JPH0557067B2 - - Google Patents

Info

Publication number
JPH0557067B2
JPH0557067B2 JP4274784A JP4274784A JPH0557067B2 JP H0557067 B2 JPH0557067 B2 JP H0557067B2 JP 4274784 A JP4274784 A JP 4274784A JP 4274784 A JP4274784 A JP 4274784A JP H0557067 B2 JPH0557067 B2 JP H0557067B2
Authority
JP
Japan
Prior art keywords
mold
cooling water
temperature
molten steel
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4274784A
Other languages
Japanese (ja)
Other versions
JPS60187457A (en
Inventor
Yoshitaka Ooiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4274784A priority Critical patent/JPS60187457A/en
Publication of JPS60187457A publication Critical patent/JPS60187457A/en
Publication of JPH0557067B2 publication Critical patent/JPH0557067B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は連続鋳造用鋳型の冷却水制御方法に係
り、詳しくは、タンデイツシユ内溶鋼温度を測定
し、この温度と溶鋼成分値から求められる溶鋼凝
固点との差たる溶鋼過熱度(以下、単にTSPHとい
う。)を利用して、凝固層の過冷防止、ブレイク
アウト発生阻止を達成し、併せて表面形状が改善
された鋳片が得られる鋳型の冷却水制御方法に係
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling water control method for a continuous casting mold, and more particularly, the molten steel temperature is measured in a tundish, and the molten steel superheating is determined by the difference between this temperature and the molten steel freezing point determined from the molten steel composition values. A cooling water control method for molds that utilizes T SPH (hereinafter simply referred to as T SPH) to prevent overcooling of the solidified layer, prevent breakout, and obtain slabs with an improved surface shape. Related.

一般に、溶鋼の連続鋳造は、溶鋼を取鍋、タン
デイツシユならびに連続鋳型に順次に移送し、連
鋳鋳型において注入された溶鋼は鋳型内面からの
冷却によつて急速に凝固層が形成され、この凝固
層を外殻として内部未凝固の状態で順次下方に引
抜かれ、鋳型下方においては散水冷却により完全
に凝固される。従つて、連続鋳型内の冷却は、鋳
造の高速化及び品質上から重要な問題とされ、
種々の連続鋳型の冷却水制御方法が提案されてい
る。
Generally, in continuous casting of molten steel, the molten steel is sequentially transferred to a ladle, a tundish, and a continuous mold.The molten steel injected into the continuous casting mold rapidly forms a solidified layer by cooling from the inner surface of the mold. The layers are used as an outer shell and are successively pulled downward in an unsolidified state, and are completely solidified below the mold by cooling with water spray. Therefore, cooling in the continuous mold is considered to be an important issue from the viewpoint of speeding up casting and quality.
Various continuous mold cooling water control methods have been proposed.

すなわち、従来から実施されている連鋳鋳型の
冷却水制御方法を大別にすると、定値流量制御方
法、鋳片表面温度を一定に制御する方法、鋳造速
度にカスケードさせる方法等に分けられる。この
定値流量制御方法とは連鋳鋳型に供給する冷却水
の流量を常時一定流量に確保するよう制御する方
法であり、鋳片表面温度を一定に制御する方法は
鋳片の表面温度を計測し、これに一定にするよ
う、冷却水の流量を制御する方法である。
That is, conventional methods of controlling cooling water for continuous casting molds can be roughly divided into a constant flow rate control method, a method of controlling the slab surface temperature to a constant level, a method of cascading the casting speed, etc. This constant flow rate control method is a method of controlling the flow rate of cooling water supplied to the continuous casting mold to always maintain a constant flow rate, and a method of controlling the surface temperature of the slab to a constant value is to measure the surface temperature of the slab. This is a method of controlling the flow rate of cooling water to keep it constant.

しかし、定値流量制御方法によつて冷却水の流
量を一定に保つても、連鋳鋳型壁を通過する熱量
は鋳型壁面テーパ、パウダーの分布状況、鋳片サ
イズ鋼種等多くの鋳造条件によつて変化し、この
ため、設定流量は安全率を大きくとつた過大流量
として制御することになつて、過冷により鋳片表
面に割れが生じる問題がある。また、鋳片表面温
度を一定に制御する場合には、鋳片表面温度は2
次冷却帯であるスプレー冷却水に最も左右される
ため、モールド冷却水の制御はあまり関係が無
く、最も基本となる鋳片表面温度計測自体に問題
があり、実施されているところは殆ど無い。
However, even if the flow rate of cooling water is kept constant using a constant flow rate control method, the amount of heat passing through the continuous casting mold wall depends on many casting conditions such as the mold wall taper, powder distribution, slab size, steel type, etc. Therefore, the set flow rate has to be controlled to an excessive flow rate with a large safety factor, and there is a problem that cracks occur on the surface of the slab due to overcooling. In addition, when controlling the slab surface temperature to be constant, the slab surface temperature should be 2
Since it is most influenced by spray cooling water, which is the next cooling zone, control of mold cooling water has little to do with it, and there are problems with the most basic measurement of slab surface temperature itself, and there are almost no places where this is carried out.

また、最後の鋳造速度カスケード制御は、特開
昭49−107928号あるいは特開昭52−46331号に示
される如く、鋳型内を通過する冷却水量と該冷却
水の鋳型供給側温度と鋳型排出側温度との温度差
を用いて求まる抜熱量に従つて鋳造速度を制御す
る制御方法である。しかし、これはタンデイツシ
ユ内溶鋼温度とは無関係に冷却水流量を定流して
冷却する方法のため、鋳込温度の変動により高温
鋳片の鋳造上好ましくない必要以上の熱を鋳片で
うばつてしまうことがあり、ブレイクアウトに至
るかの問題がある。
Furthermore, the final casting speed cascade control is based on the amount of cooling water passing through the mold, the temperature of the cooling water on the mold supply side, and the temperature on the mold discharge side, as shown in JP-A-49-107928 or JP-A-52-46331. This is a control method in which the casting speed is controlled according to the amount of heat removed using the temperature difference. However, since this method uses a constant flow of cooling water to cool the steel regardless of the temperature of the molten steel in the tundish, fluctuations in the pouring temperature cause the slab to dissipate more heat than necessary, which is undesirable for casting high-temperature slabs. There is a problem of whether this can lead to a breakout.

本発明は上記問題の解決を図ることを目的と
し、具体的には、鋳型の冷却水流量および冷却水
の給・排水温度差のほか、溶鋼の鋳込温度を検出
して、その鋳込温度や溶鋼成分値からの凝固点等
から求められるTSPHを有効に利用して適切に鋳型
の冷却水を制御する方法を提案する。
The purpose of the present invention is to solve the above-mentioned problems. Specifically, the present invention detects the casting temperature of molten steel in addition to the cooling water flow rate of the mold and the difference in cooling water supply/drainage temperature, and measures the casting temperature. We propose a method to appropriately control mold cooling water by effectively utilizing T SPH , which is determined from the solidification point of molten steel and molten steel composition values.

以下、本発明法について説明する。 The method of the present invention will be explained below.

まず、連鋳鋳型において、その冷却機能は重要
であり過冷却又は冷却不足は上記の如く、鋳片表
面割れ、ブレークアウト等の問題を引起す。従つ
て、鋳型では所定の抜熱量を維持することが重要
であり、その抜熱量は鋳込温度に深く関係する。
すなわち、鋳込温度が高目であれば冷却増、低目
であればそれに対応して緩冷却を実現させること
がポイントとなり、要するに、鋳型では溶鋼から
必要最小限の熱をうばつて凝固層の表皮を形成す
るのが好ましい。この際の適正抜熱量は冷却水量
や給・排水温度差から監視し制御できる。
First, in a continuous casting mold, its cooling function is important, and overcooling or insufficient cooling causes problems such as slab surface cracking and breakout, as described above. Therefore, it is important to maintain a predetermined amount of heat removal from the mold, and the amount of heat removal is closely related to the casting temperature.
In other words, if the pouring temperature is high, the key is to increase the cooling, and if the pouring temperature is low, the key is to achieve slow cooling.In short, the mold extracts the minimum necessary heat from the molten steel to form a solidified layer. Preferably, it forms a skin. The appropriate amount of heat removed at this time can be monitored and controlled from the amount of cooling water and the difference in supply and drainage temperatures.

そこで、本発明においては鋳型の冷却水流量に
ついて、表皮形成するための必要最低限の抜熱を
行なうよう制御することに着目し、タンデイツシ
ユ内溶鋼の温度、鋳型冷却水の鋳型入測温度なら
びに出側温度を測定し、これらの測温値を用いて
流量制御を行なう。この方法であると、冷却水使
用量が削減されるとともにブレークアウトの発生
が阻止され、高温鋳片が製造できる。
Therefore, in the present invention, we focused on controlling the flow rate of cooling water in the mold so as to remove the minimum amount of heat necessary for forming the skin. The side temperature is measured and the flow rate is controlled using these temperature values. With this method, the amount of cooling water used is reduced, breakout is prevented from occurring, and high-temperature slabs can be produced.

第1図に示す例によつて更に詳しく説明する
と、次の通りである。
A more detailed explanation using the example shown in FIG. 1 is as follows.

第1図は本発明方法を実施する装置の一例の配
置図であつて、第1図において符号1はタンデイ
ツシユ、2は溶鋼、4は連鋳鋳型を示す。この連
鋳鋳型4は、スラブ、ブルーム用いずれであつて
も良く、鋳型4には冷却水供給配管Aを経て冷却
水が供給され、この供給配管Aには流量調節弁
6、流量計7及び冷却水の水温を計る冷却水温度
計5がそれぞれ設けられている。冷却後、冷却水
は冷却水排出配管Bから排出され、この排出配管
Bには水温計5が設けられている。更に、鋳型4
への溶鋼鋳込温度はタンデイツシユ1内の溶鋼温
度を熱電対3で測温される。
FIG. 1 is a layout diagram of an example of an apparatus for carrying out the method of the present invention, and in FIG. 1, reference numeral 1 indicates a tundish, 2 indicates a molten steel, and 4 indicates a continuous casting mold. This continuous casting mold 4 may be for either a slab or a bloom. Cooling water is supplied to the mold 4 through a cooling water supply pipe A, and this supply pipe A includes a flow control valve 6, a flow meter 7, and a flow meter 7. A cooling water thermometer 5 is provided for measuring the temperature of the cooling water. After cooling, the cooling water is discharged from a cooling water discharge pipe B, and this discharge pipe B is provided with a water temperature gauge 5. Furthermore, mold 4
The temperature of the molten steel in the tundish 1 is measured by a thermocouple 3.

鋳型4に注入された溶鋼2はすみやかに鋳型4
壁からの抜熱によつて凝固シエル10が形成さ
れ、下方に引抜かれるが、この時の鋳型4での抜
熱量Qは冷却水の入側温度、出側温度、冷却水流
量等により、次の(1)式で求められる。
The molten steel 2 poured into the mold 4 is immediately poured into the mold 4.
A solidified shell 10 is formed by the heat removed from the wall and is pulled out downward, but the amount of heat removed from the mold 4 at this time Q depends on the cooling water inlet temperature, outlet temperature, cooling water flow rate, etc. It can be obtained using equation (1).

Q=k×△T×冷却水流量/2×鋳型サイズ(長辺
+短辺)×溶鋼深さ……(1) すなわち、(1)式で、kはデイメンジヨン補正係
数、△Tは鋳型冷却水の温度上昇分(冷却水の出
側温度−冷却水の入側温度)で求められ、冷却水
流量は流量計7で測定でき、鋳型サイズは既知で
あり、溶鋼深さは鋳型内溶鋼レベル計により容易
に算出でき、従つて、鋳型での抜熱量Qは常時自
動で算出できる。
Q = k x △T x cooling water flow rate / 2 x mold size (long side + short side) x molten steel depth... (1) That is, in equation (1), k is the dimension correction coefficient and △T is the mold cooling It is determined by the temperature rise of water (cooling water outlet temperature - cooling water inlet temperature), the cooling water flow rate can be measured with flow meter 7, the mold size is known, and the molten steel depth is the molten steel level in the mold. Therefore, the amount of heat removed from the mold Q can be automatically calculated at any time.

この際、鋳型4への溶鋼の鋳込温度をタンデイ
ツシユ1側において熱電対3により求めると、こ
の測温値と、溶鋼成分値から求まる凝固点温度と
の差、つまりTSPHに基づいて以下の通りに冷却水
流量を制御できる。例えば、タンデイツシユ内溶
鋼温度Tが測定されると、事前に溶鋼成分より(2)
式若しくは(3)式で凝固点(凝固温度)が算出され
るため、その凝固温度TLLからTSPHが(4)式から計
算できる。
At this time, the temperature at which the molten steel is poured into the mold 4 is determined by the thermocouple 3 on the tundish 1 side. Based on the difference between this measured temperature value and the freezing point temperature determined from the molten steel composition values, that is, T SPH , the following is calculated. The cooling water flow rate can be controlled. For example, when the molten steel temperature T in the tundish is measured, the molten steel composition (2) is determined in advance.
Since the freezing point (solidification temperature) is calculated using the equation or equation (3), T SPH can be calculated from the freezing temperature T LL using equation (4).

C0.5%のとき TLL=1538−{55×(%C)+80×(%C)2+13×
(%Si)+4.8×(%Mn)+1.5×(%Cr)+4.3×(%
Ni)} ……(2) C>0.5%のとき TLL=1538−{44−24(%C)+52×(%C)2+13
×(%Si)+4.8×(%Mn)+1.5×(%Cr)+4.3×(

Ni)} ……(3) なお、(2)式、(3)式で(%C)、(%Si)、(%
Mn)、(%Cr)、(%Ni)は溶鋼中のC、Si、Mn、
Cr、Niの各含有量を示す。
When C is 0.5% T LL = 1538 - {55 x (% C) + 80 x (% C) 2 + 13 x
(%Si)+4.8×(%Mn)+1.5×(%Cr)+4.3×(%
Ni)} ...(2) When C>0.5% T LL =1538-{44-24(%C)+52×(%C) 2 +13
× (%Si) + 4.8 × (%Mn) + 1.5 × (%Cr) + 4.3 × (
%
Ni)} ...(3) In equations (2) and (3), (%C), (%Si), (%
Mn), (%Cr), (%Ni) are C, Si, Mn in molten steel,
Each content of Cr and Ni is shown.

TSPH=T−TLL ……(4) ただし、(4)式でTはタンデイツシユ内溶鋼温
度、TLLは溶鋼の凝固点を示す。
T SPH = T - T LL ... (4) However, in equation (4), T indicates the temperature of the molten steel in the tundish, and T LL indicates the solidification point of the molten steel.

以上の通りに過熱度TSPHを求め、それに応じて
鋳型では溶鋼から必要最小限の熱をうばつて表皮
が形成するよう、冷却水の流量を制御して鋳型を
冷却するが、具体的には、鋳型の抜熱量Qは抜熱
目標値Q1に合致するよう制御する。
The degree of superheating T SPH is determined as described above, and the mold is cooled by controlling the flow rate of cooling water so that the minimum necessary heat is removed from the molten steel and a skin is formed. , the heat removal amount Q of the mold is controlled so as to match the heat removal target value Q1 .

すなわち、鋳型での抜熱量目標値Q1は過熱度
TSPHだけ溶鋼から抜熱する抜熱量を示すことにな
り、この表皮形成を表わすため、抜熱量Q1は次
の(5)式よりTSPHによつて算出できる。
In other words, the target value of heat removal in the mold Q1 is the degree of superheating.
T SPH indicates the amount of heat removed from the molten steel, and since it represents this skin formation, the amount of heat removed Q 1 can be calculated by T SPH from the following equation (5).

Q1=TSPH×2×鋳型サイズ(長辺+短辺)×溶
鋼深さ ……(5) 従つて、(5)式により抜熱量目標値Q1を求め、
それを目標値とし、(1)式においてその冷却水流量
をパラメータとして制御し、(1)式から求められる
抜熱量Qを抜熱量目標値Q1に一致させれば、鋳
片には表皮が形成され理想的な鋳片が鋳造でき
る。
Q 1 = T SPH x 2 x mold size (long side + short side) x molten steel depth... (5) Therefore, calculate the target heat removal value Q 1 using equation (5),
If this is set as a target value, and the cooling water flow rate is controlled as a parameter in equation (1), and the heat removal amount Q calculated from equation (1) is made to match the heat removal target value Q1 , the slab will have a skin. ideal slabs can be cast.

また、この際、抜熱量Qは冷却水の流量、冷却
水の出側と入側の温度差を用いて実操業上は監視
されているため、鋳型壁面テーパー、パウダーの
分布状況、鋼種等の鋳型内壁の因子や、溶鋼鋳片
の凝固表皮等の鋳型内壁面との接触状況等を統合
して管理された上の実際の冷却能を示し、このた
め、従来例の如く過冷又は冷却不足の発生はなく
なる。
In addition, at this time, the amount of heat removed Q is monitored in actual operation using the flow rate of cooling water and the temperature difference between the cooling water outlet and inlet sides, so it is important to note that the mold wall taper, powder distribution, steel type, etc. It shows the actual cooling capacity that is managed by integrating the factors of the mold inner wall and the contact situation of the molten steel slab with the solidified skin of the mold inner wall surface, etc., and therefore, it is possible to avoid overcooling or insufficient cooling as in the conventional case. will no longer occur.

なお、抜熱量目標値Q1は(4)式によりTSPHから
算出するが、現実的にはある程度安全温度を見込
みTSPH+α(α:安全温度)として算出したQ1
使用するのが好ましい。
Note that the target value of heat removal Q 1 is calculated from T SPH using equation (4), but realistically it is preferable to use Q 1 calculated as T SPH + α (α: safe temperature), assuming a certain safe temperature. .

また、上記の如く制御する場合、第1図に示す
如く、鋳型冷却水制御装置11を温度変換器、調
節計、レベル信号変換器等で構成し、この装置1
1で上記の抜熱量計算、凝固温度、過熱度TSPH
算、抜熱量目標値計算等を行なうと、冷却水調節
弁は自動的にコントロールできる。
In addition, in the case of controlling as described above, as shown in FIG.
If the above-mentioned heat removal amount calculation, coagulation temperature, superheat degree T SPH calculation, heat removal target value calculation, etc. are performed in step 1, the cooling water control valve can be automatically controlled.

また、通常は鋳造速度一定で鋳造するため、抜
熱量目標値も一定で良いが、鋳造速度変動による
抜熱量目標値の変化分は無視できるほど小さな値
であり、前述α(安全温度)に含めて良い。更に
抜熱量目標値変化分が非常に大きな値で無視でき
ないのは鋳造トラブルの場合に相当し、手動介入
することによつて回避できる。
In addition, since casting is normally performed at a constant casting speed, the heat removal target value may also be constant, but the change in the heat removal target value due to fluctuations in the casting speed is negligibly small and is included in the α (safe temperature) mentioned above. It's good. Furthermore, the fact that the change in the target value of heat removal is so large that it cannot be ignored corresponds to a casting problem, which can be avoided by manual intervention.

以上要するに、本発明方法は過熱を利用して冷
却水量を制御すると、鋳型内で生起する凝固層に
大きな熱応力が発生するのを阻止でき、常時初期
凝固で形成される凝固層はTSPHに見合つた冷却の
施こされた所定層が得られ、表面性状の改善に多
大の効果があり、併せて、所定の冷却がなされる
ことからブレイクアウト発生も阻止できる。
In summary, in the method of the present invention, by controlling the amount of cooling water using superheating, it is possible to prevent large thermal stress from occurring in the solidified layer that occurs in the mold, and the solidified layer that is always formed during initial solidification reaches T SPH . A predetermined layer that has been appropriately cooled can be obtained, which has a great effect on improving the surface properties, and at the same time, since the predetermined cooling is performed, breakout can also be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の一例の配
置図である。 符号、1……タンデイツシユ、2……溶鋼、3
……溶鋼温度計、4……鋳型、5……冷却水温度
計、6……流量調節弁、7……冷却水流量計、8
……鋳型内溶鋼レベル計、9……鋳片、10……
凝固シエル、11……冷却水制御装置。
FIG. 1 is a layout diagram of an example of an apparatus for carrying out the method of the present invention. Code, 1... Tundishyu, 2... Molten steel, 3
... Molten steel thermometer, 4 ... Mold, 5 ... Cooling water thermometer, 6 ... Flow rate control valve, 7 ... Cooling water flow meter, 8
...In-mold molten steel level meter, 9...Slab, 10...
Solidification shell, 11...Cooling water control device.

Claims (1)

【特許請求の範囲】[Claims] 1 連続鋳造用鋳型の冷却水を制御する際に、タ
ンデイツシユ内溶鋼温度を測定し、この測温値と
溶鋼成分値から求められる凝固点温度との差たる
溶鋼の過熱度を求め、この溶鋼の過熱度にしたが
つて鋳型冷却水の入測温度ならびに出側温度と鋳
型内溶鋼レベルをもとにして冷却水量を制御する
ことを特徴とする連続鋳造用鋳型の冷却水制御方
法。
1. When controlling the cooling water of the continuous casting mold, the temperature of the molten steel in the tundish is measured, the degree of superheating of the molten steel is calculated as the difference between this temperature value and the freezing point temperature determined from the molten steel composition values, and the superheating of the molten steel is determined. A cooling water control method for a continuous casting mold, characterized in that the amount of cooling water is controlled based on the measured temperature of the mold cooling water, the outlet temperature, and the molten steel level in the mold.
JP4274784A 1984-03-05 1984-03-05 Method for controlling cooling water of mold for continuous casting Granted JPS60187457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4274784A JPS60187457A (en) 1984-03-05 1984-03-05 Method for controlling cooling water of mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4274784A JPS60187457A (en) 1984-03-05 1984-03-05 Method for controlling cooling water of mold for continuous casting

Publications (2)

Publication Number Publication Date
JPS60187457A JPS60187457A (en) 1985-09-24
JPH0557067B2 true JPH0557067B2 (en) 1993-08-23

Family

ID=12644601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4274784A Granted JPS60187457A (en) 1984-03-05 1984-03-05 Method for controlling cooling water of mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS60187457A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642779B1 (en) 2005-06-07 2006-11-03 주식회사 포스코 Method for continuous casting of steel for cold pressing and forging
JP5652362B2 (en) * 2011-09-22 2015-01-14 新日鐵住金株式会社 Steel continuous casting method
JP6358178B2 (en) * 2015-06-30 2018-07-18 Jfeスチール株式会社 Continuous casting method and mold cooling water control device

Also Published As

Publication number Publication date
JPS60187457A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
CN108788032B (en) Crystallizer with adjustable cooling strength for continuous casting of magnesium alloy and method for controlling cooling
CA1164624A (en) Method of adjusting the setting speed of the narrow sides of plate molds
AU653399B2 (en) Temperature measurement ingot mould
JP2001516284A (en) Improved continuous mold and continuous casting process
JPH0557067B2 (en)
JP3562116B2 (en) Control method of molten steel temperature in tundish
US3724531A (en) Mold for casting single crystal articles
JPS638868B2 (en)
JPH054179B2 (en)
JPS63104754A (en) Method for controlling water volume of spray cooled mold
KR101368351B1 (en) Predicting method for thickness of solidified shell on continuous casting process
JP3179069B2 (en) Mold for continuous casting of steel
JPS6054257A (en) Method for controlling position of solidification completion point in continuous casting
Drożdż The influence of the superheat temperature on the slab structure in the continuous steel casting process
JPS613645A (en) Method for controlling flow rate of cooling water for continuous casting mold
JP3101069B2 (en) Continuous casting method
JPH04339555A (en) Method for controlling surface temperature on continuously cast slab
JP3464331B2 (en) Continuous casting method and continuous casting apparatus for non-ferrous metals
US2387803A (en) Method of casting
Chakraborty et al. Dynamic secondary cooling control system for the slab casters
SU921671A1 (en) Apparatus for horisontal continuous casting
Dyudkin Feasibility of Automatic Control of Molten Metal Breakout Under the Mould in Continuous Casting
JPH03193253A (en) Method for controlling surface temperature of continuous cast slab
JPS60115351A (en) Continuous casting method
JPH0413455A (en) Method for continuously casting steel