JPH0542454B2 - - Google Patents

Info

Publication number
JPH0542454B2
JPH0542454B2 JP59155595A JP15559584A JPH0542454B2 JP H0542454 B2 JPH0542454 B2 JP H0542454B2 JP 59155595 A JP59155595 A JP 59155595A JP 15559584 A JP15559584 A JP 15559584A JP H0542454 B2 JPH0542454 B2 JP H0542454B2
Authority
JP
Japan
Prior art keywords
urea
formaldehyde
resin
aqueous solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59155595A
Other languages
Japanese (ja)
Other versions
JPS6136311A (en
Inventor
Takeshi Suzuki
Takeshi Kashiwa
Fumyoshi Karasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP15559584A priority Critical patent/JPS6136311A/en
Publication of JPS6136311A publication Critical patent/JPS6136311A/en
Publication of JPH0542454B2 publication Critical patent/JPH0542454B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は尿素ホルムアルデヒド樹脂の製造方
法、特に紙の光学的特性の改善用充填剤として優
れた尿素ホルムアルデヒド樹脂の製造方法に関す
る。 (産業上の利用分野) 本発明の製造方法によつて得られる尿素ホルム
アルデヒド樹脂は、尿素とホルムアルデヒドのモ
ル比が1:1.2〜1:2.0であり、交叉結合により
不溶不融性であり、かつ1μ以下の微細な粒子の
凝集体構造を有し、紙の充填剤として用いた場合
に紙の白色度及び不透明度等の光学的特性の改善
に優れた効果を発揮するから、製紙分野において
有利に使用される。 (従来技術) 紙の白色度及び不透明度等の光学的特性の改善
に用いられる尿素樹脂としては、1μ以下の微細
な粒子の凝集体構造に形成されていて、適当な空
孔構造と光の散乱表面を有する必要があること
は、既によく知られている。 かかる尿素ホルムアルデヒド樹脂を製造するに
は、一般に尿素とホルムアルデヒドを予備縮合
し、得られた水溶性尿素樹脂に酸性の触媒水溶液
を接触させて架橋反応させ尿素ホルムアルデヒド
樹脂の粒子体にする方法が用いられている(特公
昭49−2350号、特開昭50−82195号及び特公昭57
−26686号各公報参照)。しかし、かかる方法はい
ずれも予備縮合を行なうものであつて、製造工程
が複雑で、かつ製造に要する時間も長い等の欠点
があつた。 また、尿素とホルムアルデヒドとを直接に反応
させて、多孔性の架橋体や微細な架橋体粒子の樹
脂を製造することは、他の用途分野で用いられる
樹脂の場合に試みられている。たとえば、尿素と
ホルムアルデヒドとをモル比1:0.5〜1:1.2の
割合で、酸性触媒水溶液と接触させる方法が提案
された(特公昭47−36879号公報)。しかし、この
方法で得られる樹脂は多孔質微細構造を有するも
のの、微粒子が堅固に融着した塊状のものであつ
て、解砕しにくいばかりでなく、これを紙の充填
剤として用いても不透明度等の光学的特性の改善
に優れた効果を示さない。 さらに、特開昭48−12386号公報には、ホルム
アルデヒド水溶液に酸触媒を加えたものを攪拌し
ながら、尿素水溶液を少量ずつ逐次に添加して反
応させる方法が示されている。しかし、この方法
においても堅固な融着塊が生成しやすく、得られ
る樹脂は紙の不透明度の向上に優れた効果を示さ
ない。 (発明が解決せんとする問題点) このように、従来、尿素ホルムアルデヒド樹脂
の製造法として種々の方法が知られていたが、紙
の光学的特性の改善に優れた効果を示す樹脂を、
尿素とホルムアルデヒドとを直接に反応させる簡
単な方法で容易に製造する方法がなかつた。本発
明は、白色度及び不透明度等の紙の光学的特性の
改善に対して優れた効果を発揮することのできる
尿素ホルムアルデヒド樹脂を、予備縮合等の複雑
な工程を経ることなしに、尿素とホルムアルデヒ
ド等とを直接に反応させて容易に製造する方法を
提供せんとするものである。 (問題の解決手段) 本発明者等は、上記の問題点の解決のために
種々研究を重ねた結果、尿素とホルムアルデヒド
類を特定の条件下で直接に反応させることによ
り、その目的を達成できることを知り、本発明に
到達したのである。 すなわち、本発明の尿素ホルムアルデヒド樹脂
の製造方法は、尿素、ホルムアルデヒド類、硫酸
アンモニウム触媒及び水を保護コロイド剤の存在
下で均一に混合して得られた、該尿素とホルムア
ルデヒド類の割合が尿素:ホルムアルデヒドモル
比で1:1.2〜1:2.0であり、かつ該尿素とホル
ムアルデヒド類の合計濃度が18〜40重量%である
混合水溶液を、60〜95℃の温度に保持して反応さ
せることを特徴とする方法である。 本発明におけるホルムアルデヒド類としては、
通常、ホルムアルデヒド濃度が30〜55重量%のホ
ルムアルデヒド水溶液が用いられ、そのホルムア
ルデヒド水溶液には1〜8重量%程度のメタノー
ルが含有されていてもよい。また、ホルムアルデ
ヒド類としては、パラホルムアルデヒドのような
水溶性のホルムアルデヒド重合体も使用すること
ができる。 本発明における尿素とホルムアルデヒド類との
反応させる割合は、尿素とホルムアルデヒドのモ
ル比で1:1.2〜1:2.0、好ましくは1:1.3〜
1:1.8である。同モル比が1:1.20より大きく
なると、生成尿素ホルムアルデヒド樹脂は粒子が
大きくなり、1μ以上の粒子径を有するものが多
く混在し、紙の光学的特性の改善効果が劣るもの
になる。また、同モル比が1:2.0よりも小さく
なると、ホルムアルデヒド基準の樹脂収率が低下
するばかりでなく、生成樹脂中に未反応ホルムア
ルデヒドが含まれてきて、その除去処理が必要に
なる。 本発明においては触媒として硫酸アンモニウム
が使用される。硫酸アンモニウム以外の触媒、た
とえば酸触媒を使用した場合には、目的とする紙
の光学的特性の改善に対して優れた効果を示すこ
とのできない樹脂しか得られない。硫酸アンモニ
ウムは遊離酸を多く含むものは好ましくなく、5
〜10重量%水溶液にした場合のPHが5〜7のもの
が好ましい。硫酸アンモニウム触媒の使用量は、
尿素とホルムアルデヒド類との合計量に対して
0.5〜5重量%の範囲内である。 本発明において反応させる反応系水溶液の調製
には保護コロイド剤が使用される。保護コロイド
剤を用いずに、そのほかは本発明におけると同様
にして調製した水溶液(すなわち尿素とホルムア
ルデヒド類と硫酸アンモニウム触媒の均一な混合
水溶液)を用いて、本発明におけると同様に反応
させた場合に得られる尿素ホルムアルデヒド樹脂
は、第2表の比較例1に示すように樹脂中に粒子
径1μ以上の粒子が約30%存在し、この填料を用
いて抄紙した場合には紙の白色度及び不透明度を
十分に向上させることができない。 本発明における保護コロイド剤の使用量は、尿
素とホルムアルデヒド類の合計量に対して、通常
0.1〜5重量%、好ましくは0.5〜5重量%であ
る。保護コロイド剤の添加時期は、尿素、ホルム
アルデヒド類及び硫酸アンモニウム触媒の三者が
水と混合溶解して均一な混合溶液になる前の段階
において行なうのが望ましい。すなわち、保護コ
ロイド剤は、たとえばそれを水溶液にして尿素、
ホルムアルデヒド類又は硫酸アンモニウム触媒の
各水溶液のいずれかに添加してもよいし、これら
三者のうちの二者の混合水溶液に添加してもよい
が、三者が完全な混合水溶液になつた後に保護コ
ロイド剤を添加する場合には、ゲル形成が開始さ
れるまでの極く短かい時間内に完全に混合しない
と充分な効果を発揮せしめることができない。 本発明にかける保護コロイド剤としては、水溶
性高分子化合物が用いられ、その代表的なものと
しては、カルボキシメチルセルロースのアルカリ
金属塩(特にNa塩)、カルボキシメチルセルロー
スのアルカリ金属塩(特にNa塩)、アルギン酸の
アルカリ金属塩(特にNa塩)、ポリアクリル酸の
アルカリ金属塩(特にNa塩)、等の高分子電解質
類;ポリビニルアルコール、メチルセルロース、
エチルセルロース、ヒドロキシエチルセルロー
ス、コーンスターチ等の非イオン性水溶性高分子
物類があげられる。これらの保護コロイド剤は1
種を単独使用してもよいし、2種以上の併用も可
能である。 本発明の反応系に存在せしめる水は、原料の尿
素及びホルムアルデヒド類の溶媒であると同時
に、微細な尿素ホルムアルデヒド樹脂を形成せし
めるための反応媒体であり、その水の量的比率は
極めて重要である。すなわち、本発明の反応系に
は、反応体の尿素とホルムアルデヒド類の合計濃
度が18〜40重量%、好ましくは25〜40重量%にな
る割合の水を存在させる必要がある。反応体の合
計濃度が25重量%よりも低い反応系で反応させる
と生成樹脂の粒径が大きくなる傾向を示し、同濃
度が18重量%よりも低くなると1μ以上の大きな
球状粒子が生成樹脂中に混在するようになる。そ
して、かかる大きな粒子径の樹脂は紙の光学的特
性の改善効果が劣る。また、40重量%を超える反
応体濃度で反応させると、生成樹脂は固いゲルと
なり、かかる固いゲル状樹脂は紙の光学的特性の
改善用に用いる場合に複雑で困難な後処理が必要
となるし、そのような後処理をしても充分な光学
的特性改善効果が得られない場合がある。 本発明における反応温度は60〜95℃、好ましく
は60〜90℃である。反応温度が低くすぎると1μ
以上の大きな粒子が含まれてくるし、反応温度が
高すぎると生成過程で粒子の融着を起しやすく、
後処理工程の解砕操作が複雑になる。 本発明の製造反応は種々の態様で実施すること
ができるが、代表的な態様例について述べると、
まず尿素及び硫酸アンモニウム触媒は、それぞれ
別々に水に溶解させてもよいし、同時に水に溶解
させてもよい。また、保護コロイド剤は、通常、
別に水に溶解させておく。ホルムアルデヒド類
も、通常、予め水に溶解させたものを使用する。 これらの各成分の添加順序については、尿素と
ホルムアルデヒド類と硫酸アンモニウム触媒の三
者の均一な混合水溶液が形成される以前に、保護
コロイド剤水溶液を、前記三者のいずれかの水溶
液、又は三者のうちの二者の混合水溶液に添加し
ておくのが望ましく、かつその三者の均一な混合
水溶液が形成される以前の段階において、ホルム
アルデヒド類と硫酸アンモニウム触媒とが混合さ
れないようにするのが望ましい。しかし、それ以
外には添加順序に格別の制限がない。なお、ホル
ムアルデヒド類と硫酸アンモニウム触媒とを混合
しておくと、両者が徐々に反応してPHが低下し、
結果的に酸触媒を使用するのと同じになるので、
好ましくない。 かくして、保護コロイド剤の存在下で三者の均
一な混合水溶液が形成されれば、直ちに攪拌下に
60〜90℃の範囲内の所望の反応温度に昇温させる
か、或いは予め60〜90℃の範囲内の所望の反応温
度に昇温せしめた一者の水溶液又は二者の混合水
溶液を攪拌しながらこれに他の成分水溶液を添加
して反応を行なわせる。そして、三者の均一な混
合水溶液が反応温度に達すると、硫酸アンモニウ
ムとホルムアルデヒドとが反応して、混合液のPH
がゆるやかに酸性側に移り、約0.5〜3分後には
白濁が始まり、約2〜15分後には硬化した樹脂の
ゲル状物が得られる。小規模の反応の場合には、
均一な混合液が得られたら直ちに攪拌を停止し、
ゲル状の硬化物を形成せしめたのち硬化物を取り
出す。また、大規模の反応の場合には、反応系の
濃度を前記の範囲内でなるべく低く保つて、緩や
かに攪拌して、流動状態のままでゲル化を進め、
生成樹脂を塊状ゲルのスラリーとして取り出す。
いずれの場合も次の後処理工程に移る。 すなわち、かくして得られる生成樹脂は触媒及
び微量の未反応物、水溶性の中間体等を含んでい
るから、多量の水の中に注加して、固形分濃度10
〜15重量%のスラリーとしたものを0.5〜2時間
攪拌する。この攪拌により塊状ゲルは細分化され
るから、次いで別し、必要に応じて水を注加し
て洗浄してから取出す。取出された樹脂は40〜80
重量%の水を含んでいるから、乾燥したのち、粉
砕機で5〜20μ程度の凝集体に粉砕する。また、
水を含んだ生成樹脂に再び水を加えて、サンドミ
ル等で5〜20μ程度に湿式磨砕してもよい。 なお、上記のゲル形成過程を連続的に行なわせ
るには、いずれかに保護コロイド剤を添加してお
いた上記の両反応体の混合水溶液と硫酸アンモニ
ウム触媒水溶液とを、ラインミキサー等に連続的
に供給して、同ミキサー内で白濁化が始まるまで
の滞留時間で均一に混合したのち、その混合物を
連続的にベルトコンベアー、バケツトコンベアー
等に移し、コンベアー上で連続的にゲル化させる
ことも可能である。 (発明の効果) 本発明の製法によるときは、予備縮合過程を経
ることなしに、尿素とホルムアルデヒド類とを直
接に反応させて、紙用充填剤に使用したときに紙
の白色度及び不透明度等の光学的特性を改善する
効果の優れた尿素ホルムアルデヒド樹脂を、簡単
にかつ容易に製造できる。 (実施例等) 次に実施例及び比較例をあげて詳述する。これ
らの例における「%」は、特に付記しない限り重
量%を意味する。 実施例 1 攪拌機を備えた500mlのセパラブルフラスコに
水50g、尿素36g、硫酸アンモニウム6g、及び
1%濃度のカルボキシメチルセルロースNa塩水
溶液50gを入れ、湯浴で加熱しながら攪拌し、均
一に溶解させた。液の温度が80℃に達したとき
に、37%ホルマリン64gを加えて均一に混合し、
ホルマリン添加10秒後に攪拌を停止した。この反
応における尿素とホルムアルデヒドのモル比は
1:1.32であり、反応体の尿素とホルムアルデヒ
ドの合計濃度は29.9%であつた。 この反応においては、液の温度はホルマリンの
投入により約73℃に低下したが、数分後には93℃
まで上昇し、10分後に約88℃になつた。また、内
容物は攪拌停止後約40秒で白濁しはじめ、2〜3
分後にはゲル状となつた。なお、この反応におけ
る主な反応条件は第1表にまとめて示した。 上記ホルマリン添加10分後の約88℃になつた内
容物を、湯浴の温度を徐々に下げて、約40分を要
して43℃の温度まで低下させた。次いで、このゲ
ル状の内容物を取出して乳鉢に入れ、直径5〜10
mm程度に砕いてから、500mlのビーカーに移し、
水85gを加えて室温で20分間攪拌して、さらに細
かく粉砕されたスラリーとした。このスラリーに
25%アンモニア水を加え、PH7.5に中和したのち、
ガラスフイルターで吸引過し、さらに約50mlの
水で2回注水して洗浄した。得られたケーキは
184gであり、120℃で2時間乾燥して測定したと
ころ、固形分は26.0%であつた。 この乾燥ケーキをアセトン中で超音波分散させ
たものを、カバーグラス上に数滴滴下したのち、
アセトンを揮散させ、走査型電子顕微鏡で1万倍
に拡大して粒子の状態を観察した。その粒子は平
均粒子径が約0.3μの微粒子の凝集体であり、1μ以
上の直径を有する球状粒子は全く認められなかつ
た。 次に、この乾燥ケーキを5%の濃度で水中に分
散させ、湿式分散装置(三井三池製作所製 アト
ライター)により250r.p.mで10分間磨砕し、分散
液とした。 この分散液を用い、下記の抄紙条件で抄紙した
紙について、ハンター白度計を用いて白色度及び
不透明度を測定した。その結果は第2表に示すと
おりであつた。なお、白色度の測定はJIS P−
8123の方法により、また不透明度の測定はJIS P
−8138の方法により行なつた。 抄紙条件 パルプ配合 針葉樹クラフトパルプ 20% (NBKP) サーモメカニカルパルプ 30% (TMP) ケミカルグランドパルプ 20% (CGP) 脱インキパルプ(DIP) 30% パルプ叩解度 240ml 樹脂添加量 対絶乾パルプ 3% 坪量 46〜47g/m2 実施例 2 攪拌機を備えた500mlのセパラブルフラスコに
水150g、尿素36g、硫酸アンモニウム6g及び
1%濃度のカルボキシメチルセルロースNa塩水
溶液50gを入れ、湯浴で加熱しながら攪拌し、均
一に溶解させた。液の温度が40℃に達したときに
37%ホルマリン64gを加え、約300r.p.mで攪拌を
続けた。液の温度はホルマリン投入により約74℃
に低下したが、数分後に約89℃まで上昇し、30分
後に82℃になつた。また、内容物はホルマリン投
入後約90秒で白濁しはじめ、この時点で攪拌速度
を約600r.p.mに上げて攪拌を続けた。白濁しはじ
めてから30分後より、湯浴の温度を徐々に下げて
約40分を要して内容物の温度を40℃にまで低下さ
せた。次いで、攪拌を続けながら、水70gを加
え、20分間攪拌して均一なスラリーを得た。 このスラリーに25%アンモニア水を加えて、PH
7.5まで中和したのち、ガラスフイルターで吸引
過し、さらに約50mlの水で2回注水洗浄した。
得られたケーキは139gであり、実施例1におけ
ると同様にして乾燥した固形分は31.0%であつ
た。この乾燥ケーキについて実施例1におけると
同様にして粒子状態を観察したところ、その粒子
は平均粒子径が約0.5μの微粒子の凝集体であつ
た。 この生成樹脂を実施例1におけると同様にして
分散液とし、その分散液を用いて実施例1におけ
ると同様にして抄紙し、得られた紙の白色度及び
不透明度を同様にして測定した。 その結果は第2表に示すとおりであつた。 実施例 3 第1表に示すように、樹脂製造条件の一部を変
更し、そのほかは実施例1におけると同様にして
反応させて樹脂を製造し、その樹脂について同様
の試験を行なつた。 その結果は第2表に示すとおりであつた。 比較例 1〜4 第1表に示すように、樹脂製造条件の一部を変
更し、そのほかは実施例1におけると同様にして
反応させて樹脂を製造した。得られた各樹脂を用
いて実施例1におけると同様の試験をした。 その結果は第2表に示すとおりであつた。
The present invention relates to a method for producing a urea formaldehyde resin, and particularly to a method for producing a urea formaldehyde resin that is excellent as a filler for improving the optical properties of paper. (Industrial Application Field) The urea-formaldehyde resin obtained by the production method of the present invention has a molar ratio of urea and formaldehyde of 1:1.2 to 1:2.0, is insoluble and infusible due to cross-linking, and It has an aggregate structure of fine particles of 1μ or less, and when used as a paper filler, it has an excellent effect on improving optical properties such as whiteness and opacity of paper, so it is advantageous in the paper manufacturing field. used for. (Prior art) Urea resin used to improve optical properties such as whiteness and opacity of paper is formed into an aggregate structure of fine particles of 1μ or less, and has an appropriate pore structure and light irradiation. The need to have a scattering surface is already well known. In order to produce such urea-formaldehyde resin, a method is generally used in which urea and formaldehyde are precondensed, and the resulting water-soluble urea resin is brought into contact with an acidic catalyst aqueous solution to cause a crosslinking reaction to form particles of urea-formaldehyde resin. (Special Publication No. 49-2350, Japanese Patent Publication No. 82195-1972, and Special Publication No. 1982-82195)
-Refer to each publication No. 26686). However, all of these methods involve precondensation, and have drawbacks such as complicated manufacturing steps and long production times. Furthermore, attempts have been made to directly react urea and formaldehyde to produce porous crosslinked resins or fine crosslinked resin particles for resins used in other fields of application. For example, a method has been proposed in which urea and formaldehyde are brought into contact with an aqueous acidic catalyst solution at a molar ratio of 1:0.5 to 1:1.2 (Japanese Patent Publication No. 47-36879). However, although the resin obtained by this method has a porous microstructure, it is a lump of fine particles that are tightly fused together, and it is not only difficult to crush, but also difficult to use as a paper filler. Does not show excellent effects in improving optical properties such as transparency. Furthermore, JP-A-48-12386 discloses a method in which an aqueous formaldehyde solution to which an acid catalyst is added is stirred and a urea aqueous solution is successively added little by little to cause a reaction. However, even in this method, a hard fused lump is likely to be formed, and the resulting resin does not exhibit an excellent effect on improving the opacity of paper. (Problems to be Solved by the Invention) As described above, various methods have been known for producing urea-formaldehyde resins.
There was no way to easily produce it by directly reacting urea and formaldehyde. The present invention combines urea-formaldehyde resin, which can exhibit excellent effects on improving optical properties of paper such as whiteness and opacity, into urea and formaldehyde resins without going through complicated steps such as precondensation. The object of the present invention is to provide an easy production method by directly reacting formaldehyde or the like. (Means for Solving the Problem) As a result of various studies aimed at solving the above-mentioned problems, the present inventors have discovered that the objective can be achieved by directly reacting urea and formaldehydes under specific conditions. This led to the discovery of the present invention. That is, the method for producing urea-formaldehyde resin of the present invention involves uniformly mixing urea, formaldehydes, an ammonium sulfate catalyst, and water in the presence of a protective colloid agent, and the ratio of urea and formaldehyde is urea:formaldehyde. A mixed aqueous solution having a molar ratio of 1:1.2 to 1:2.0 and a total concentration of urea and formaldehyde of 18 to 40% by weight is reacted while being maintained at a temperature of 60 to 95°C. This is the way to do it. Formaldehydes in the present invention include:
Usually, a formaldehyde aqueous solution having a formaldehyde concentration of 30 to 55% by weight is used, and the formaldehyde aqueous solution may contain about 1 to 8% by weight of methanol. Further, as the formaldehyde, water-soluble formaldehyde polymers such as paraformaldehyde can also be used. The molar ratio of urea and formaldehyde in the present invention is 1:1.2 to 1:2.0, preferably 1:1.3 to 1:2.0.
1:1.8. When the molar ratio is greater than 1:1.20, the particles of the urea-formaldehyde resin produced become large, and many particles having a particle size of 1 μ or more are mixed, resulting in a poor effect on improving the optical properties of paper. Furthermore, if the molar ratio is smaller than 1:2.0, not only the resin yield based on formaldehyde will decrease, but also unreacted formaldehyde will be included in the resulting resin, making it necessary to remove it. Ammonium sulfate is used as a catalyst in the present invention. If a catalyst other than ammonium sulfate, for example an acid catalyst, is used, only a resin is obtained which is not very effective in improving the optical properties of the paper. Ammonium sulfate containing a large amount of free acid is not preferred;
Those having a pH of 5 to 7 when made into a ~10% by weight aqueous solution are preferred. The amount of ammonium sulfate catalyst used is
Based on the total amount of urea and formaldehydes
It is within the range of 0.5 to 5% by weight. A protective colloid agent is used to prepare the reaction system aqueous solution to be reacted in the present invention. When the reaction is carried out in the same manner as in the present invention without using a protective colloid agent, but using an aqueous solution prepared in the same manner as in the present invention (i.e., a homogeneous mixed aqueous solution of urea, formaldehydes, and ammonium sulfate catalyst). As shown in Comparative Example 1 in Table 2, the resulting urea-formaldehyde resin contains about 30% particles with a particle size of 1 μ or more, and when paper is made using this filler, the whiteness and impurity of the paper decrease. Transparency cannot be sufficiently improved. The amount of protective colloid used in the present invention is usually determined based on the total amount of urea and formaldehyde.
0.1-5% by weight, preferably 0.5-5% by weight. The protective colloid agent is preferably added at a stage before the three components, urea, formaldehyde, and ammonium sulfate catalyst, are mixed and dissolved with water to form a uniform mixed solution. That is, the protective colloid agent can be used, for example, as an aqueous solution of urea,
It may be added to either the formaldehyde or ammonium sulfate catalyst aqueous solution, or it may be added to a mixed aqueous solution of two of these three, but the protection is added after the three have become a complete mixed aqueous solution. When adding a colloidal agent, the sufficient effect cannot be exerted unless it is thoroughly mixed within a very short period of time before gel formation begins. As the protective colloid agent used in the present invention, water-soluble polymer compounds are used, typical examples of which include alkali metal salts of carboxymethyl cellulose (especially Na salts), alkali metal salts of carboxymethyl cellulose (especially Na salts) , alkali metal salts of alginic acid (especially Na salt), alkali metal salts of polyacrylic acid (especially Na salt), and other polymer electrolytes; polyvinyl alcohol, methyl cellulose,
Examples include nonionic water-soluble polymers such as ethyl cellulose, hydroxyethyl cellulose, and cornstarch. These protective colloid agents are 1
One species may be used alone, or two or more species may be used in combination. The water present in the reaction system of the present invention is a solvent for the raw materials urea and formaldehyde, and at the same time is a reaction medium for forming a fine urea-formaldehyde resin, and the quantitative ratio of water is extremely important. . That is, in the reaction system of the present invention, water must be present in a proportion such that the total concentration of the reactants urea and formaldehyde is 18 to 40% by weight, preferably 25 to 40% by weight. When the reaction is carried out in a reaction system where the total concentration of reactants is lower than 25% by weight, the particle size of the resin produced tends to increase, and when the same concentration is lower than 18% by weight, large spherical particles of 1μ or more are found in the resin produced. It becomes mixed with. In addition, resins with such large particle diameters are less effective in improving the optical properties of paper. Additionally, when reacting at reactant concentrations greater than 40% by weight, the resulting resin becomes a hard gel, and such hard gel-like resins require complex and difficult post-treatments when used to improve the optical properties of paper. However, even with such post-treatment, a sufficient effect of improving optical characteristics may not be obtained. The reaction temperature in the present invention is 60-95°C, preferably 60-90°C. 1 μ if the reaction temperature is too low
If the reaction temperature is too high, particles tend to fuse together during the production process.
The crushing operation in the post-processing process becomes complicated. Although the production reaction of the present invention can be carried out in various embodiments, typical embodiments will be described as follows:
First, the urea and ammonium sulfate catalysts may be dissolved in water separately or simultaneously. In addition, protective colloid agents are usually
Dissolve separately in water. Formaldehyde is also usually used dissolved in water in advance. Regarding the order of addition of each of these components, before a uniform mixed aqueous solution of urea, formaldehydes, and ammonium sulfate catalyst is formed, an aqueous solution of the protective colloid agent is added to an aqueous solution of one of the above three components, or an aqueous solution of any of the three components. It is desirable to add the formaldehyde to the mixed aqueous solution of two of them, and it is desirable to prevent the formaldehyde and the ammonium sulfate catalyst from being mixed before a uniform mixed aqueous solution of the three is formed. . However, other than that, there are no particular restrictions on the order of addition. In addition, if formaldehydes and ammonium sulfate catalyst are mixed, the two will gradually react and the pH will decrease.
The result is the same as using an acid catalyst, so
Undesirable. Thus, once a homogeneous mixed aqueous solution of the three components is formed in the presence of the protective colloid, it can be immediately stirred.
The temperature is raised to a desired reaction temperature within the range of 60 to 90°C, or an aqueous solution of one or a mixed aqueous solution of the two is stirred, the temperature of which has been raised in advance to the desired reaction temperature within the range of 60 to 90°C. At the same time, aqueous solutions of other components are added thereto to carry out the reaction. When the homogeneous mixed aqueous solution of the three components reaches the reaction temperature, ammonium sulfate and formaldehyde react, and the pH of the mixed solution increases.
gradually changes to the acidic side, and after about 0.5 to 3 minutes, cloudiness begins, and after about 2 to 15 minutes, a gel-like substance of hardened resin is obtained. For small-scale reactions,
Stop stirring as soon as a homogeneous mixture is obtained.
After forming a gel-like cured product, the cured product is taken out. In addition, in the case of a large-scale reaction, the concentration of the reaction system should be kept as low as possible within the above range, and the gelation should be promoted while it is in a fluid state by stirring gently.
The resulting resin is removed as a slurry of bulk gel.
In either case, proceed to the next post-processing step. That is, since the resulting resin thus obtained contains a catalyst, trace amounts of unreacted substances, water-soluble intermediates, etc., it is poured into a large amount of water to reduce the solid content concentration to 10.
The ~15% by weight slurry is stirred for 0.5 to 2 hours. This agitation breaks up the lumpy gel, which is then separated, washed with water if necessary, and then taken out. The resin taken out is 40 to 80
Since it contains % by weight of water, after drying, it is ground into aggregates of about 5 to 20 μm in size using a grinder. Also,
Water may be added again to the water-containing produced resin and wet-milled to a size of about 5 to 20 microns using a sand mill or the like. In addition, in order to perform the above gel formation process continuously, a mixed aqueous solution of both of the above reactants, to which a protective colloid agent has been added, and an aqueous ammonium sulfate catalyst solution are continuously added to a line mixer, etc. After supplying and mixing uniformly in the same mixer for a residence time until it starts to become cloudy, the mixture can be continuously transferred to a belt conveyor, bucket conveyor, etc., and it can be continuously gelled on the conveyor. It is possible. (Effect of the invention) When the production method of the present invention is used, urea and formaldehyde are directly reacted without going through a precondensation process, and when used as a paper filler, the whiteness and opacity of paper can be improved. A urea formaldehyde resin that is highly effective in improving optical properties such as the following can be produced simply and easily. (Examples etc.) Next, Examples and Comparative Examples will be given and explained in detail. "%" in these examples means % by weight unless otherwise specified. Example 1 50 g of water, 36 g of urea, 6 g of ammonium sulfate, and 50 g of a 1% carboxymethyl cellulose sodium salt aqueous solution were placed in a 500 ml separable flask equipped with a stirrer, and the mixture was stirred while heating in a hot water bath to uniformly dissolve them. . When the temperature of the liquid reaches 80℃, add 64g of 37% formalin and mix evenly.
Stirring was stopped 10 seconds after formalin addition. The molar ratio of urea and formaldehyde in this reaction was 1:1.32, and the total concentration of the reactants urea and formaldehyde was 29.9%. In this reaction, the temperature of the liquid decreased to about 73°C by adding formalin, but after a few minutes it rose to 93°C.
The temperature rose to about 88°C after 10 minutes. In addition, the contents began to become cloudy about 40 seconds after stopping stirring, and
After a few minutes, it became gel-like. The main reaction conditions for this reaction are summarized in Table 1. The temperature of the contents, which had reached about 88°C 10 minutes after the addition of formalin, was lowered to 43°C over about 40 minutes by gradually lowering the temperature of the hot water bath. Next, take out this gel-like content and put it in a mortar, and place it in a mortar with a diameter of 5 to 10 mm.
Crush it to about mm size, then transfer it to a 500ml beaker.
85 g of water was added and stirred at room temperature for 20 minutes to obtain a finely ground slurry. to this slurry
After adding 25% ammonia water and neutralizing it to pH 7.5,
It was suctioned through a glass filter, and then washed with about 50 ml of water twice. The resulting cake is
The weight was 184 g, and the solid content was 26.0% when measured after drying at 120° C. for 2 hours. This dried cake was dispersed ultrasonically in acetone, and several drops were dropped onto a cover glass.
The acetone was volatilized and the state of the particles was observed using a scanning electron microscope at 10,000 times magnification. The particles were aggregates of fine particles with an average particle diameter of about 0.3μ, and no spherical particles with a diameter of 1μ or more were observed. Next, this dried cake was dispersed in water at a concentration of 5%, and ground at 250 rpm for 10 minutes using a wet dispersion device (Atritor, manufactured by Mitsui Miike Seisakusho) to obtain a dispersion liquid. Using this dispersion liquid, paper was made under the following papermaking conditions, and the whiteness and opacity were measured using a Hunter whiteness meter. The results were as shown in Table 2. In addition, the measurement of whiteness is based on JIS P-
8123 method, and opacity measurement according to JIS P
-8138 method. Paper making conditions Pulp composition Softwood kraft pulp 20% (NBKP) Thermomechanical pulp 30% (TMP) Chemical ground pulp 20% (CGP) Deinked pulp (DIP) 30% Pulp softness 240ml Resin addition amount Bone dry pulp 3% tsubo Amount 46-47 g/m 2 Example 2 150 g of water, 36 g of urea, 6 g of ammonium sulfate, and 50 g of a 1% sodium carboxymethylcellulose salt aqueous solution were placed in a 500 ml separable flask equipped with a stirrer, and stirred while heating in a hot water bath. , uniformly dissolved. When the temperature of the liquid reaches 40℃
64 g of 37% formalin was added and stirring was continued at approximately 300 rpm. The temperature of the liquid is approximately 74℃ due to formalin injection.
However, after a few minutes it rose to about 89°C, and 30 minutes later it reached 82°C. Further, the contents began to become cloudy about 90 seconds after formalin was added, and at this point the stirring speed was increased to about 600 rpm and stirring was continued. Thirty minutes after it started becoming cloudy, the temperature of the water bath was gradually lowered, and it took about 40 minutes to bring the temperature of the contents down to 40°C. Then, while stirring, 70 g of water was added and stirred for 20 minutes to obtain a uniform slurry. Add 25% ammonia water to this slurry and adjust the pH
After neutralizing to 7.5, it was filtered through a glass filter and washed twice with about 50 ml of water.
The resulting cake weighed 139 g and was dried in the same manner as in Example 1, with a solids content of 31.0%. When the particle state of this dried cake was observed in the same manner as in Example 1, it was found that the particles were aggregates of fine particles with an average particle diameter of about 0.5 μm. This resulting resin was made into a dispersion liquid in the same manner as in Example 1, and paper was made using the dispersion liquid in the same manner as in Example 1, and the whiteness and opacity of the obtained paper were measured in the same manner. The results were as shown in Table 2. Example 3 As shown in Table 1, a resin was produced by reacting in the same manner as in Example 1, with some changes in the resin production conditions, and the same tests were conducted on the resin. The results were as shown in Table 2. Comparative Examples 1 to 4 As shown in Table 1, resins were produced by reacting in the same manner as in Example 1, except that some of the resin production conditions were changed. The same tests as in Example 1 were conducted using each of the obtained resins. The results were as shown in Table 2.

【表】 *2…反応体濃度は仕込時の尿素とホル
ムアルデヒドの合計濃度を示す。
[Table] *2...Reactant concentration indicates the total concentration of urea and formaldehyde at the time of preparation.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 尿素、ホルムアルデヒド類、硫酸アンモニウ
ム触媒及び水を保護コロイド剤の存在下で均一に
混合溶解して得られた、該尿素とホルムアルデヒ
ド類の割合が尿素:ホルムアルデヒドモル比で
1:1.2〜1:2.0であり、かつ該尿素とホルムア
ルデヒド類の合計濃度が18〜40重量%である混合
水溶液を、60〜95℃の温度に保持して反応させる
ことを特徴とする尿素ホルムアルデヒド樹脂の製
造方法。
1. Urea, formaldehydes, ammonium sulfate catalyst, and water are uniformly mixed and dissolved in the presence of a protective colloid, and the ratio of the urea and formaldehydes is 1:1.2 to 1:2.0 in terms of urea:formaldehyde molar ratio. A method for producing a urea-formaldehyde resin, which comprises reacting a mixed aqueous solution containing urea and formaldehyde in a total concentration of 18 to 40% by weight while maintaining the temperature at 60 to 95°C.
JP15559584A 1984-07-27 1984-07-27 Production of urea formaldehyde resin Granted JPS6136311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15559584A JPS6136311A (en) 1984-07-27 1984-07-27 Production of urea formaldehyde resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15559584A JPS6136311A (en) 1984-07-27 1984-07-27 Production of urea formaldehyde resin

Publications (2)

Publication Number Publication Date
JPS6136311A JPS6136311A (en) 1986-02-21
JPH0542454B2 true JPH0542454B2 (en) 1993-06-28

Family

ID=15609461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15559584A Granted JPS6136311A (en) 1984-07-27 1984-07-27 Production of urea formaldehyde resin

Country Status (1)

Country Link
JP (1) JPS6136311A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073925C (en) * 1998-03-16 2001-10-31 刘作程 Preparation of new-type synthetic paper and production technology thereof
CN100339437C (en) * 2002-03-06 2007-09-26 佳能株式会社 Dispersion composition containing functional substance, method of forming image and image forming apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869892A (en) * 1971-12-20 1973-09-21
JPS5123601A (en) * 1974-03-30 1976-02-25 Mitsubishi Electric Corp Kaitendenkino kaitenshi
JPS56131658A (en) * 1980-03-21 1981-10-15 Mitsui Toatsu Chem Inc Improvement in dispersion of loading material
JPS5726686A (en) * 1980-07-22 1982-02-12 Kohjin Co Ltd Preparation of indole derivative
JPS5753519A (en) * 1980-09-16 1982-03-30 Mitsui Toatsu Chem Inc Preparation of crosslinked urea-formaldehyde polymer particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869892A (en) * 1971-12-20 1973-09-21
JPS5123601A (en) * 1974-03-30 1976-02-25 Mitsubishi Electric Corp Kaitendenkino kaitenshi
JPS56131658A (en) * 1980-03-21 1981-10-15 Mitsui Toatsu Chem Inc Improvement in dispersion of loading material
JPS5726686A (en) * 1980-07-22 1982-02-12 Kohjin Co Ltd Preparation of indole derivative
JPS5753519A (en) * 1980-09-16 1982-03-30 Mitsui Toatsu Chem Inc Preparation of crosslinked urea-formaldehyde polymer particle

Also Published As

Publication number Publication date
JPS6136311A (en) 1986-02-21

Similar Documents

Publication Publication Date Title
CN1891626B (en) Process for producing hydrophobic silica powder
US3931063A (en) Process for the manufacture of porous solids consisting of crosslinked urea-formaldehyde polycondensation products
JPH11500482A (en) Cellulose particles, production method thereof and use thereof
JP2003519724A (en) Low viscosity dispersion of microcapsules comprising melamine-formaldehyde resin with reduced formaldehyde
JP5500758B2 (en) Non-heat-meltable granular phenol resin powder and method for producing the same
CN108529659A (en) A kind of synthetic method of micron order barium sulfate microballoon
WO2005052256A2 (en) Paper making process and starch compositions comprising a crosslinking agent for use in same
JPH0542454B2 (en)
US4960856A (en) Urea-formaldehyde compositions and method of manufacture
JPH0542455B2 (en)
KR100580271B1 (en) Amino resin composite and method of producing same
CN1035859A (en) The production method of paper
US4035328A (en) Continuous process for making urea formaldehyde pigment
CN111320754B (en) Preparation method of spherical polysiloxane
US2642360A (en) Manufacture of wet strength paper
JPS5855812B2 (en) Manufacturing method of microcapsules
KR19980702368A (en) Cellulose particles, preparation method thereof and uses thereof
MXPA02010035A (en) Method for the production of easily wetted, water soluble, powdered at least alkylated non ionic cellulose ethers.
JPS601238A (en) Production of porous phenolic resin
JPH0564164B2 (en)
CA2052534C (en) Method for manufacturing amino-aldehyde compositions
CN113402474B (en) Preparation method and application of melamine cyanurate
JPS61204035A (en) Production of microcapsule
EP0014026B1 (en) Paper containing partially cured amino/aldehyde fibres and process for making it
JP2563909B2 (en) Pulp and pulp manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees