JPH054179B2 - - Google Patents

Info

Publication number
JPH054179B2
JPH054179B2 JP12476584A JP12476584A JPH054179B2 JP H054179 B2 JPH054179 B2 JP H054179B2 JP 12476584 A JP12476584 A JP 12476584A JP 12476584 A JP12476584 A JP 12476584A JP H054179 B2 JPH054179 B2 JP H054179B2
Authority
JP
Japan
Prior art keywords
mold
temperature
cooling water
molten steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12476584A
Other languages
Japanese (ja)
Other versions
JPS613644A (en
Inventor
Yoshitaka Ooiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12476584A priority Critical patent/JPS613644A/en
Publication of JPS613644A publication Critical patent/JPS613644A/en
Publication of JPH054179B2 publication Critical patent/JPH054179B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は連続鋳造用鋳型(以下、単に鋳型とい
う。)の冷却水制御方法に係り、詳しくは、鋳型
壁面温度とともに溶鋼の鋳込温度を検出し、鋳型
で必要最小限の最適抜熱が行なわれて凝固層が形
成されるよう、冷却水量を制御する方法に係る。
[Detailed description of the invention] <Object of the invention> Industrial field of application The present invention relates to a cooling water control method for a continuous casting mold (hereinafter simply referred to as a mold). The present invention relates to a method of detecting the filling temperature and controlling the amount of cooling water so that the necessary minimum optimum heat removal is performed in the mold and a solidified layer is formed.

従来の技術 一般に、溶鋼の連続鋳造は、溶鋼を取鍋、タン
デイツシユならびに連続鋳造用鋳型の順に移送し
て行なわれる。連続鋳造用鋳型においては鋳型内
面からの冷却によつて溶鋼は急速に凝固し、この
凝固層を外殻として内部未凝固の状態じ順次下方
に引抜かれ、鋳型下方のいわゆる二次冷却帯にお
いて散水冷却により完全に凝固されている。従つ
て、初期段階での溶鋼の冷却、すなわち、連続鋳
造用鋳型内の冷却はその内部を位置する冷却水に
より行なわれ、とくに、鋳型内の冷却は、鋳造の
高速化及び品質上の観点から重要な問題であり、
種々の連続鋳造用鋳型の冷却水制御方法が提案さ
れているが、次の通りの問題がある。
BACKGROUND OF THE INVENTION Generally, continuous casting of molten steel is carried out by sequentially transferring the molten steel to a ladle, a tundish, and a continuous casting mold. In continuous casting molds, molten steel rapidly solidifies by cooling from the inside of the mold, and is sequentially pulled downward with this solidified layer as an outer shell, leaving the inside unsolidified, and water is sprayed in the so-called secondary cooling zone below the mold. Completely solidified by cooling. Therefore, the cooling of the molten steel in the initial stage, that is, the cooling inside the continuous casting mold, is carried out by the cooling water located inside the mold. is an important issue,
Various cooling water control methods for continuous casting molds have been proposed, but they have the following problems.

すなわち、従来から実施されている連鋳鋳型の
冷却水制御方法を大別すると、(1)定値流量制御方
法、(2)鋳片表面温度を一定に制御する方法、(3)鋳
造速度にカスケードさせる方法等に分けられる。
In other words, the conventional cooling water control methods for continuous casting molds can be roughly divided into: (1) constant flow rate control method, (2) method of controlling slab surface temperature at a constant level, and (3) cascade control method for casting speed. It can be divided into methods such as

この定値流量制御方法とは連鋳鋳型に供給する
冷却水の流量を常時一定流量に確保するよう制御
する方法である。
This constant flow rate control method is a method of controlling the flow rate of cooling water supplied to the continuous casting mold so as to always maintain a constant flow rate.

しかし、定値流量制御方法によつて冷却水の流
量を一定に保つても、連鋳鋳型壁を通過する熱量
は鋳型壁面テーパ、パウダーの分布状況、鋳片サ
イズ鋼種等多くの鋳造条件によつて変化し、この
ため、設定流量は安全率を大きくとつた過大流量
として制御することになつて、過冷により鋳片表
面に割れが生じる問題がある。
However, even if the flow rate of cooling water is kept constant using a constant flow rate control method, the amount of heat passing through the continuous casting mold wall depends on many casting conditions such as the mold wall taper, powder distribution, slab size, steel type, etc. Therefore, the set flow rate has to be controlled to an excessive flow rate with a large safety factor, and there is a problem that cracks occur on the surface of the slab due to overcooling.

次に、鋳片表面温度を一定に制御する方法とは
鋳片の表面温度を計測し、これを一定にするよ
う、冷却水の流量を制御する方法である。
Next, the method of controlling the surface temperature of the slab to be constant is a method of measuring the surface temperature of the slab and controlling the flow rate of cooling water so as to keep it constant.

しかし、この方法では、鋳片表面温度は2次冷
却帯であるスプレー冷却水に最も左右されるた
め、モールド冷却水の制御はあまり関係が無く、
最も基本となる鋳片表面温度計測自体に問題があ
り、実施されているところは殆ど無い。
However, in this method, the surface temperature of the slab is most influenced by the spray cooling water in the secondary cooling zone, so controlling the mold cooling water has little to do with it.
There are problems with the most basic method of measuring the surface temperature of slabs, and there are very few places where this method is carried out.

最後に、鋳造速度にカスケードさせる方法は、
特開昭49−107928号あるいは特開昭52−46331号
に示される如く、鋳型内を通過する冷却水量と、
この冷却水の鋳型供給側温度と鋳型排出側温度と
の温度差を用いて求まる抜熱量とに従つて鋳造速
度を制御する方法である。しかし、これはタンデ
イツシユ内溶鋼温度とは無関係に冷却水流量を定
流して冷却する方法のため、鋳込温度の変動によ
り高温鋳片の鋳造上好ましくない必要以上の熱を
鋳片でうばつてしまうことがあり、ブレイクアウ
トに至るかの問題がある。
Finally, the method to cascade casting speed is
As shown in JP-A-49-107928 or JP-A-52-46331, the amount of cooling water passing through the mold,
This method controls the casting speed in accordance with the amount of heat removed using the temperature difference between the mold supply side temperature of the cooling water and the mold discharge side temperature. However, since this method uses a constant flow of cooling water to cool the steel regardless of the temperature of the molten steel in the tundish, fluctuations in the pouring temperature cause the slab to dissipate more heat than necessary, which is undesirable for casting high-temperature slabs. There is a problem of whether this can lead to a breakout.

発明が解決しようとする問題点 本発明は前記問題の解決を図ることを目的と
し、具体的には、鋳型の冷却水量のほか、溶鋼の
鋳込温度を測定して、その鋳込温度と溶鋼成分値
からの凝固点等から求められる溶鋼の過熱度から
鋳型抜熱量の目標値を定め、鋳型壁面の温度を測
定すると共に鋳型内鋳片温度を検出して、前記目
標値に一致させるよう、鋳型から抜熱させて、冷
却水量を制御する方法を提案する。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned problems. Specifically, in addition to the amount of cooling water in the mold, the casting temperature of molten steel is measured, and the casting temperature and the molten steel are measured. A target value for the heat extraction amount from the mold is determined from the degree of superheating of the molten steel determined from the solidification point etc. from the component values, the temperature of the mold wall surface is measured, the temperature of the slab inside the mold is detected, and the temperature of the mold is adjusted to match the target value. We propose a method to control the amount of cooling water by removing heat from the system.

〈発明の構成〉 問題点を解決するための手段ならびにその作用 すなわち、本発明方法は連続鋳造用鋳型の冷却
水を制御するに際し、タンデイツシユ内の溶鋼温
度と鋳型壁面温度とを測定し、この溶鋼側温値と
溶鋼成分値から求められる凝固点温度との差とし
ての溶鋼の過熱度を求め、この過熱度にもとずい
て鋳型抜熱量の目標値を求め、この目標値に一致
するよう、鋳型から抜熱させて冷却水量を制御す
ることを特徴とする。
<Structure of the Invention> Means for Solving the Problems and Their Effects That is, the method of the present invention measures the molten steel temperature in the tundish and the mold wall temperature, and measures the molten steel temperature in the tundish when controlling the cooling water of the continuous casting mold. Determine the degree of superheating of the molten steel as the difference between the side temperature value and the freezing point temperature determined from the molten steel composition value, determine the target value for the amount of heat extracted from the mold based on this degree of superheating, and adjust the mold temperature to match this target value. The feature is that the amount of cooling water is controlled by removing heat from the cooling water.

従つて、本発明方法によつて冷却水を制御する
と、鋳型内において凝固層を形成するための必要
最小限の抜熱ができ、このため、冷却水使用量削
減、ブレークアウト発生の低減および高温鋳片鋳
造可能等の効果が達成できる。
Therefore, by controlling the cooling water using the method of the present invention, it is possible to remove the minimum amount of heat necessary to form a solidified layer in the mold, thereby reducing the amount of cooling water used, reducing the occurrence of breakouts, and reducing high temperature. Effects such as being able to cast slabs can be achieved.

そこで、上記構成について更に具体的に説明す
ると、次の通りである。
Therefore, the above configuration will be explained in more detail as follows.

上記の如く、連続鋳造においてその鋳型の冷却
機能は重要である。過冷却又は冷却不足は上記の
如く、鋳片の表面割れ、ブレイクアウト等の問題
を引起す。従つて、鋳型では所定の抜熱量を維持
することが重要であり、その抜熱量は鋳込温度に
深く関係している。すなわち、鋳込温度が高目で
あれば強冷却、低目であればそれに対応して緩冷
却を実現させることが必要である。換言すれば、
鋳型では溶鋼から必要最小限の抜熱を行ない、凝
固層の表皮を形成することが望まれる。
As mentioned above, the cooling function of the mold is important in continuous casting. As mentioned above, supercooling or insufficient cooling causes problems such as surface cracking and breakout of the slab. Therefore, it is important to maintain a predetermined amount of heat removal from the mold, and the amount of heat removal is closely related to the casting temperature. That is, if the casting temperature is high, it is necessary to achieve strong cooling, and if the casting temperature is low, it is necessary to achieve slow cooling. In other words,
In the mold, it is desirable to remove the necessary minimum amount of heat from the molten steel to form a solidified layer.

そこで、本発明方法においては、鋳型の冷却水
流量を、表皮形成するための必要最小限の抜熱が
行なわれるよう、制御することが一つの特徴であ
り、この点から、タンデイツシユ内溶鋼温度、す
なわち、鋳込温度ならびに鋳型壁面の温度を測定
し、これらの測温値を用いて冷却水の流量制御を
行なう。
Therefore, one feature of the method of the present invention is to control the flow rate of cooling water in the mold so that the minimum amount of heat necessary for forming the skin is carried out. That is, the casting temperature and the temperature of the mold wall surface are measured, and the flow rate of cooling water is controlled using these temperature measurements.

すなわち、第1図は本発明方法を実施する装置
の一例の配置図であつて、第1図において符号1
はタンデイツシユ、2は溶鋼、4は鋳型を示し、
この鋳型4はスラブ鋳造用、ブルーム鋳造用の何
れかの型式のものでも使用できる。この鋳型4に
は冷却水供給配管12を通つて冷却水が供給さ
れ、冷却水量は供給配管12の流量計7で検出さ
れると共に、流量調節弁8で制御され、冷却後
は、冷却水排出配管13から排出される。また、
鋳込温度、つまり、タンデイツシユ内の溶鋼温度
は溶鋼温度計3によつて検出され、鋳型壁面温度
は鋳型銅板中に埋設された温度計6によつて検出
される。
That is, FIG. 1 is a layout diagram of an example of an apparatus for carrying out the method of the present invention, and in FIG.
indicates the tandate, 2 indicates the molten steel, 4 indicates the mold,
The mold 4 can be of either type for slab casting or bloom casting. Cooling water is supplied to the mold 4 through a cooling water supply pipe 12, and the amount of cooling water is detected by a flow meter 7 in the supply pipe 12 and controlled by a flow rate control valve 8. After cooling, the cooling water is discharged. It is discharged from the pipe 13. Also,
The casting temperature, that is, the temperature of the molten steel in the tundish, is detected by a molten steel thermometer 3, and the mold wall temperature is detected by a thermometer 6 embedded in the mold copper plate.

この際、供給管12からの冷却水量は例えば流
量調整弁8により制御するが、この制御時に、鋳
型4からの抜熱量Qが後記の(5)式に示す最適値
Q1に一致するよう冷却水量を制御する。
At this time, the amount of cooling water from the supply pipe 12 is controlled by, for example, the flow rate adjustment valve 8, and at the time of this control, the amount of heat removed from the mold 4 is set to the optimum value shown in equation (5) below.
Control the amount of cooling water to match Q1 .

まず、鋳型4に注入された溶鋼2は鋳型4から
の抜熱によつて凝固層10が形成されて下方に引
抜かれる。この時の鋳型での抜熱量Qを求める
と、(1)式で求められる。
First, the molten steel 2 injected into the mold 4 forms a solidified layer 10 by removing heat from the mold 4, and is drawn out downward. The amount of heat Q removed by the mold at this time can be calculated using equation (1).

Q=KX△T×冷却水の流量/2×鋳型サイズ×鋳型内溶
鋼深さ…(1) (1)式において、Kはデイメンジヨン補正係数、
鋳型サイズは(長辺+短辺)であつて、この値は
知られており△Tは鋳型冷却水で冷却された溶鋼
の温度降下分である。この温度降下分(△T)は
上記の通りに検出されたタンデイツシユ内溶鋼温
度Tと、鋳型壁面温度、つまり、銅板温度に伝熱
係数を考慮して算出した鋳型内溶鋼温度Tkとの
差、つまり、△T=T−Tkから求められる。
Q=KX△T×cooling water flow rate/2×mold size×molten steel depth in mold...(1) In equation (1), K is the dimension correction coefficient,
The mold size is (long side + short side), and this value is known, and ΔT is the temperature drop of molten steel cooled by mold cooling water. This temperature drop (△T) is the difference between the molten steel temperature T in the tandate detected as described above and the molten steel temperature Tk in the mold calculated by considering the copper plate temperature and the heat transfer coefficient. That is, it is determined from ΔT=T−Tk.

また、冷却水の流量は鋳型冷却水の流量計7に
よつて求められ(ただし、この量は抜熱量Qが最
適値Q1に一致するよう制御される。)、溶鋼深さ
は鋳型内溶鋼レベル計5によつて検出し、このレ
ベル信号から算出できる。従つて、タンデイツシ
ユ内溶鋼温度、鋳型壁面温度ならびに鋳型内の溶
鋼レベルを検出すると、(1)式によつて、鋳型での
抜熱量Qは常時算出できる。
In addition, the flow rate of cooling water is determined by the mold cooling water flow meter 7 (however, this amount is controlled so that the amount of heat removed Q matches the optimum value Q1 ), and the molten steel depth is determined by the molten steel in the mold. It can be detected by the level meter 5 and calculated from this level signal. Therefore, by detecting the molten steel temperature in the tundish, the mold wall surface temperature, and the molten steel level in the mold, the amount of heat Q removed from the mold can be calculated at any time using equation (1).

次に、この抜熱量Qは鋳型抜熱量の最適値Q1
に一致するよう、冷却水量を制御するが、この最
適値Q1は、既知の溶鋼の成分により液相線温度
TLLを算出し、実際の鋳込温度と関連させて求
める。
Next, this amount of heat removed Q is the optimum value of the amount of heat removed from the mold Q 1
The amount of cooling water is controlled to match Q1, but this optimum value Q1 is determined by the liquidus temperature due to the known composition of molten steel.
Calculate TLL and find it in relation to the actual casting temperature.

すなわち、液相線温度TLLは凝固温度であつ
て、次の通り溶鋼成分から求められる。
That is, the liquidus temperature TLL is the solidification temperature, and is determined from the molten steel components as follows.

C0.5%のとき TLL=1538−{55×(%C)+80×(%C)2
13×(%Si)+4.8×(%Mn)+1.5×(%Cr)+4.3
×(%Ni)} …(2) C>0.5%のとき TLL=1538−{44−24(%C)+52×(%C)2
+13×(%Si)+4.8×(%Mn)+1.5×(%Cr)+
4.3×(%Ni)} …(3) なお、(2)式、(3)式で(%C)、(%Si)、(%Mn)
(%Cr)、(%Ni)は溶鋼中のC,Si,Mn,Cr,
Niの各含有量を示す。
When C is 0.5% TLL=1538−{55×(%C)+80×(%C) 2 +
13×(%Si)+4.8×(%Mn)+1.5×(%Cr)+4.3
×(%Ni)} …(2) When C>0.5% TLL=1538−{44−24(%C)+52×(%C) 2
+13×(%Si)+4.8×(%Mn)+1.5×(%Cr)+
4.3×(%Ni)} …(3) In addition, (%C), (%Si), (%Mn) in equations (2) and (3)
(%Cr), (%Ni) are C, Si, Mn, Cr,
Each content of Ni is shown.

TLLが求められると、鋳込温度はタンデイツ
シユ内で温度計3により測定されるため、その測
温値Tとの差として(4)式から溶鋼の過熱度TsPH
が求められる。
When TLL is determined, since the casting temperature is measured by thermometer 3 in the tundish, the difference from the measured temperature T is calculated from equation (4) to determine the superheating degree TsPH of the molten steel.
is required.

TspH=T−TLL …(4) ただし、(4)式でTはタンジイツシユ内溶鋼温
度、TLLは溶鋼の凝固点を示す。
TspH=T-TLL...(4) However, in equation (4), T indicates the temperature of the molten steel in the tank, and TLL indicates the freezing point of the molten steel.

過熱度TsPHを算出すると、最適値Q1は(5)式か
ら、 Q1=TspH×2×鋳型サイズ (長辺+短辺)×溶鋼深さ …(5) として求められる。
When calculating the degree of superheating TsPH, the optimum value Q 1 is obtained from equation (5) as follows: Q 1 = TspH x 2 x mold size (long side + short side) x molten steel depth (5).

以上の通り、最適値Q1を目標値とし、(1)式に
したがつてこの最適値Q1に抜熱量Qが一致する
よう、冷却水の流量は制御し、鋳片には表皮が形
成し理想鋳片を鋳造する。
As mentioned above, the optimal value Q 1 is set as the target value, and the flow rate of cooling water is controlled so that the amount of heat removed Q matches this optimal value Q 1 according to equation (1), and a skin is formed on the slab. Then, the ideal slab is cast.

また、この際、通常では抜熱量の目標値Q1
安全温度を見込んで算出する。これは鋳造速度変
化によつての抜熱量変化分も含めるのが好ましい
からである。
Further, at this time, the target value Q 1 of the amount of heat removed is usually calculated taking into account the safe temperature. This is because it is preferable to include changes in the amount of heat removed due to changes in casting speed.

また、以上の通りに冷却水量を制御する場合、
第1図に示す如く、鋳型冷却水制御装置11を設
けて、溶鋼温度計3ならびに壁面温度計6からの
各温度信号、溶鋼レベル計5からのレベル信号、
流量計7からの流量信号を制御装置11に入力と
し、これらの値から上記の如き演算と調節とを行
なつて、その信号により流量調整弁8が制御でき
るようにするのが好ましい。
Also, when controlling the amount of cooling water as described above,
As shown in FIG. 1, a mold cooling water control device 11 is provided, and temperature signals from the molten steel thermometer 3 and wall thermometer 6, level signals from the molten steel level meter 5,
It is preferable to input the flow rate signal from the flow meter 7 to the control device 11, perform the above calculations and adjustments from these values, and control the flow rate regulating valve 8 using the signal.

〈発明の効果〉 以上詳しく説明した通り、本発明方法によつて
冷却水量を制御する場合は、抜熱量Qは、冷却水
の流量と、鋳型銅板の温度計6の測定値をもとに
伝熱係数を考慮して補正した溶鋼温度値Tkとを
用いて実操業上は監視されている。このため、パ
ウダーの分布状況、鋼種等の鋳型内壁の因子や、
溶鋼鋳片の凝固表皮等の鋳型内壁面との接触状況
等を統合して管理された上の実際の冷却能を示
し、このため、従来の如く、過冷又は冷却不足の
発生はなくなる。
<Effects of the Invention> As explained in detail above, when the amount of cooling water is controlled by the method of the present invention, the amount of heat removed Q is transmitted based on the flow rate of the cooling water and the measured value of the thermometer 6 of the mold copper plate. In actual operation, it is monitored using the molten steel temperature value Tk corrected in consideration of the thermal coefficient. For this reason, factors such as powder distribution, steel type, etc. of the mold inner wall,
It shows the actual cooling capacity that is managed by integrating the contact situation of the molten steel slab with the inner wall surface of the mold such as the solidified skin, and therefore, there is no occurrence of overcooling or insufficient cooling as in the past.

なお、抜熱量目標値Q1は(4)式によりTsPHから
算出するが、現実的にはある程度安全温度を見込
みTsPH+α(α:安全温度)として算出したQ1
使用するのが好ましい。
Note that the heat removal target value Q 1 is calculated from TsPH using equation (4), but realistically it is preferable to use Q 1 calculated as TsPH + α (α: safe temperature) assuming a certain safe temperature.

また、上記の如く制御する場合、第1図に示す
如く、鋳型冷却水制御装置11を温度変換器、調
節計、レベル信号変換器等で構成し、この装置1
1で上記の抜熱量計算、凝固温度、過熱度TsPH
計算、抜熱量目標値計算等を行なうと、冷却水調
節弁は自動的にコントロールできる。
In addition, in the case of controlling as described above, as shown in FIG.
1. Calculate the amount of heat removed above, solidify temperature, superheat degree TsPH
By performing calculations, calculating the target value of heat removal, etc., the cooling water control valve can be automatically controlled.

また、通常は鋳造速度一定で鋳造するため、抜
熱量目標値も一定で良いが、鋳造速度変動による
抜熱量目標値の変化分は無視できるほど小さな値
であり、前述α(安全温度)に含めて良い。更に、
抜熱量目標値変化分が非常に大きな値で無視でき
ないのは鋳造トラブルの場合に相当し、手動介入
することによつて回避できる。
In addition, since casting is normally performed at a constant casting speed, the target value of heat removal may be constant, but the change in the target value of heat removal due to fluctuations in casting speed is negligibly small and is included in the α (safe temperature) mentioned above. It's good. Furthermore,
A case where the change in the target value of heat removal is too large to ignore corresponds to a casting problem, which can be avoided by manual intervention.

要するに、本発明方法は過熱度を利用して冷却
水量を制御すると、鋳型内で生起する凝固層に大
きな熱応力が発生するのを阻止でき、常時初期凝
固で形成される凝固層はTsPHに見合つた冷却の
施された所定層が得られ、表面性状の改善に多大
の効果があり、併せて、所定の冷却がなされるこ
とからブレイクアウト発生も阻止できる。
In short, in the method of the present invention, by controlling the amount of cooling water using the degree of superheating, it is possible to prevent large thermal stress from occurring in the solidified layer that occurs in the mold, and the solidified layer that is always formed during initial solidification is suitable for TsPH. A predetermined layer that has been subjected to continuous cooling is obtained, which has a great effect on improving the surface properties.In addition, since the predetermined cooling is performed, the occurrence of breakouts can also be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の一例の配
置図である。 符号、1……タンデイツシユ、2……溶鋼、3
……溶鋼温度計、4……鋳型、5……鋳型内溶鋼
レベル計、6……鋳型銅板温度計、7……冷却水
流量計、8……流量調節弁、9……鋳片、10…
…凝固層、11……鋳型冷却水制御装置、12…
…冷却水の供給管、13……冷却水の排出管。
FIG. 1 is a layout diagram of an example of an apparatus for carrying out the method of the present invention. Code, 1... Tundishyu, 2... Molten steel, 3
... Molten steel thermometer, 4 ... Mold, 5 ... Molten steel level meter in mold, 6 ... Mold copper plate thermometer, 7 ... Cooling water flow meter, 8 ... Flow rate control valve, 9 ... Slab, 10 …
...solidified layer, 11...mold cooling water control device, 12...
...Cooling water supply pipe, 13...Cooling water discharge pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 連続鋳造用鋳型の冷却水を制御するに際し、
タンデイツシユ内の溶鋼温度と鋳型壁面温度とを
測定し、この溶鋼測温値と溶鋼成分値から求めら
れる凝固点温度との差としての溶鋼の過熱度を求
め、この過熱度にもとずいて鋳型抜熱量の目標値
を求め、この目標値に一致するよう、鋳型から抜
熱させて冷却水量を制御することを特徴とする連
続鋳造用鋳型の冷却水制御方法。
1 When controlling the cooling water of continuous casting molds,
The temperature of the molten steel in the tundish and the temperature of the mold wall are measured, and the degree of superheating of the molten steel is determined as the difference between the measured molten steel temperature value and the freezing point temperature determined from the molten steel composition values, and the mold is extracted based on this degree of superheating. A cooling water control method for a continuous casting mold, characterized in that a target value of heat quantity is determined, and the amount of cooling water is controlled by removing heat from the mold so as to match the target value.
JP12476584A 1984-06-18 1984-06-18 Method for controlling cooling water for continuous casting mold Granted JPS613644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12476584A JPS613644A (en) 1984-06-18 1984-06-18 Method for controlling cooling water for continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12476584A JPS613644A (en) 1984-06-18 1984-06-18 Method for controlling cooling water for continuous casting mold

Publications (2)

Publication Number Publication Date
JPS613644A JPS613644A (en) 1986-01-09
JPH054179B2 true JPH054179B2 (en) 1993-01-19

Family

ID=14893555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12476584A Granted JPS613644A (en) 1984-06-18 1984-06-18 Method for controlling cooling water for continuous casting mold

Country Status (1)

Country Link
JP (1) JPS613644A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221430A (en) * 1990-01-26 1991-09-30 Sekisui Chem Co Ltd Production of extrusion expanded product

Also Published As

Publication number Publication date
JPS613644A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
CN108788032B (en) Crystallizer with adjustable cooling strength for continuous casting of magnesium alloy and method for controlling cooling
CN107891132A (en) Continuous casting method for sub-peritectic steel slab
US3886991A (en) Method and apparatus for controlling the withdrawal of heat in molds of continuous casting installations
CA1164624A (en) Method of adjusting the setting speed of the narrow sides of plate molds
US3502133A (en) Continuous casting method and apparatus for controlling freeze line location
US3630267A (en) Method of controlling the temperature of molten ferrous metal
JPH054179B2 (en)
JPH0557067B2 (en)
KR101230117B1 (en) Method for manufacturing austenitic stainless steel
JPS63104754A (en) Method for controlling water volume of spray cooled mold
JPS613645A (en) Method for controlling flow rate of cooling water for continuous casting mold
JPS6054257A (en) Method for controlling position of solidification completion point in continuous casting
Drożdż The influence of the superheat temperature on the slab structure in the continuous steel casting process
JPH04339555A (en) Method for controlling surface temperature on continuously cast slab
JP3101069B2 (en) Continuous casting method
JPS6045026B2 (en) Mold content steel level control method
SU921671A1 (en) Apparatus for horisontal continuous casting
JP2914817B2 (en) Missing casting method in continuous casting
JPS6024742B2 (en) Secondary cooling water control method in continuous casting
KR101400040B1 (en) Control method for molten steel in tundish
WO2022034864A1 (en) Method for continuously casting steel and test solidification device for steel
JP3464331B2 (en) Continuous casting method and continuous casting apparatus for non-ferrous metals
JPS5633157A (en) Controlling method for secondary cooling water in continuous casting machine
JPS61238453A (en) Method for controlling secondary cooling water in continuous casting installation
JPS60115351A (en) Continuous casting method