのち、粉
砕機で5〜20μ程度の凝集体に粉砕する。また、
水を含んだ生成樹脂に再び水を加えて、サンドミ
ル等で5〜20μ程度に湿式磨砕してもよい。 なお、上記のゲル形成過程を連続的に行なわせ
るには、いずれかに保護コロイド剤を添加してお
いた上記の両反応体の混合水溶液と塩化アンモニ
ウム触媒水溶液とを、ラインミキサー等に連続的
に供給して、同ミキサー内で白濁化が始まるまで
の滞留時間で均一に混合したのち、その混合物を
連続的にベルトコンベアー、バケツトコンベアー
等に移し、コンベアー上で連続的にゲル化させる
ことも可能である。 (発明の効果) 本発明の製法によるときは、予備縮合過程を経
ることなしに、尿素とホルムアルデヒド類とを直
接に反応させて、紙用充填剤に使用したときに紙
の白色度及び不透明度等の光学的特性を改善する
効果の優れた尿素ホルムアルデヒド樹脂を、簡単
にかつ容易に製造できる。 (実施例等) 次に、実施例及び比較例をあげてさらに詳述す
る。これらの例において記載された「%」は、特
に付記しない限り重量%を意味する。 実施例 1 攪拌機を備えた500mlのセパラブルフラスコに
水50g、尿素33g、塩化アンモニウム5g、及び
1%濃度のカルボキシメチルセルロースNa塩水
溶液50gを入れ、湯溶で加熱しながら攪拌して、
均一に溶解させた。この溶解を攪拌しながら40℃
に達したときに、37%ホルマリン67gを加え、均
一に混合し、ホルマリン添加後約10秒で攪拌を停
止した。この反応における尿素とホルムアルデヒ
ドのモル比は1:1.50であり、反応体の尿素とホ
ルムアルデヒドの合計濃度は28.9%であつた。 この反応においては、液の温度はホルマリンの
添加により約37℃に低下したが、数分後には56℃
まで昇温し、30分後には約42℃になつた。また、
内容物の攪拌停止後約180秒で白濁しはじめ、3
〜4分後にはゲル状となつた。なお、この反応条
件は、第1表にまとめて示した。 次いで、ホルマリン添加30分後に、反応器内の
ゲル状生成物を取出し、乳鉢で直径5〜10mm程度
に砕き、500mlのビーカーに移し、水85gを加え
て室温で20分間攪拌したところ、さらに細かく粉
砕されたスラリーになつた。このスラリーに25%
アンモニア水を加えてPH7.5に中和したのち、ガ
ラスフイルターで吸引過し、さらに約50mlの水
で2回注水して洗浄した。 得られたケーキは198gであり、120℃で2時間
乾燥して測定したところ、ケーキの固形分は22.0
%であつた。この乾燥ケーキをアセトン中で超音
波分散させたものを、カバーグラス上に数滴滴下
したのち、アセトンを揮散させ、走査型電子顕微
鏡で1万倍に拡大して、粒子の状態を観察した。
その粒子は平均粒子径が約0.1μの微粒子の凝集体
であり、1μ以上の直径を有する球形粒子が全く
認められなかつた。 次に、この乾燥ケーキを5%の濃度で水中に分
散させ、湿式分散装置(三井三池製作所製アトラ
イター)により250r・p・mで10分間磨砕し、分
散液とした。 この分散液を用い、下記の抄紙条件で抄紙した
紙について、ハンター白度計を用いて白色度及び
不透明度を測定した結果は、第2表に示すとおり
であつた。なお、白色度の測定はJIS P−8123の
方法により、また不透明度の測定はJIS P−8138
の方法により行なつた。 抄紙条件 パルプ配合 針葉樹クラフトパルプ 20% (NBKP) サーモメカニカルパルプ 30% (TMP) ケミカルグランドパルプ 20% (CGP) 脱インキパルプ 30% (DIP) パルプ叩解度 240ml 樹脂添加量 対絶乾パルプ 3% 坪量 46〜47g/m2 実施例 2 攪拌機を備えた500mlのセパラブルフラスコに、
水150g、尿素31g、塩化アンモニウム5g、及
び1%カルボキシメチルセルロースNa塩水溶液
50gを入れ、湯浴で加熱しながら攪拌し、均一に
溶解させた。液の温度が40℃に達したときに、37
%ホルマリン69gを加え、約300r・p・mで攪拌
を続けた。液の温度はホルマリンの投入により約
37℃に低下したが、数分後に50℃まで上昇し、30
分後に40℃になつた。内容物はホルマリン投入後
約180秒で白濁しはじめ、この時点で攪拌速度を
約600r・p・mに上げて攪拌を続けた。白濁しは
じめてから30分後に、攪拌を続けながら水70gを
加え、さらに20分間攪拌を行なつて、均一なスラ
リーを得た。この反応条件は第1表にまとめて示
した。 このスラリーに25%アンモニア水を加えてPH
7.5に中和したのち、ガラスフイルターで吸引
過し、さらに約50mlの水で2回注水洗浄した。得
られたケーキは153gであり、その固形分は24.0
%であつた。乾燥ケーキについて実施例1におけ
ると同様にして粒子状態を観察したところ、その
粒子は平均粒子径が約0.3〜0.7μの微粒子の凝集
体であつた。 この生成樹脂を実施例1におけると同様にして
分散液とし、その分散液を用いて実施例1におけ
ると同様にして抄紙し、得られた紙の白色度及び
不透明度を同様にして測定した。その結果は第2
表に示すとおりであつた。 実施例 3 第1表に示すように、樹脂製造条件の一部を変
更した以外は、実施例1におけると同様に反応さ
せて樹脂を製造し、その樹脂について同様の試験
を行なつた結果は第2表に示すとおりであつた。 比較例 1〜4 第1表に示すように樹脂製造条件の一部を変更
し、そのほかは実施例1におけると同様にして反
応させて樹脂を製造した。得られた各樹脂を用い
て実施例1におけると同様の試験をした結果は第
2表に示すとおりであつた。
The present invention relates to a method for producing a urea formaldehyde resin, particularly a method for producing a urea formaldehyde resin that is excellent as a filler for improving the optical properties of paper. (Industrial Application Field) The urea-formaldehyde resin obtained by the production method of the present invention has a molar ratio of urea and formaldehyde of 1:1.0 to 1:2.0, is insoluble and infusible due to cross-linking, and is 1μ It has the following fine particle aggregate structure, and when used as a paper filler, it has an excellent effect on improving the optical properties of paper such as whiteness and transparency, so it is advantageously used in the paper manufacturing field. be done. (Prior art) Urea resin used to improve optical properties such as whiteness and opacity of paper is formed into an aggregate structure of fine particles of 1μ or less, and has an appropriate pore structure and light irradiation. The need to have a scattering surface is already well known. In order to produce such urea-formaldehyde resin, a method is generally used in which urea and formaldehyde are precondensed, and the resulting water-soluble urea resin is brought into contact with an acidic catalyst aqueous solution to cause a crosslinking reaction to form particles of urea-formaldehyde resin. (Special Publication No. 49-2350, Japanese Patent Publication No. 82195-1972, and Special Publication No. 1982-82195)
-Refer to each publication No. 26686). However, all of these methods involve precondensation, and have drawbacks such as complicated manufacturing steps and long production times. Furthermore, attempts have been made to directly react urea and formaldehyde to produce porous crosslinked resins or fine crosslinked resin particles for resins used in other fields of application. For example, a method has been proposed in which urea and formaldehyde are brought into contact with an aqueous acidic catalyst solution at a molar ratio of 1:0.5 to 1:1.2 (Japanese Patent Publication No. 47-36879). However, although the resin obtained by this method has a porous microstructure, it is a lump of fine particles that are tightly fused together, and it is not only difficult to crush, but also difficult to use as a paper filler. Does not show excellent effects in improving optical properties such as transparency. Furthermore, JP-A-48-12386 discloses a method in which an aqueous formaldehyde solution to which an acid catalyst is added is stirred and a urea aqueous solution is successively added little by little to cause a reaction. However, even in this method, a hard fused lump is likely to be formed, and the resulting resin does not exhibit an excellent effect on improving the opacity of paper. (Problems to be Solved by the Invention) As described above, various methods have been known for producing urea-formaldehyde resins.
There was no way to easily produce it by directly reacting urea and formaldehyde. The present invention combines urea-formaldehyde resin, which can exhibit excellent effects on improving the optical properties of paper such as whiteness and opacity, into urea without going through complicated steps such as precondensation. The object of the present invention is to provide an easy production method by directly reacting formaldehyde or the like. (Means for Solving the Problem) As a result of various studies aimed at solving the above-mentioned problems, the present inventors have discovered that the objective can be achieved by directly reacting urea and formaldehydes under specific conditions. This led to the discovery of the present invention. That is, the method for producing urea-formaldehyde resin of the present invention is obtained by uniformly mixing and dissolving urea, formaldehydes, ammonium chloride catalyst, and water in the presence of a protective colloid agent, and the ratio of urea and formaldehyde is urea: A mixed aqueous solution having a formaldehyde molar ratio of 1:1.2 to 1:2.0 and a total concentration of urea and formaldehydes of 18 to 40% by weight is reacted while being maintained at a temperature of 30 to 65°C. This is the method to do so. Formaldehydes in the present invention include:
Usually, a formaldehyde aqueous solution having a formaldehyde concentration of 30 to 55% by weight is used, and the formaldehyde aqueous solution may contain about 1 to 8% by weight of methanol. Further, as the formaldehyde, water-soluble formaldehyde polymers such as paraformaldehyde can also be used. The molar ratio of urea and formaldehyde in the present invention is 1:1.2 to 1:2.0, preferably 1:1.3 to 1:1.3.
1:1.8. When the molar ratio is greater than 1:1.20, the particles of the urea formaldehyde resin produced become large, and many particles having a particle diameter of 1 μ or more are mixed, resulting in a poor effect on improving the optical properties of paper. Furthermore, if the molar ratio is smaller than 1:2.0, not only the resin yield based on formaldehyde will decrease, but also unreacted formaldehyde will be included in the produced resin, making it necessary to remove it. Ammonium chloride is used as a catalyst in the present invention. If a catalyst other than ammonium chloride is used, for example an acid catalyst, only a resin is obtained which is not very effective in improving the optical properties of the paper. Ammonium chloride containing a large amount of free acid is not preferred;
Those having a pH of 5 to 7 when made into a ~10% by weight aqueous solution are preferred. The amount of ammonium chloride catalyst used is
Based on the total amount of urea and formaldehydes
It is within the range of 0.5 to 5% by weight. A protective colloid agent is used to prepare the reaction system aqueous solution to be reacted in the present invention. When the reaction is carried out in the same manner as in the present invention without using a protective colloid agent, but using an aqueous solution prepared in the same manner as in the present invention (i.e., a homogeneous mixed aqueous solution of urea, formaldehydes, and ammonium chloride catalyst). The urea formaldehyde resin obtained in
The whiteness and opacity of paper cannot be sufficiently improved. The amount of protective colloid used in the present invention is usually determined based on the total amount of urea and formaldehyde.
0.1-5% by weight, preferably 0.5-5% by weight. The protective colloid agent is preferably added at a stage before the three components, urea, formaldehyde, and ammonium chloride catalyst, are mixed and dissolved with water to form a uniform mixed solution. That is, the protective colloid agent can be used, for example, as an aqueous solution of urea,
It may be added to either the formaldehyde or ammonium chloride catalyst aqueous solution, or it may be added to a mixed aqueous solution of two of these three, but after the three have become a complete mixed aqueous solution. When adding a protective colloid, it will not be effective unless it is thoroughly mixed before gel formation begins. As the protective colloid agent in the present invention, a water-soluble polymer compound is used, and representative examples include alkali metal salts of carboxymethyl cellulose (especially Na salt), alkali metal salts of carboxymethyl cellulose (especially Na salt), Polyelectrolytes such as alkali metal salts of alginic acid (especially Na salt), alkali metal salts of polyacrylic acid (especially Na salt); polyvinyl alcohol, methyl cellulose,
Examples include nonionic water-soluble polymers such as ethyl cellulose, hydroxyethyl cellulose, and corn starch. These protective colloid agents are 1
One species may be used alone, or two or more species may be used in combination. The water present in the reaction system of the present invention is a solvent for the raw materials urea and formaldehyde, and at the same time is a reaction medium for forming a fine urea-formaldehyde resin, and the quantitative ratio of water is extremely important. . That is, in the reaction system of the present invention, water must be present in a proportion such that the total concentration of the reactants urea and formaldehyde is 18 to 40% by weight, preferably 25 to 40% by weight. When the reaction is carried out in a reaction system where the total concentration of reactants is lower than 25% by weight, the particle size of the resin produced tends to increase, and when the same concentration is lower than 18% by weight, large spherical particles of 1μ or more are found in the resin produced. It becomes mixed with. In addition, resins with such large particle diameters are less effective in improving the optical properties of paper. Additionally, when reacting at reactant concentrations greater than 40% by weight, the resulting resin becomes a hard gel, and such hard gel-like resins require complex and difficult post-treatments when used to improve the optical properties of paper. However, even with such post-treatment, a sufficient effect of improving optical characteristics may not be obtained. The reaction temperature in the present invention is 30-65°C, preferably 30-60°C. If the reaction temperature is too high, the resulting resin will have a large particle diameter of 1 μ or more, and the effect of improving the optical properties of paper will be poor. Also,
If the reaction temperature is too low, resin with large particle diameters of 1μ or more will be included. Although the production reaction of the present invention can be carried out in various embodiments, typical embodiments will be described as follows:
First, urea and ammonium chloride catalyst may be dissolved in water separately, or may be dissolved in water at the same time. In addition, protective colloid agents are usually
Dissolve separately in water. Formaldehyde is also usually used dissolved in water in advance. Regarding the order of addition of each of these components, before a uniform mixed aqueous solution of urea, formaldehydes, and ammonium catalyst is formed, an aqueous solution of the protective colloid agent is added to an aqueous solution of one of the three components, or It is desirable to add it to the mixed aqueous solution of two of the three, and to prevent the formaldehyde and the ammonium chloride catalyst from being mixed at a stage before a uniform mixed aqueous solution of the three is formed. is desirable. However, other than that, there are no particular restrictions on the order of addition. Note that if formaldehydes and ammonium chloride catalyst are mixed, the two will gradually react and the pH will decrease, resulting in the same result as using an acid catalyst, which is not preferable. Thus, as soon as a homogeneous mixed aqueous solution of the three components is formed in the presence of the protective colloid agent, 30 min.
While stirring an aqueous solution of one or a mixed aqueous solution of the two, the temperature is raised to a desired reaction temperature in the range of ~65°C, or the temperature is raised in advance to a desired reaction temperature in the range of 30 to 65°C. Aqueous solutions of other components are added to this to cause a reaction. When the homogeneous mixed aqueous solution of the three components reaches the reaction temperature, ammonium chloride and formaldehyde react, and the pH of the mixed solution increases.
gradually changes to the acidic side, and after about 0.5 to 3 minutes, cloudiness begins, and after about 2 to 15 minutes, a gel-like substance of hardened resin is obtained. For small-scale reactions,
Immediately after a homogeneous mixture is obtained, stirring is stopped, a gel-like cured product is formed, and then the cured product is taken out. In addition, in the case of large-scale reactions,
The concentration of the reaction system is kept as low as possible within the above range, and the mixture is gently stirred to proceed with gelation in a fluid state, and the resulting resin is taken out as a lumpy gel slurry. In either case, proceed to the next post-processing step. That is, since the resulting resin thus obtained contains a catalyst, trace amounts of unreacted substances, water-soluble intermediates, etc., it is poured into a large amount of water to reduce the solid content to 10.
The ~15% by weight slurry is stirred for 0.5 to 2 hours. This agitation breaks down the lumpy gel into smaller pieces, which are then separated, washed with water if necessary, and then taken out. The resin taken out is 40 to 80
Since it contains % by weight of water, after drying, it is ground into aggregates of approximately 5 to 20 μm in size using a grinder. Also,
Water may be added again to the water-containing produced resin and wet-milled using a sand mill or the like to a size of about 5 to 20 microns. In addition, in order to perform the above gel formation process continuously, a mixed aqueous solution of both of the above reactants, to which a protective colloid agent has been added, and an aqueous ammonium chloride catalyst solution are continuously mixed in a line mixer, etc. After mixing uniformly within the same mixer for a residence time until cloudiness begins, the mixture is continuously transferred to a belt conveyor, bucket conveyor, etc., and continuously gelled on the conveyor. is also possible. (Effect of the invention) When the production method of the present invention is used, urea and formaldehyde are directly reacted without going through a precondensation process, and when used as a paper filler, the whiteness and opacity of paper are improved. A urea formaldehyde resin that is highly effective in improving optical properties such as the following can be produced simply and easily. (Examples, etc.) Next, Examples and Comparative Examples will be further described in detail. "%" described in these examples means % by weight unless otherwise specified. Example 1 In a 500 ml separable flask equipped with a stirrer, 50 g of water, 33 g of urea, 5 g of ammonium chloride, and 50 g of a 1% carboxymethylcellulose sodium salt aqueous solution were placed, and stirred while heating with hot water.
Dissolved uniformly. 40 °C while stirring this dissolution.
When this reached, 67 g of 37% formalin was added and mixed uniformly, and stirring was stopped about 10 seconds after the addition of formalin. The molar ratio of urea and formaldehyde in this reaction was 1:1.50, and the total concentration of the reactants urea and formaldehyde was 28.9%. In this reaction, the temperature of the liquid decreased to about 37°C by the addition of formalin, but after a few minutes it rose to 56°C.
The temperature rose to about 42°C after 30 minutes. Also,
Approximately 180 seconds after the content stops stirring, it begins to become cloudy, and 3
It became gel-like after ~4 minutes. The reaction conditions are summarized in Table 1. Next, 30 minutes after formalin was added, the gel-like product in the reactor was taken out, crushed into pieces of about 5 to 10 mm in diameter in a mortar, transferred to a 500 ml beaker, added with 85 g of water, and stirred at room temperature for 20 minutes. It became a pulverized slurry. 25% to this slurry
After neutralizing the pH to 7.5 by adding aqueous ammonia, the mixture was suctioned through a glass filter, and washed twice with approximately 50 ml of water. The resulting cake weighed 198 g, and when dried at 120°C for 2 hours and measured, the solid content of the cake was 22.0.
It was %. This dried cake was ultrasonically dispersed in acetone and several drops were dropped onto a cover glass, the acetone was volatilized, and the state of the particles was observed using a scanning electron microscope under 10,000 times magnification.
The particles were aggregates of fine particles with an average particle diameter of about 0.1μ, and no spherical particles with a diameter of 1μ or more were observed. Next, this dried cake was dispersed in water at a concentration of 5%, and ground at 250 r.p.m. for 10 minutes using a wet dispersion device (Attritor, manufactured by Mitsui Miike Seisakusho) to obtain a dispersion. The whiteness and opacity of paper made from this dispersion under the following papermaking conditions using a Hunter whiteness meter were as shown in Table 2. The whiteness is measured using the JIS P-8123 method, and the opacity is measured using the JIS P-8138 method.
This was done using the following method. Paper making conditions Pulp composition Softwood kraft pulp 20% (NBKP) Thermomechanical pulp 30% (TMP) Chemical ground pulp 20% (CGP) Deinked pulp 30% (DIP) Pulp softness 240ml Resin addition amount Bone dry pulp 3% tsubo Amount 46-47g/m 2 Example 2 In a 500ml separable flask equipped with a stirrer,
150 g of water, 31 g of urea, 5 g of ammonium chloride, and 1% carboxymethyl cellulose Na salt aqueous solution
50 g was added and stirred while heating in a hot water bath to uniformly dissolve. When the temperature of the liquid reaches 40℃, 37
% formalin was added, and stirring was continued at approximately 300 rpm. The temperature of the liquid decreases by adding formalin.
The temperature dropped to 37℃, but after a few minutes it rose to 50℃, and the temperature reached 30℃.
After a few minutes, the temperature reached 40℃. The contents began to become cloudy about 180 seconds after formalin was added, and at this point the stirring speed was increased to about 600 r.p.m. and stirring was continued. Thirty minutes after it started becoming cloudy, 70 g of water was added while stirring, and stirring was continued for an additional 20 minutes to obtain a uniform slurry. The reaction conditions are summarized in Table 1. Add 25% ammonia water to this slurry and adjust the pH
After neutralizing to 7.5, it was suctioned through a glass filter, and washed twice with about 50 ml of water. The resulting cake weighed 153g and its solid content was 24.0
It was %. When the particle state of the dried cake was observed in the same manner as in Example 1, the particles were aggregates of fine particles with an average particle size of about 0.3 to 0.7 μm. This resulting resin was made into a dispersion liquid in the same manner as in Example 1, and paper was made using the dispersion liquid in the same manner as in Example 1, and the whiteness and opacity of the obtained paper were measured in the same manner. The result is the second
It was as shown in the table. Example 3 As shown in Table 1, a resin was produced by reacting in the same manner as in Example 1, except that some of the resin production conditions were changed, and the results of similar tests on the resin were as follows. It was as shown in Table 2. Comparative Examples 1 to 4 Resins were produced by reacting in the same manner as in Example 1, except that some of the resin production conditions were changed as shown in Table 1. The results of a test similar to that in Example 1 using each of the obtained resins are shown in Table 2.

【表】 *2…反応体濃度は仕込時の尿素とホル
ムアルデヒドの合計濃度を示す。
[Table] *2...Reactant concentration indicates the total concentration of urea and formaldehyde at the time of preparation.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 尿素、ホルムアルデヒド類、塩化アンモニウ
ム触媒及び水を保護コロイド剤の存在下で均一に
混合溶解して得られた、該尿素とホルムアルデヒ
ド類の割合が尿素:ホルムアルデヒドモル比で
1:1.2〜1:2.0であり、かつ該尿素とホルムア
ルデヒド類の合計濃度が18〜40重量%である混合
水溶液を、30〜65℃の温度に保持して反応させる
ことを特徴とする尿素ホルムアルデヒド樹脂の製
法。
1. Urea, formaldehydes, ammonium chloride catalyst, and water are uniformly mixed and dissolved in the presence of a protective colloid, and the ratio of the urea and formaldehydes is 1:1.2 to 1:2.0 in terms of urea:formaldehyde molar ratio. A method for producing a urea-formaldehyde resin, which comprises reacting a mixed aqueous solution in which the total concentration of urea and formaldehyde is 18 to 40% by weight while maintaining the mixture at a temperature of 30 to 65°C.
JP15559684A 1984-07-27 1984-07-27 Production of urea formaldehyde resin Granted JPS6136312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15559684A JPS6136312A (en) 1984-07-27 1984-07-27 Production of urea formaldehyde resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15559684A JPS6136312A (en) 1984-07-27 1984-07-27 Production of urea formaldehyde resin

Publications (2)

Publication Number Publication Date
JPS6136312A JPS6136312A (en) 1986-02-21
JPH0542455B2 true JPH0542455B2 (en) 1993-06-28

Family

ID=15609481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15559684A Granted JPS6136312A (en) 1984-07-27 1984-07-27 Production of urea formaldehyde resin

Country Status (1)

Country Link
JP (1) JPS6136312A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109219A (en) * 1991-10-18 1993-04-30 Teac Corp Disk device with tracking servo circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869892A (en) * 1971-12-20 1973-09-21
JPS5123601A (en) * 1974-03-30 1976-02-25 Mitsubishi Electric Corp Kaitendenkino kaitenshi
JPS56131658A (en) * 1980-03-21 1981-10-15 Mitsui Toatsu Chem Inc Improvement in dispersion of loading material
JPS5726686A (en) * 1980-07-22 1982-02-12 Kohjin Co Ltd Preparation of indole derivative
JPS5753519A (en) * 1980-09-16 1982-03-30 Mitsui Toatsu Chem Inc Preparation of crosslinked urea-formaldehyde polymer particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869892A (en) * 1971-12-20 1973-09-21
JPS5123601A (en) * 1974-03-30 1976-02-25 Mitsubishi Electric Corp Kaitendenkino kaitenshi
JPS56131658A (en) * 1980-03-21 1981-10-15 Mitsui Toatsu Chem Inc Improvement in dispersion of loading material
JPS5726686A (en) * 1980-07-22 1982-02-12 Kohjin Co Ltd Preparation of indole derivative
JPS5753519A (en) * 1980-09-16 1982-03-30 Mitsui Toatsu Chem Inc Preparation of crosslinked urea-formaldehyde polymer particle

Also Published As

Publication number Publication date
JPS6136312A (en) 1986-02-21

Similar Documents

Publication Publication Date Title
JPH11500482A (en) Cellulose particles, production method thereof and use thereof
US3931063A (en) Process for the manufacture of porous solids consisting of crosslinked urea-formaldehyde polycondensation products
CN1090640C (en) Produit product of sulfonated amino resin and amino group-containing substance and papermaking process
JP2001506224A (en) Materials based on polysilicate microgels and silica
CN113181846A (en) Preparation method of pure lignin microcapsule based on Pickering emulsion solvent volatilization
CN108529659A (en) A kind of synthetic method of micron order barium sulfate microballoon
JPS58126373A (en) Production of stable aqueous dispersion of polyolefin fiber
JPS5857401A (en) Production of particulate porous chitosan
JPH0542455B2 (en)
JPH0542454B2 (en)
US4960856A (en) Urea-formaldehyde compositions and method of manufacture
JP2683389B2 (en) Flaky zinc oxide powder and method for producing the same
MXPA05002252A (en) Method for producing temporarily cross-linked cellulose ethers.
JPS6343905A (en) Production of cationized polyvinyl alcohol
KR100368877B1 (en) Cellulose particles, process for their preparation and uses thereof
US2642360A (en) Manufacture of wet strength paper
You et al. Fabrication of a novel high-performance leather waste-based composite retention aid
Jiang et al. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
JPS5855812B2 (en) Manufacturing method of microcapsules
JPS601238A (en) Production of porous phenolic resin
JP7103327B2 (en) Cellulose nanofiber dispersion, manufacturing method and cellulose nanofiber
JP2563909B2 (en) Pulp and pulp manufacturing method
JP3531346B2 (en) Papermaking method
JPH0564164B2 (en)
EP0014026B1 (en) Paper containing partially cured amino/aldehyde fibres and process for making it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees