JP3464331B2 - Continuous casting method and continuous casting apparatus for non-ferrous metals - Google Patents

Continuous casting method and continuous casting apparatus for non-ferrous metals

Info

Publication number
JP3464331B2
JP3464331B2 JP03569396A JP3569396A JP3464331B2 JP 3464331 B2 JP3464331 B2 JP 3464331B2 JP 03569396 A JP03569396 A JP 03569396A JP 3569396 A JP3569396 A JP 3569396A JP 3464331 B2 JP3464331 B2 JP 3464331B2
Authority
JP
Japan
Prior art keywords
temperature
cooling water
ingot
continuous casting
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03569396A
Other languages
Japanese (ja)
Other versions
JPH09206889A (en
Inventor
浩一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP03569396A priority Critical patent/JP3464331B2/en
Publication of JPH09206889A publication Critical patent/JPH09206889A/en
Application granted granted Critical
Publication of JP3464331B2 publication Critical patent/JP3464331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固相線温度が90
0℃以上の非鉄金属、特に銅及び銅合金の連続鋳造(半
連続鋳造を含む)において、鋳造速度を10m/hr
(166mm/min)以上の高速鋳造を行う方法に関
する。
TECHNICAL FIELD The present invention has a solidus temperature of 90.
In continuous casting (including semi-continuous casting) of non-ferrous metals above 0 ° C, especially copper and copper alloys, casting speed is 10 m / hr.
The present invention relates to a method of performing high speed casting of (166 mm / min) or more.

【0002】[0002]

【従来の技術】従来、非鉄金属、特に銅及び銅合金の連
続鋳造においては鋳造速度が約10m/hr程度であ
る。しかし、生産性向上を図る上で鋳造速度の増速が望
まれるが、鋳造速度を増速すると鋳塊の内部に割れが発
生することはよく知られている。
2. Description of the Related Art Conventionally, in continuous casting of non-ferrous metals, especially copper and copper alloys, the casting speed is about 10 m / hr. However, although it is desired to increase the casting speed in order to improve productivity, it is well known that cracking occurs inside the ingot when the casting speed is increased.

【0003】先ず従来の非鉄金属の連続鋳造機の概要を
図1により説明する。図1に示すように溶湯1は例えば
長さ(Lm)350mmの鋳型2に注入されれ、徐々に
下方に引き抜かれる。鋳塊3は鋳型2の出口で通常、ノ
ズル4からの冷却水による冷却されるノズル冷却帯5が
ある。
First, an outline of a conventional non-ferrous metal continuous casting machine will be described with reference to FIG. As shown in FIG. 1, the molten metal 1 is poured into a mold 2 having a length (Lm) of 350 mm, for example, and gradually drawn downward. The ingot 3 is at the outlet of the mold 2 and usually has a nozzle cooling zone 5 which is cooled by cooling water from a nozzle 4.

【0004】ノズル冷却帯5に続いて、ピット冷却帯6
が設けられている。この冷却帯の長さ(Lp)は850
mm程度である。そして、更にピット内に収容された冷
却水によりピット冷却をうけて完全に凝固を完了する。
鋳塊はピット冷却帯6の下方に設けられているピンチロ
ール10により引き抜かれる。ノズルからの冷却水は常
時ピット内に流入するため、ピット内の冷却水は通常常
温である。
The nozzle cooling zone 5 is followed by the pit cooling zone 6
Is provided. The length (Lp) of this cooling zone is 850
It is about mm. Then, the cooling water contained in the pit further cools the pit to complete the solidification.
The ingot is pulled out by a pinch roll 10 provided below the pit cooling zone 6. Since the cooling water from the nozzle always flows into the pit, the cooling water in the pit is usually at room temperature.

【0005】上記従来の連続鋳造機における鋳塊の割れ
を防止する為には、通常下記の手段が採られている。第
1の手段は鋳造速度を遅くする。第2の手段は鋳型長を
長くし、鋳型内で鋳塊の最終凝固部までの凝固を終了さ
せる方法が有る。第3の手段は、鋳型下方でピット冷却
帯等の2次冷却帯で弱冷する方法が有る。
In order to prevent cracking of the ingot in the above conventional continuous casting machine, the following means are usually adopted. The first means slows down the casting speed. The second means is to increase the length of the mold and finish the solidification of the ingot to the final solidification portion. A third means is a method of weakly cooling in a secondary cooling zone such as a pit cooling zone below the mold.

【0006】従来、銅及び銅合金においては専ら第1、
2の手段が用いられているが、概ね鋳造速度を遅くする
ことは生産性を阻害する。また、第3の手段は鉄鋼の連
続鋳造に於いて実用化されている。その冷却方法として
は一般的に「ミスト冷却」、「スプレー冷却装置」或い
は「空冷」等が実施されており、その為に鋳型下方に
「ミスト冷却装置」及び「スプレー冷却装置」を設置し
ている。しかし、これらの装置を正常な状態に維持する
為に、これらの冷却装置の先端ノズルのメンテンナンス
及び水の清浄度の管理を定常的に行っている。
Conventionally, in copper and copper alloys,
Although the second means is used, lowering the casting speed generally hinders the productivity. The third means has been put to practical use in continuous casting of steel. Generally, "mist cooling", "spray cooling device" or "air cooling" is performed as the cooling method. Therefore, "mist cooling device" and "spray cooling device" are installed below the mold. There is. However, in order to maintain these devices in a normal state, the maintenance of the tip nozzles of these cooling devices and the cleanliness of water are constantly managed.

【0007】[0007]

【発明が解決しようとする課題】第1、2の方法では内
部割れを防止する為に、鋳造速度の限界が生じている。
第3の方法では鋳造方向への冷却装置の設置が必要であ
り、設備構成が複雑となる。更に、これらに用いるノズ
ルの先端は専ら細くなっており、閉塞が生じ易いの現状
である。その為に、ノズルの閉塞防止を目的としたメン
テナンスが必要となる。
In the first and second methods, the casting speed is limited in order to prevent internal cracking.
The third method requires the installation of a cooling device in the casting direction, which complicates the equipment configuration. Furthermore, the tip of the nozzle used for these is exclusively thin, and at present the clogging is likely to occur. Therefore, maintenance is required to prevent the nozzle from being blocked.

【0008】また、第3の冷却方式では微小液滴と共に
空気を鋳塊表面に吹き付ける為に、鋳塊表面に酸化スケ
ールを発生させる。特に鋳塊表面を外削せずに熱間加工
(特に熱間押出し)を行う場合には、加工材に鋳塊表面
の酸化スケールを押し込む等の問題がある。
In the third cooling method, since air is blown onto the surface of the ingot together with the fine droplets, oxide scale is generated on the surface of the ingot. In particular, when hot working (particularly hot extrusion) is performed without cutting the surface of the ingot, there is a problem that the oxide scale on the surface of the ingot is pushed into the processed material.

【0009】更に、この冷却方式は極めて弱冷で有るこ
とより、内部割れが発生しない安全な状態となっても冷
却不足が継続して、鋳塊温度が下がらないと言った問題
点が発生する。そして、この問題点を克服する為に、こ
れらの冷却方式の更に下方に鋳塊を充分冷却する為に強
冷装置の設置等が必要となり設備構成が更に複雑とな
る。その為に、設備設計上極めて大きな設備構成を伴う
か、既存設備では対応出来ない等の問題点も発生する。
Further, since this cooling system is extremely weak, there is a problem that the ingot temperature does not drop due to continued insufficient cooling even in a safe state where internal cracking does not occur. . Then, in order to overcome this problem, it is necessary to install a strong cooling device or the like in order to sufficiently cool the ingot below these cooling methods, which further complicates the equipment configuration. Therefore, there is a problem in that the equipment design involves an extremely large equipment configuration, or existing equipment cannot handle it.

【0010】[0010]

【課題を解決する手段】上記課題を満足し、なおかつメ
ンテナンスが不要な冷却方式が必要である。そこで、先
ず連続鋳造での凝固現象を再現出来る3次元のシミュレ
ーション・ソフトを作成し、このシミュレーションを用
いてこれらの問題点を克服出来る冷却方式を検討した。
その結果以下のような発明をするに至った。
There is a need for a cooling system which satisfies the above problems and requires no maintenance. Therefore, we first created three-dimensional simulation software that can reproduce the solidification phenomenon in continuous casting, and studied a cooling method that can overcome these problems using this simulation.
As a result, the inventors have made the following inventions.

【0011】第1の発明は、温度伝導度(=(熱伝導
率)/(比熱×比重))が0.12m2 /h以上の金属
を連続鋳造し、鋳造直後の鋳塊を静置冷却水に浸漬して
冷却する方法において、該冷却水の水温(t)を被冷却
材である鋳塊の温度伝導度(a)に応じて制御すること
を特徴する非鉄金属の連続鋳造方法である。
A first aspect of the invention is to continuously cast a metal having a temperature conductivity (= (heat conductivity) / (specific heat × specific gravity)) of 0.12 m 2 / h or more, and cool the ingot immediately after casting by stationary cooling. A method for continuous casting of non-ferrous metal, characterized in that in a method of immersing in cooling water and cooling, the water temperature (t) of the cooling water is controlled according to the temperature conductivity (a) of the ingot which is the material to be cooled. .

【0012】第2は発明は、第1の発明において、前記
金属が銅又は銅合金であることを特徴する非鉄金属の連
続鋳造方法である。
A second invention is the continuous casting method for nonferrous metal according to the first invention, wherein the metal is copper or a copper alloy.

【0013】第3の発明は、上記発明において、冷却水
の水温(t)を被冷却材である鋳塊の温度伝導度(a)
に応じて下記のように制御することを特徴する非鉄金属
の連続鋳造方法である。 0.30<aの場合 :t>−200.0×a+ 90.0(℃) 0.15≦a≦0.30の場合:t>−33.3×a+ 40.0(℃) 0.12≦a<0.15の場合:t>−2250.0×a+372.5(℃)
In a third aspect based on the above aspect, the water temperature (t) of the cooling water is the temperature conductivity (a) of the ingot which is the material to be cooled.
It is a continuous casting method for non-ferrous metals, which is controlled as follows according to In the case of 0.30 <a: t> −200.0 × a + 90.0 (° C.) In the case of 0.15 ≦ a ≦ 0.30: t> −33.3 × a + 40.0 (° C.) 0. When 12 ≦ a <0.15: t> −2250.0 × a + 372.5 (° C.)

【0014】第4の発明は、下記の部材を備えたことを
特徴とする非鉄金属用の連続鋳造装置である。 (a)溶融した非鉄金属が注入される鋳型と、(b)前
記鋳型から排出された鋳塊を冷却するために鋳型の直ぐ
下方において鋳塊を周回するように配設され、冷却水を
収容したピットと、(c)前記冷却水の温度を測定する
ための温度計と、ピット内に該冷却水の温度を調節する
ための冷却水補給管と、該温度計により測定された温度
が鋳造される金属の温度伝導度から定められる該冷却水
の温度となるように前記冷却水補給管の水量を制御する
温度制御装置。
A fourth aspect of the present invention is a continuous casting apparatus for non-ferrous metals, which is provided with the following members. (A) a mold into which molten non-ferrous metal is injected; and (b) a cooling mold that is arranged immediately below the mold so as to circulate the ingot and cools the ingot discharged from the mold. A pit, (c) a thermometer for measuring the temperature of the cooling water, a cooling water supply pipe for adjusting the temperature of the cooling water in the pit, and the temperature measured by the thermometer is cast. A temperature control device for controlling the amount of water in the cooling water supply pipe so that the temperature of the cooling water is determined from the temperature conductivity of the metal.

【0015】[0015]

【発明の実施の形態】図1に示した従来の連続鋳造機と
異なり、本発明においては、図2に示すように鋳型2の
直下に、ノズル冷却帯を設けずにピット冷却帯6を設け
る。この長さ(Lp)は例えば1500mm程度とす
る。そして、上記鋳型直下のピット冷却帯には、前記冷
却水の温度を測定するための温度計9と、ピット内の該
冷却水の温度を調節するための冷却水補給管10と、該
該温度計により測定された温度が鋳造される金属の温度
伝導度から定められる該冷却水の温度となるように前記
冷却水補給管の水量を制御する温度制御装置11を設け
る。
BEST MODE FOR CARRYING OUT THE INVENTION Unlike the conventional continuous casting machine shown in FIG. 1, in the present invention, as shown in FIG. 2, a pit cooling zone 6 is provided immediately below the mold 2 without providing a nozzle cooling zone. . This length (Lp) is, for example, about 1500 mm. In the pit cooling zone directly below the mold, a thermometer 9 for measuring the temperature of the cooling water, a cooling water supply pipe 10 for adjusting the temperature of the cooling water in the pit, and the temperature A temperature control device 11 is provided to control the amount of water in the cooling water supply pipe so that the temperature measured by the meter becomes the temperature of the cooling water determined from the temperature conductivity of the metal to be cast.

【0016】上記のような連続鋳造機における鋳塊の熱
移動を定量的に評価する為に、凝固過程を計算する3次
元のシミュレーション・ソフトを作成した。この計算に
おいては、計算対象を細分化して各要素間での熱収支を
評価する直接差分法を用いた。以下において計算の概要
を説明する。
In order to quantitatively evaluate the heat transfer of the ingot in the above continuous casting machine, three-dimensional simulation software for calculating the solidification process was prepared. In this calculation, the direct difference method was used to subdivide the calculation target and evaluate the heat balance between each element. The outline of the calculation will be described below.

【0017】熱伝導による鋳塊内の熱移動量(Q1)
は、フーリエ則より計算できる。 Q1=S×λ×ΔT/L S:要素隣接面積 λ:熱伝導率 ΔT:要素間温度差 L:節点間距離
Heat transfer amount in the ingot due to heat conduction (Q1)
Can be calculated from the Fourier law. Q1 = S × λ × ΔT / L S: Area adjacent to element λ: Thermal conductivity ΔT: Temperature difference between elements L: Distance between nodes

【0018】連続鋳造における物質移動にともなう熱移
動量(Q2)は下記の式により計算できる。 Q2=S
×n×v×ρ×Cp×ΔT n:要素境界での法線ベクトル v:風上速度 Cp:比熱 ρ:密度
The heat transfer amount (Q2) associated with mass transfer in continuous casting can be calculated by the following formula. Q2 = S
× n × v × ρ × Cp × ΔT n: normal vector at element boundary v: windward velocity Cp: specific heat ρ: density

【0019】連続鋳造での固相生成に伴う凝固潜熱の移
動量(Q3)は下記の式により計算できる。 Q3=S×n×v×ρ×H×Δfs H:凝固潜熱若しくは相変態エネルギー Δfs:要素間での固相率差
The transfer amount (Q3) of latent heat of solidification due to solid phase formation in continuous casting can be calculated by the following formula. Q3 = S × n × v × ρ × H × Δfs H: Latent heat of solidification or phase transformation energy Δfs: Solid phase difference between elements

【0020】鋳型等の異種材質間での熱移動量(Q4)
は下記の式により計算できる。 Q4=S×ΔT/(d1/λ1+1/h+d2/λ2) d1,d2:節点から境界までの距離 h:異種材質間の熱抵抗 λ1、λ2:材質No.1、2の熱伝導率
Heat transfer between different materials such as molds (Q4)
Can be calculated by the following formula. Q4 = S × ΔT / (d1 / λ1 + 1 / h + d2 / λ2) d1, d2: Distance from node to boundary h: Thermal resistance between different materials λ1, λ2: Material No. Thermal conductivity of 1, 2

【0021】冷却水等による熱移動量は(Q5)は下記
の式により計算できる。 Q5=S×h0 ×(T−T0 ) h0 :境界での熱伝達率 T:節点温度 T0 :外部温度(冷却水温等)
The heat transfer amount due to cooling water (Q5) can be calculated by the following formula. Q5 = S × h0 × (T−T0) h0: Heat transfer coefficient at the boundary T: Node temperature T0: External temperature (cooling water temperature, etc.)

【0022】各要素内での潜熱による熱変化(Q6)は
下記の式により計算できる。 Q6=V×ρ×H×Δfs' V:要素体積 Δfs' :要素内での固相率の変化量
The heat change (Q6) due to latent heat in each element can be calculated by the following formula. Q6 = V × ρ × H × Δfs ′ V: Element volume Δfs ′: Amount of change of solid phase ratio in the element

【0023】こらの基本式を用いてQ1〜Q6までの熱
量を総合的に計算し、連続鋳造での3次元的な熱移動量
の評価を時間進行法を用いて行った。この計算方法は温
度伝導度が大きい銅合金の場合に特に有効な計算方法で
ある。また、本発明における浸浸冷却につては各種材質
にて冷却能(熱伝達率)を関数化し、シミュレーション
内に取り込み、凝固・熱計算を行った。
The heat quantity from Q1 to Q6 was comprehensively calculated using these basic equations, and the three-dimensional heat transfer quantity in continuous casting was evaluated using the time progress method. This calculation method is a particularly effective calculation method in the case of a copper alloy having a large thermal conductivity. Further, regarding the immersion cooling in the present invention, the cooling ability (heat transfer coefficient) was made into a function with various materials, and this was taken into the simulation, and solidification / heat calculation was performed.

【0024】更に、上記凝固過程の計算(凝固プロフィ
ール、鋳塊内の温度勾配等)に基づき、鋳造速度と鋳塊
中心における内部応力を計算した。その結果、図3に示
すように、鋳造速度が大きくなると(特に10m/mi
n以上)、鋳塊中心において大きな内部応力が発生して
いることが明らかとなった。更に、2次冷却強度を小さ
くすると内部応力の曲線が図中右側に移動し、2次冷却
強度を大きくすると該曲線が左側に移動することも明ら
かとなった。
Further, the casting speed and the internal stress at the center of the ingot were calculated based on the above calculation of the solidification process (solidification profile, temperature gradient in the ingot, etc.). As a result, as shown in FIG. 3, when the casting speed was increased (especially 10 m / mi
It was found that a large internal stress is generated at the center of the ingot. Further, it was also clarified that when the secondary cooling strength was decreased, the internal stress curve moved to the right side in the figure, and when the secondary cooling strength was increased, the curve moved to the left side.

【0025】上記計算を更に発展させ、温度伝導度と鋳
造速度と中心の割れ、即ち芯割れとの関係を明らかにし
た。この結果を図4及び図5に示した。図4は直径30
0mmの純銅を連続鋳造した場合における温度伝導度と
鋳造速度と関係を示すが、温度伝導度が、0.12m2
/h以上の場合においては、鋳造速度を従来の鋳造速度
10m/h以上としても鋳塊内には芯割れが発生してい
ないことが判明した。
The above calculation was further developed to clarify the relationship between the temperature conductivity, the casting speed, the central crack, that is, the core crack. The results are shown in FIGS. 4 and 5. Figure 4 shows a diameter of 30
The relationship between the temperature conductivity and the casting speed in the case where 0 mm pure copper is continuously cast is shown. The temperature conductivity is 0.12 m 2
It was found that in the case of / h or more, no core crack occurred in the ingot even if the casting speed was set to a conventional casting speed of 10 m / h or more.

【0026】また、図5には上記と同じ条件で、鋳造速
度15m/hにおいて鋳塊の温度伝導度とピット冷却水
温度との関係を示した。この図から鋳造速度一定の条件
下において鋳塊の芯割れを発生させないためには、温度
伝導度に応じて冷却水の温度を所定の温度以上とするこ
とが必要であることが判明した。
FIG. 5 shows the relationship between the temperature conductivity of the ingot and the pit cooling water temperature at the casting speed of 15 m / h under the same conditions as above. From this figure, it has been found that it is necessary to set the temperature of the cooling water to a predetermined temperature or higher in accordance with the temperature conductivity in order to prevent core cracking of the ingot under the condition that the casting speed is constant.

【0027】このことは、鋳塊の温度伝導度に応じて冷
却水の温度を常温(20℃以下)以上の所定の温度以上
とすることによって鋳造速度を従来の鋳造速度(10m
/h以下)よりも高めることが可能であることを意味す
る。
This means that the temperature of the cooling water is set to a predetermined temperature or higher than room temperature (20 ° C. or lower) in accordance with the temperature conductivity of the ingot, so that the casting speed becomes the conventional casting speed (10 m).
/ H or less) is meant.

【0028】図5から、冷却水の水温(t)を被冷却材
である鋳塊の温度伝導度(a)に応じて下記のように制
御することが望ましいことが明らかである。 0.30<aの場合 :t>−200.0×a+ 90.0(℃) 0.15≦a≦0.30の場合:t>−33.3×a+ 40.0(℃) 0.12≦a<0.15の場合:t>−2250.0×a+372.5(℃)
From FIG. 5, it is clear that it is desirable to control the water temperature (t) of the cooling water as follows according to the temperature conductivity (a) of the ingot which is the material to be cooled. In the case of 0.30 <a: t> −200.0 × a + 90.0 (° C.) In the case of 0.15 ≦ a ≦ 0.30: t> −33.3 × a + 40.0 (° C.) 0. When 12 ≦ a <0.15: t> −2250.0 × a + 372.5 (° C.)

【0029】一般に、鋳塊の中心部の凝固が終了すると
凝固潜熱の放出が中止されることより高温状態が維持さ
れなくなり、静置冷却水での冷却能が急激に増加し、鋳
塊を急激に却する。そこで、温度伝導度が0.12m2
/h以上の金属、例えば銅合金を従来よりも高速鋳造す
るためには、ピット冷却帯の温度を上げて冷却能を制限
することが必要である。
Generally, when the solidification of the central portion of the ingot is completed, the release of the latent heat of solidification is stopped, the high temperature state is not maintained, the cooling capacity of the stationary cooling water rapidly increases, and the ingot is rapidly cooled. To leave. Therefore, the temperature conductivity is 0.12 m 2.
In order to cast a metal of / h or more, for example, a copper alloy at a higher speed than before, it is necessary to raise the temperature of the pit cooling zone to limit the cooling capacity.

【0030】なお、本静置冷却水中に最終凝固部が存在
するように、鋳型冷却能(冷却水量の減少)並びに鋳造
速度の変更(増速)を行う。この結果、ピット冷却水内
に浸漬させるだけで冷却水自身が持っている冷却特性に
より、自動的に冷却の制御がなされ、鋳塊中心部での割
れが完全に回避される。
The mold cooling capacity (the amount of cooling water is reduced) and the casting speed are changed (accelerated) so that the final solidified portion exists in the stationary cooling water. As a result, cooling is automatically controlled by the cooling characteristics of the cooling water itself by simply immersing it in the pit cooling water, and cracking at the center of the ingot is completely avoided.

【0031】また、図2に示すような連続鋳造機におい
ては、ピット内冷却水により、鋳塊表面を空気から完全
に遮断することが出来る為に、鋳塊表面の酸化膜の発生
をも併せて防ぐことが出来る。また、このような連続鋳
造機においては、設備構成上なんらメンテナンスするも
のは有しないものである為に、保守点検業務が無くなこ
とによる経費の低減も図られる。
Further, in the continuous casting machine as shown in FIG. 2, since the ingot surface can be completely shielded from the air by the cooling water in the pit, an oxide film on the ingot surface is also generated. Can be prevented. Further, in such a continuous casting machine, there is nothing to maintain due to the equipment configuration, so that the cost can be reduced by eliminating maintenance work.

【0032】以上述べたとおり、温度伝導度が0.12
2 /h以上の非鉄金属、特に銅及び銅合金を図2に示
すような連続鋳造機により鋳塊を製造する際に、鋳型直
下に冷却水ピットを設けて、そのピット内の冷却水中に
鋳造直後の鋳塊を浸漬させる方法が有効であることが判
明した。上記のような冷却方法を適用できる非鉄金属を
の例と、それぞれの金属に対する望ましい冷却温度を表
1に示す。
As described above, the thermal conductivity is 0.12.
When manufacturing ingots of non-ferrous metal of m 2 / h or more, particularly copper and copper alloys by a continuous casting machine as shown in FIG. 2, a cooling water pit is provided immediately below the mold, and the cooling water is placed in the pit. It has been found that the method of immersing the ingot immediately after casting is effective. Table 1 shows examples of non-ferrous metals to which the cooling method as described above can be applied, and desirable cooling temperatures for the respective metals.

【0033】[0033]

【表1】 [Table 1]

【0034】上記連続鋳造機においては、ピット内水温
を温度計9により測定し、所定の水温になるように温度
制御装置11により鋳型の冷却排水もしくは、外部から
そのピットに冷却水を冷却水補給管10から注入するも
のである。なお、そのピットには鋳塊に直接水流が衝突
しないように例えば水流遮断板7を設けることはより好
ましい。なお、鋳塊は、鋳型を出ると直ちに冷却水に浸
漬されるので鋳塊表面の酸化スケールの発生を防止出来
る。
In the above continuous casting machine, the water temperature in the pit is measured by the thermometer 9, and the temperature control device 11 cools and drains the mold by the temperature control device 11 or supplies cooling water to the pit from the outside with cooling water. It is injected from the tube 10. It is more preferable to provide, for example, a water flow blocking plate 7 in the pit so that the water flow does not directly collide with the ingot. Since the ingot is immersed in cooling water immediately after leaving the mold, it is possible to prevent the generation of oxide scale on the surface of the ingot.

【0035】[0035]

【実施例】銅及び銅合金の300φmmビレットを図2
に示す連続鋳造機において鋳造実験を実施した。鋳型か
らの冷却水排水が鋳塊に直接接触しない構造とした。ピ
ット内の冷却水は鋳型直下まで水位を上げて鋳造を実施
した。なお、ピット内には、ピット水温が上昇しないよ
うに制御する為の補給水配管10を設けて、ピット冷却
水温度を温度制御装置11により制御を行った。
EXAMPLE A copper and copper alloy 300 mm billet is shown in FIG.
A casting experiment was carried out in the continuous casting machine shown in FIG. The structure is such that the cooling water drainage from the mold does not directly contact the ingot. The cooling water in the pit was cast by raising the water level just below the mold. In the pit, a makeup water pipe 10 for controlling the pit water temperature so as not to rise was provided, and the pit cooling water temperature was controlled by the temperature control device 11.

【0036】鋳造速度を種々変更して鋳塊内部での芯割
れの発生状況と計算によるシミュレーションでの結果の
比較を行い、結果を表2に示す。計算結果は「芯割れ」
の発生をよく再現しており、計算に基づく冷却条件下に
於いては芯割れを防止出来ることが確認された。
Table 2 shows the results of comparison between the occurrence of core cracks inside the ingot and the results of the simulation by calculation while changing the casting speed variously. Calculation result is "core crack"
It was confirmed that the core cracking can be prevented under the cooling condition based on the calculation.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】以上説明したように本発明の方法及び連
続鋳造機により、非鉄金属、特に銅及び銅合金を連続鋳
造すると、従来よりも鋳造速度を上げても中心割れ、即
ち芯割れを発生させることなく健全な鋳塊を鋳造できる
ことができる。
As described above, when non-ferrous metals, especially copper and copper alloys are continuously cast by the method and continuous casting machine of the present invention, center cracking, that is, core cracking occurs even if the casting speed is increased more than ever before. It is possible to cast a sound ingot without causing it to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の非鉄合金の連続鋳造機の概要を示す図で
ある。
FIG. 1 is a diagram showing an outline of a conventional non-ferrous alloy continuous casting machine.

【図2】本発明に係る連続鋳造機の概要を示す図であ
る。
FIG. 2 is a diagram showing an outline of a continuous casting machine according to the present invention.

【図3】銅の連続鋳造における鋳造速度と内部応力との
関係を示す図である。
FIG. 3 is a diagram showing a relationship between a casting speed and an internal stress in continuous casting of copper.

【図4】銅の連続鋳造における温度伝導度と鋳造速度と
の関係を示す図である。
FIG. 4 is a diagram showing a relationship between temperature conductivity and casting speed in continuous casting of copper.

【図5】銅の連続鋳造における温度伝導度と冷却水温度
と芯割れとの関係を示す図である。
FIG. 5 is a diagram showing a relationship between temperature conductivity, cooling water temperature, and core crack in continuous casting of copper.

【符号の説明】[Explanation of symbols]

1 溶湯 2 鋳型 3 鋳塊 4 ノズル 6 ピット冷却帯 7 水流遮蔽板 9 温度計 10 冷却水補給管 11 温度制御装置 1 molten metal 2 molds 3 ingot 4 nozzles 6 pit cooling zone 7 Water flow shield 9 thermometer 10 Cooling water supply pipe 11 Temperature control device

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22D 11/00 B22D 11/124 B22D 11/16 104 B22D 11/22 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) B22D 11/00 B22D 11/124 B22D 11/16 104 B22D 11/22

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 温度伝導度(=(熱伝導率)/(比熱×
比重))が0.12m2/h以上の金属を連続鋳造し、
鋳造直後鋳塊を静置冷却水に浸漬して冷却する方法にお
いて、静置冷却水中に最終凝固部が存在するように、冷
却水の水温(t)を被冷却材である鋳塊の温度伝導度
(a)に応じて制御することを特徴とする非鉄金属の連
続鋳造方法。
1. Thermal conductivity (= (thermal conductivity) / (specific heat ××
Continuous casting of metal having a specific gravity of 0.12 m 2 / h or more,
In a method of cooling an ingot immediately after casting by immersing it in still cooling water, the temperature (t) of the cooling water is controlled so that the final solidified portion is present in the still cooling water by the temperature conduction of the ingot as the material to be cooled. A continuous casting method for non-ferrous metals, characterized by controlling according to the degree (a).
【請求項2】 前記金属が銅又は銅合金であることを特
徴とする請求項1に記載の非鉄金属の連続鋳造方法。
2. The continuous casting method for a non-ferrous metal according to claim 1, wherein the metal is copper or a copper alloy.
【請求項3】 前記冷却水の水温(t)を被冷却材であ
る鋳塊の温度伝導度(a)に応じて下記のように制御す
ることを特徴とする請求項1又は2に記載された非鉄金
属の連続鋳造方法。 0.30<aの場合 :t>−200.0×a
+90.0(℃) 0.15≦a≦0.30の場合:t>−33.3×a+
40.0(℃) 0.12≦a≦0.15の場合:t>−2250.0×
a+372.5(℃)
3. The water temperature (t) of the cooling water is controlled as follows according to the temperature conductivity (a) of the ingot which is the material to be cooled. Continuous non-ferrous metal casting method. In the case of 0.30 <a: t> −200.0 × a
+90.0 (° C.) 0.15 ≦ a ≦ 0.30: t> −33.3 × a +
40.0 (° C.) 0.12 ≦ a ≦ 0.15: t> −2250.0 ×
a + 372.5 (℃)
【請求項4】 下記の部材を備えたことを特徴とする非
鉄金属用の連続鋳造装置。 (a)溶融した非鉄金属が注入される鋳型と、 (b)前記鋳型から排出されて鋳塊を冷却するために鋳
型の直ぐ下方において鋳塊を周回するように配設され、
冷却水を収容したピットと、 (c)前記冷却水の温度を測定するための温度計と、ピ
ット内に該冷却水の温度を調節するための冷却水補給管
と、該温度計により測定された温度が鋳造される金属の
温度伝導度から定められる該冷却水の温度となるように
前記冷却水補給管の水量を制御する温度制御装置。
4. A continuous casting apparatus for non-ferrous metals, comprising the following members. (A) a mold into which molten non-ferrous metal is injected, and (b) arranged to orbit the ingot immediately below the mold to be discharged from the mold and cool the ingot,
A pit containing cooling water; (c) a thermometer for measuring the temperature of the cooling water; a cooling water supply pipe for adjusting the temperature of the cooling water in the pit; The temperature of the cooling water is determined by the temperature conductivity of the metal to be cast.
Temperature control apparatus for controlling the amount of water of the cooling water supply pipe.
JP03569396A 1996-01-31 1996-01-31 Continuous casting method and continuous casting apparatus for non-ferrous metals Expired - Fee Related JP3464331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03569396A JP3464331B2 (en) 1996-01-31 1996-01-31 Continuous casting method and continuous casting apparatus for non-ferrous metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03569396A JP3464331B2 (en) 1996-01-31 1996-01-31 Continuous casting method and continuous casting apparatus for non-ferrous metals

Publications (2)

Publication Number Publication Date
JPH09206889A JPH09206889A (en) 1997-08-12
JP3464331B2 true JP3464331B2 (en) 2003-11-10

Family

ID=12448986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03569396A Expired - Fee Related JP3464331B2 (en) 1996-01-31 1996-01-31 Continuous casting method and continuous casting apparatus for non-ferrous metals

Country Status (1)

Country Link
JP (1) JP3464331B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010009880A (en) * 1999-07-14 2001-02-05 이구택 method for cooling as-cast slab in continuous casting process
FR2856630B1 (en) * 2003-06-26 2006-09-29 Jean Noel Claveau METHOD FOR DECORATING AN ARTICLE AND EQUIPMENT FOR IMPLEMENTING SAID METHOD

Also Published As

Publication number Publication date
JPH09206889A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
CN104203452B (en) The additional quenching homogenizing method in situ of direct-cooled casting metal
US7264038B2 (en) Method of unidirectional solidification of castings and associated apparatus
JP3464331B2 (en) Continuous casting method and continuous casting apparatus for non-ferrous metals
JP2727887B2 (en) Horizontal continuous casting method
JP2002501437A (en) Metal strip casting
US3891024A (en) Method for the continuous casting of metal ingots or strips
JP2950152B2 (en) Continuous casting mold for slab
JPH0461743B2 (en)
JP3962301B2 (en) Metal casting method and apparatus
JP3101069B2 (en) Continuous casting method
JP2006305618A (en) Semi-solid casting method
Drożdż The influence of the superheat temperature on the slab structure in the continuous steel casting process
Raiszadeh et al. New analytical estimation of solid shell thickness at length of continuous casting mould
Gonzalez-Rivera et al. The effect of heat transfer on local solidification kinetics of eutectic Al-Si cast alloy
JPH05228580A (en) Continuous casting method
Luo et al. Analysis of temperature field, heat and fluid flow of two-phase zone continuous casting Cu–Sn alloy wire
Mahmoudi Horizontal continuous casting of copper-based alloys
Divandari et al. Effect of strips size and coating thickness on fluidity of A356 aluminium alloy in lost foam casting process
Rodrigues et al. Analysis of the influence of deformation in microstructure formation during solidification of Pb-2.5% Sb alloy
Redouane et al. EXPERIMENTAL, STATISTICAL AND NUMERICAL STUDIES OF THE CONTINUOUS CASTING PROCESS BASED ON TEMPERATURE PROFILES-PART I.
Javaid Effect of Different Mold Materials on the Solidification Rate and Microstructure of Magnesium Alloy Plate Castings
JPS6087956A (en) Continuous casting method of metal
JP2845706B2 (en) Molding equipment for continuous casting equipment
FI69972B (en) METAL CONTAINER CONTAINER
TW202319142A (en) Aluminum alloy continuous casting apparatus accelerates cooling effect for aluminum casting blank through direct cooling device to improve crack phenomenon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees