JPH0541249A - Lithium secondary battery and method of pouring lithium ion into negative electrode structure for use in lithium battery - Google Patents
Lithium secondary battery and method of pouring lithium ion into negative electrode structure for use in lithium batteryInfo
- Publication number
- JPH0541249A JPH0541249A JP3192825A JP19282591A JPH0541249A JP H0541249 A JPH0541249 A JP H0541249A JP 3192825 A JP3192825 A JP 3192825A JP 19282591 A JP19282591 A JP 19282591A JP H0541249 A JPH0541249 A JP H0541249A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- negative electrode
- electrode structure
- battery
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電池、特に、リチウム
イオンを用いるリチウム二次電池及びそれに用いる負極
構造体へのリチウムイオンの注入方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery, in particular, a lithium secondary battery using lithium ions and a method for injecting lithium ions into a negative electrode structure used therein.
【0002】[0002]
【従来の技術】リチウムイオンを用いる二次電池の負極
として従来用いられている材料は、リチウム金属または
リチウム合金であったが、充放電サイクルに対する安定
性が悪く、放電した電気量を充電によっては完全に回復
することができなかった。このため数100回を超える
充放電を行うためには、余分の負極材料を電池に仕込ま
なれければならなかった。2. Description of the Related Art The material conventionally used as the negative electrode of a secondary battery using lithium ion was lithium metal or lithium alloy, but the stability against a charge / discharge cycle was poor, and the amount of electricity discharged depends on the charge. I couldn't recover completely. For this reason, in order to perform charging / discharging more than several hundreds of times, extra negative electrode material had to be charged into the battery.
【0003】また、リチウムイオンを可逆的に吸収し、
放出する機能をもつ負極構造体を用いた二次電池は、例
えば特開平2−66856号公報記載の従来の例のように、
正極に十分なリチウムを含んだ電極を用いており、使用
にあたってはまず充電したのち、充電電気量未満の放電
を行うようになっている。従って、電池に仕込むべき正
極量は設計容量値相当量以上にならざるを得なかった。Further, it reversibly absorbs lithium ions,
A secondary battery using a negative electrode structure having a discharging function is, for example, as in the conventional example described in JP-A-2-66856.
An electrode containing a sufficient amount of lithium is used for the positive electrode, and when used, the battery is charged first and then discharged less than the charged amount of electricity. Therefore, the amount of positive electrode to be charged in the battery must be equal to or more than the design capacity value.
【0004】[0004]
【発明が解決しようとする課題】上記のように従来の負
極では、設計容量通りの充放電量を満たすためには、負
極容量または正極容量を過剰な量にしなければならず、
その結果として、容積当たり、あるいは重量当たりの充
放電容量(充放電容量密度)として期待した値を下回らざ
るを得なかった。As described above, in the conventional negative electrode, the negative electrode capacity or the positive electrode capacity must be made excessive in order to satisfy the charge / discharge amount as designed.
As a result, the charge / discharge capacity (charge / discharge capacity density) per volume or weight has to fall below the expected value.
【0005】本発明は、係る問題を解決し、より大きい
充放電容量密度をもつリチウム二次電池及びそれに用い
る負極構造体へのリチウムイオンの注入方法を提供する
ものである。The present invention solves the above problems and provides a lithium secondary battery having a higher charge / discharge capacity density and a method for injecting lithium ions into a negative electrode structure used therein.
【0006】[0006]
【課題を解決するための手段】本発明に係るリチウム二
次電池は、負極が、リチウムイオンを可逆的に吸収し、
放出する機能をもつ負極構造体からなるリチウム電池に
おいて、負極構造体が炭素材料を含みかつリチウムイオ
ンを電池組立前に注入したものであることを特徴とす
る。In the lithium secondary battery according to the present invention, the negative electrode reversibly absorbs lithium ions,
A lithium battery including a negative electrode structure having a releasing function is characterized in that the negative electrode structure contains a carbon material and lithium ions are injected before the battery is assembled.
【0007】更に、本発明に係るリチウム二次電池用負
極構造体へのリチウムイオンの注入方法は、炭素材料を
含む負極構造体とリチウム金属またはリチウム合金を直
接接触させてながら、リチウムイオンを含有する電解液
中に浸漬させることを特徴とする。Further, according to the method of injecting lithium ions into the negative electrode structure for a lithium secondary battery according to the present invention, the negative electrode structure containing the carbon material is brought into direct contact with the lithium metal or the lithium alloy to contain lithium ions. It is characterized in that it is immersed in an electrolytic solution.
【0008】更に、本発明に係るリチウム二次電池用負
極構造体へのリチウムイオンの注入方法の第2の態様に
おいては、炭素材料を含む負極構造体とリチウム金属ま
たはリチウム合金を多孔質の絶縁物を介して接触させた
まま、リチウムイオンを含有する電解液中に浸漬させ、
負極構造体を+極とし、接触させたリチウム金属または
リチウム合金を一極として、1平方cm当たり4mA以
下、0.1mA以上で通電し、+極と−極の間の電圧が
100mV以下0V以上で通電を停止することを特徴と
する。Further, in the second aspect of the method for injecting lithium ions into the negative electrode structure for a lithium secondary battery according to the present invention, the negative electrode structure containing the carbon material and the lithium metal or lithium alloy are porous-insulated. Immersed in an electrolytic solution containing lithium ions, while being contacted through
The negative electrode structure is used as a positive electrode, and the contacted lithium metal or lithium alloy is used as a single electrode, and current is applied at 4 mA per square cm or less and 0.1 mA or more, and the voltage between the positive and negative electrodes is 100 mV or less and 0 V or more. It is characterized by stopping energization at.
【0009】[0009]
【作用】本発明に係るリチウム二次電池においては、負
極構造体に必要かつ十分な量のリチウムイオンをあらか
じめ注入したものを設計容量通りの正極と組合せて電池
を組み立てることで、充放電容量密度が高い電池とな
る。In the lithium secondary battery according to the present invention, the negative electrode structure is preliminarily injected with a necessary and sufficient amount of lithium ions, and the battery is assembled by combining it with the positive electrode having the designed capacity, thereby obtaining a charge / discharge capacity density. Is a high battery.
【0010】本発明のリチウム二次電池に使用する負極
構造体には、焼成温度が1000℃〜2800℃、好ま
しくは1200℃〜2200℃である炭素材料を用い、
この炭素材料はシート状としたもの、または他の支持体
に炭素材料を接着した形態のものを使用することができ
る。これらの形状の炭素材料にあらかじめリチウムイオ
ンを注入したものを負極構造体として使用する。For the negative electrode structure used in the lithium secondary battery of the present invention, a carbon material having a firing temperature of 1000 ° C to 2800 ° C, preferably 1200 ° C to 2200 ° C is used.
This carbon material can be used in the form of a sheet or in a form in which the carbon material is adhered to another support. A carbon material in which these shapes are preliminarily implanted with lithium ions is used as a negative electrode structure.
【0011】この炭素材料を含んでなる負極構造体とリ
チウム金属またはリチウム合金を接触させて、リチウム
イオンを含有する電解液中に浸漬させる方法でリチウム
イオンを組立前に負極構造体に注入することができる。Injecting lithium ions into the negative electrode structure before assembly by contacting the negative electrode structure containing the carbon material with lithium metal or a lithium alloy and immersing the negative electrode structure in an electrolytic solution containing lithium ions. You can
【0012】更に、負極構造体とリチウム金属またはリ
チウム合金を多孔質の絶縁物を介して接触させたまま、
リチウムイオンを含有する電解液中に浸漬させ、負極構
造体を+極とし、接触させたリチウム金属またはリチウ
ム合金を一極として、1平方cm当たり4mA以下、
0.1mA以上で通電し、+極と−極の間の電圧が10
0mV以下0V以上で通電を停止することによっても本
発明のリチウム二次電池に用いる負極構造体を得ること
ができる。Further, while keeping the negative electrode structure and the lithium metal or lithium alloy in contact with each other through the porous insulator,
4 mA or less per 1 cm 2 by immersing in an electrolyte solution containing lithium ions, using the negative electrode structure as a positive electrode, and the contacted lithium metal or lithium alloy as one electrode.
Energized at 0.1 mA or more, the voltage between the positive and negative electrodes is 10
The negative electrode structure used in the lithium secondary battery of the present invention can also be obtained by stopping energization at 0 mV or less and 0 V or more.
【0013】上記のように炭素材料を含む負極構造体と
リチウム金属またはリチウム合金とを接触させたもの
は、リチウム金属が安定に存在できる環境例えば露点が
マイナス20℃以下の空気中では、なんら変化を起こさ
ないが、これをリチウムイオンを含む電解液例えばプロ
ピレンカーボネート(以下、PCと略記する)とジメチル
エーテル(以下、DMEと略記する)の混合溶媒に過塩素
酸リチウム塩や六フッ化リン酸リチウム塩を溶かしたも
のに浸漬すると、電気化学的な作用により、リチウム金
属が溶けてリチウムイオンとなり、負極構造体中に注入
される。注入量を加減するには、負極構造体とリチウム
金属をはりあわせて電解液に浸漬する時間を変化させ
る。なお、電解液の濃度は特に限定されるものではない
が、使用する溶媒への各種リチウム塩の溶解度の上限に
近いものを使用することがこのましい。As described above, when the negative electrode structure containing the carbon material is brought into contact with lithium metal or lithium alloy, there is no change in an environment in which lithium metal can stably exist, for example, in the air having a dew point of -20 ° C or lower. However, a lithium ion-containing electrolyte such as propylene carbonate (hereinafter abbreviated as PC) and dimethyl ether (hereinafter abbreviated as DME) is mixed in a mixed solvent of lithium perchlorate or lithium hexafluorophosphate. When immersed in a solution of salt, the lithium metal is dissolved into lithium ions by an electrochemical action and injected into the negative electrode structure. In order to adjust the injection amount, the negative electrode structure and the lithium metal are put together and the time for immersion in the electrolytic solution is changed. The concentration of the electrolytic solution is not particularly limited, but it is preferable to use one having a concentration close to the upper limit of the solubility of various lithium salts in the solvent used.
【0014】このようにして所定の容量に必要かつ十分
なリチウムイオンを注入した負極構造体を、セパレータ
を介して設計容量を満たす量の正極活物質を含む正極と
対向させてリチウム二次電池とすると余分な量の正極及
び負極をもたないため、電池容積あるいは電池重量当た
りの充放電容量が増え、充放電容量密度が向上する。In this way, the negative electrode structure in which lithium ions necessary and sufficient for a predetermined capacity are implanted are made to face the positive electrode containing the positive electrode active material in an amount satisfying the designed capacity through the separator to form a lithium secondary battery. Then, since there is no excess amount of the positive electrode and the negative electrode, the charge / discharge capacity per battery volume or battery weight increases, and the charge / discharge capacity density improves.
【0015】[0015]
【実施例】実施例1 図1は、本発明における負極構造体にリチウムイオンを
注入する方法の1例を示したものである。(1)は負極構
造体で、焼成温度が1200℃である炭素材料のシート
を打ち抜いたもので、炭素材料を単位面積当たり35m
g含むように造られている。(2)はリチウム金属であ
る。(3)は押さえであり、、(4)は負極構造体、リチウム
金属及び電解液と反応しない物質例えばテトラフルオロ
エチレンポリマー(以下、PTFEと略記する)でできた
容器で、押さえ(3)を容器(4)にネジ込むことで適当な接
触圧を負極構造体(1)とリチウム金属(2)に与える。負極
構造体(1)はあらかじめ直径14mmの円形に成形して
おく。リチウム金属(2)も負極構造体(1)と同じか、より
大きいサイズに成形しておく。負極構造体(1)とリチウ
ム金属(2)に適当な接触圧を与えた後、容器(4)に設けら
れた電解液注入口(5)から電解液を注ぎ込む。(6)は息抜
き口である。EXAMPLES Example 1 FIG. 1 shows an example of a method for implanting lithium ions into a negative electrode structure according to the present invention. (1) is a negative electrode structure, which is obtained by punching out a carbon material sheet having a firing temperature of 1200 ° C., and the carbon material is 35 m per unit area.
Built to include g. (2) is lithium metal. (3) is a retainer, (4) is a container made of a material that does not react with the negative electrode structure, the lithium metal and the electrolyte, such as tetrafluoroethylene polymer (hereinafter abbreviated as PTFE), the retainer (3) By screwing into the container (4), an appropriate contact pressure is applied to the negative electrode structure (1) and the lithium metal (2). The negative electrode structure (1) is previously formed into a circular shape having a diameter of 14 mm. The lithium metal (2) is also molded in the same size as or a larger size than the negative electrode structure (1). After applying an appropriate contact pressure to the negative electrode structure (1) and the lithium metal (2), the electrolytic solution is poured from the electrolytic solution injection port (5) provided in the container (4). (6) is a breather.
【0016】6時間放置したあと、露点がマイナス20
℃以下の雰囲気にしたドライボックス中でリチウムイオ
ンを注入した負極構造体を取り出す。このとき負極構造
体は注入前の黒色から金色に変色している。After being left for 6 hours, the dew point is minus 20.
The negative electrode structure in which lithium ions have been implanted is taken out in a dry box in an atmosphere at a temperature of ℃ or less. At this time, the negative electrode structure changed from black before injection to gold.
【0017】リチウムイオン注入を終えた負極構造体を
多孔質ポロプロピレンをセパレータとして、リチウム処
理した二酸化マンガンを正極活物質とする正極と対向さ
せて六フッ化リン酸リチウム濃度が1モル/リットルで
あるPCとDMEの混合溶媒電解液中に浸漬させたもの
を常法に従いコイン電池とした。正極は放電容量が3m
Ahとなるように、活物質を20mg含むものである。The negative electrode structure after the completion of lithium ion implantation is made to face a positive electrode using porous polypropylene as a separator and lithium-treated manganese dioxide as a positive electrode active material, and the lithium hexafluorophosphate concentration is 1 mol / l. A coin battery was immersed in a mixed solvent electrolyte of PC and DME according to a conventional method. The positive electrode has a discharge capacity of 3 m
It contains 20 mg of the active material so as to be Ah.
【0018】図2は、本実施例により製作した設計容量
3mAhのコイン電池の終始電圧を2Vとして、充放電
電流密度を2mA/cm2としたときの充放電特性であ
る。設計容量通りの電気量を充放電している。このとき
の電池の活物質部分の容積エネルギー密度は約270w
h/lとなる。FIG. 2 shows the charging / discharging characteristics of the coin battery having a designed capacity of 3 mAh manufactured according to this embodiment, when the starting and ending voltage is 2 V and the charging / discharging current density is 2 mA / cm 2 . It charges and discharges electricity according to the design capacity. At this time, the volumetric energy density of the active material portion of the battery is about 270w.
It becomes h / l.
【0019】実施例2 図3は、長尺の負極構造体電極に連続的にリチウムを注
入する装置の主要な部分を図示したものである。(7)は
多孔質ポリプロピレン製のセパレータであり、(8)は−
極ローラー集電軸、(9)はSUS製の+極ローラー、(1
0)はリチウムイオンを含む電解液、(11)はPTFE製の
電解液浴である。−極ローラー(8)と+極ローラーの間
の電流電圧は、電源(12)と可変抵抗(13)で規制される。
−極ローラー集電軸(8)はSUS製の集電をかねる軸体
の外周にリチウム金属が張り付けられ、その外側にセパ
レータ(7)が張り付いていた。ローラーの幅は負極構造
体の幅と同等である。Example 2 FIG. 3 illustrates a main part of an apparatus for continuously injecting lithium into a long negative electrode. (7) is a porous polypropylene separator, (8)-
Polar roller collector shaft, (9) is made of SUS + polar roller, (1
0) is an electrolytic solution containing lithium ions, and (11) is an electrolytic solution bath made of PTFE. The current and voltage between the negative pole roller (8) and the positive pole roller are regulated by the power source (12) and the variable resistor (13).
In the pole roller current collecting shaft (8), lithium metal was adhered to the outer circumference of the shaft body made of SUS and also serving as a current collector, and the separator (7) was adhered to the outside thereof. The width of the roller is the same as the width of the negative electrode structure.
【0020】負極構造体(1)はガイドローラー(14)を経
由して電解液に浸漬され、電解液を吸収する。2つの−
極ローラーの間を通るとき、−極ローラー集電軸(8)、
+極ローラー(9)間を流れる電流によって、電解液中の
リチウムイオンが負極構造体に注入される。The negative electrode structure (1) is immersed in the electrolytic solution via the guide roller (14) to absorb the electrolytic solution. Two-
When passing between the polar rollers, -polar roller current collecting shaft (8),
The lithium ions in the electrolytic solution are injected into the negative electrode structure by the current flowing between the positive electrode roller (9).
【0021】負極構造体に注入するリチウムイオンの量
は、通電電圧及び電流の大きさと、負極構造体の幅及び
ローラー送りの速度で決定される。幅5cmのローラー
を使い、送り速度を毎時2cmとしたとき、最適な電流
は20mAである。The amount of lithium ions injected into the negative electrode structure is determined by the magnitude of the applied voltage and current, the width of the negative electrode structure and the speed of roller feed. When a roller having a width of 5 cm is used and the feed speed is 2 cm / hour, the optimum current is 20 mA.
【0022】図4は本実施例により作成した容量700
mAh分の負極構造体と同容量のリチウム処理した二酸
化マンガンを正極活物質とする多孔質ポリプロピレンを
はさんで対向させて、六フッ化リン酸リチウム濃度が1
モル/リットルであるPCとDMEの混合溶媒電解液を
使用して作成したAAサイズの円筒状の電池の充放電特
性である。設計通りの容量を繰り返し充放電できてい
る。図中、点線は実施例と同じく容量700mAh分の
正極及び負極構造体を用いて、従来の方法で組み立てた
電池の充放電特性である。設計容量のおよそ半分程度の
容量しか採れないことがわかる。FIG. 4 shows a capacity 700 created according to this embodiment.
The lithium hexafluorophosphate concentration was set to 1 with a porous polypropylene having the same volume of lithium-treated manganese dioxide as the positive electrode active material facing the negative electrode structure for mAh as the positive electrode active material.
FIG. 4 is a charge / discharge characteristic of an AA size cylindrical battery prepared by using a mixed solvent electrolyte of PC and DME which is mol / liter. The capacity as designed can be repeatedly charged and discharged. In the figure, the dotted line shows the charge / discharge characteristics of the battery assembled by the conventional method using the positive and negative electrode structures having a capacity of 700 mAh as in the example. It can be seen that only about half the design capacity can be taken.
【0023】[0023]
【発明の効果】本発明に係るリチウム二次電池は、負極
構造体を上述のような構造としたので、リチウム二次電
池の組立前に負極構造体に必要な量のリチウムイオンを
注入することができ、容量密度が高い電池を作成するこ
とができる。In the lithium secondary battery according to the present invention, since the negative electrode structure has the above-described structure, it is necessary to inject a necessary amount of lithium ions into the negative electrode structure before assembling the lithium secondary battery. Therefore, a battery with high capacity density can be manufactured.
【図1】実施例1に用いた装置を示す断面図である。FIG. 1 is a cross-sectional view showing an apparatus used in Example 1.
【図2】実施例1の効果を示す電池特性図である。FIG. 2 is a battery characteristic diagram showing the effect of Example 1.
【図3】実施例2に用いた装置の主要部分を示す断面図
である。FIG. 3 is a cross-sectional view showing the main parts of the device used in Example 2.
【図4】実施例2の効果を示す電池特性図である。FIG. 4 is a battery characteristic diagram showing the effect of Example 2.
1 負極構造体 2 リチウム金属 3 押さえ 4 容器 5 電解液注入口 6 息抜き口 7 セパレータ 8 −極ローラー集電軸 9 +極ローラー 10 電解液 11 電解液浴 12 電源 13 可変抵抗 14 ガイドローラー 1 Negative electrode structure 2 Lithium metal 3 Presser 4 Container 5 Electrolyte inlet 6 Discharge port 7 Separator 8-Polar roller collector shaft 9 + Polar roller 10 Electrolyte 11 Electrolyte bath 12 Power supply 13 Variable resistance 14 Guide roller
───────────────────────────────────────────────────── フロントページの続き (72)発明者 漆畑 広明 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Urushibata 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Central Research Laboratory
Claims (3)
し、放出する機能をもつ負極構造体からなるリチウム電
池において、負極構造体が炭素材料を含みかつリチウム
イオンを電池組立前に注入したものであることを特徴と
するリチウム二次電池。1. A lithium battery in which the negative electrode comprises a negative electrode structure having a function of reversibly absorbing and releasing lithium ions, wherein the negative electrode structure contains a carbon material and lithium ions are injected before the battery is assembled. A lithium secondary battery characterized in that
属またはリチウム合金を直接接触させてながら、リチウ
ムイオンを含有する電解液中に浸漬させることを特徴と
するリチウム二次電池用負極構造体へのリチウムイオン
の注入方法。2. A negative electrode structure for a lithium secondary battery, wherein the negative electrode structure containing a carbon material and a lithium metal or a lithium alloy are directly contacted with each other and immersed in an electrolyte solution containing lithium ions. Method of Lithium Ion Implantation.
属またはリチウム合金を多孔質の絶縁物を介して接触さ
せたまま、リチウムイオンを含有する電解液中に浸漬さ
せ、負極構造体を+極とし、接触させたリチウム金属ま
たはリチウム合金を一極として、1平方cm当たり4m
A以下、0.1mA以上で通電し、+極と−極の間の電
圧が100mV以下0V以上で通電を停止することを特
徴とするリチウム二次電池用負極構造体へのリチウムイ
オンの注入方法。3. A negative electrode structure containing a carbon material and a lithium metal or lithium alloy are kept in contact with each other through a porous insulator while being immersed in an electrolyte solution containing lithium ions to make the negative electrode structure a positive electrode. And the contacted lithium metal or lithium alloy is used as one pole, and 4 m / cm 2
A method for injecting lithium ions into a negative electrode structure for a lithium secondary battery, characterized in that energization is performed at A or less and 0.1 mA or more, and energization is stopped at a voltage between a positive electrode and a negative electrode of 100 mV or less and 0 V or more. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3192825A JPH0541249A (en) | 1991-08-01 | 1991-08-01 | Lithium secondary battery and method of pouring lithium ion into negative electrode structure for use in lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3192825A JPH0541249A (en) | 1991-08-01 | 1991-08-01 | Lithium secondary battery and method of pouring lithium ion into negative electrode structure for use in lithium battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0541249A true JPH0541249A (en) | 1993-02-19 |
Family
ID=16297605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3192825A Pending JPH0541249A (en) | 1991-08-01 | 1991-08-01 | Lithium secondary battery and method of pouring lithium ion into negative electrode structure for use in lithium battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0541249A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08162164A (en) * | 1994-07-28 | 1996-06-21 | Hitachi Maxell Ltd | Nonaqueous secondary battery and its manufacture |
WO1998033227A1 (en) * | 1997-01-27 | 1998-07-30 | Kanebo Limited | Organic electrolytic battery |
WO2004059672A1 (en) * | 2002-12-26 | 2004-07-15 | Fuji Jukogyo Kabushiki Kaisha | Electrical storage device and method for manufacturing electrical storage device |
JP2008077963A (en) * | 2006-09-21 | 2008-04-03 | Matsushita Electric Ind Co Ltd | Method and device to store lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery |
US7477728B2 (en) | 2002-05-25 | 2009-01-13 | Samsung Electronics Co., Ltd. | Fast voice dialing apparatus and method |
JP2012049500A (en) * | 2010-08-27 | 2012-03-08 | Samsung Electro-Mechanics Co Ltd | Manufacturing method of lithium ion capacitor |
JP2012049543A (en) * | 2010-08-27 | 2012-03-08 | Samsung Electro-Mechanics Co Ltd | Doping apparatus for manufacturing electrode of energy storage device, and electrode manufacturing method using the apparatus |
JP2017011068A (en) * | 2015-06-19 | 2017-01-12 | 日本電気株式会社 | Method of manufacturing electrode for power storage device and apparatus for manufacturing the electrode |
WO2017057486A1 (en) * | 2015-09-28 | 2017-04-06 | Jsr株式会社 | Method for manufacturing electrode material, cell, and capacitor; and device for manufacturing electrode material |
WO2017110797A1 (en) * | 2015-12-22 | 2017-06-29 | Jsr株式会社 | System for manufacturing electrode material, electrode material, electrode, cell, and method for manufacturing capacitor |
WO2019088139A1 (en) * | 2017-11-02 | 2019-05-09 | 国立大学法人東京大学 | Secondary battery negative electrode, secondary battery, and methods for manufacturing these |
-
1991
- 1991-08-01 JP JP3192825A patent/JPH0541249A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08162164A (en) * | 1994-07-28 | 1996-06-21 | Hitachi Maxell Ltd | Nonaqueous secondary battery and its manufacture |
WO1998033227A1 (en) * | 1997-01-27 | 1998-07-30 | Kanebo Limited | Organic electrolytic battery |
US7477728B2 (en) | 2002-05-25 | 2009-01-13 | Samsung Electronics Co., Ltd. | Fast voice dialing apparatus and method |
WO2004059672A1 (en) * | 2002-12-26 | 2004-07-15 | Fuji Jukogyo Kabushiki Kaisha | Electrical storage device and method for manufacturing electrical storage device |
JPWO2004059672A1 (en) * | 2002-12-26 | 2006-05-11 | 富士重工業株式会社 | Power storage device and method for manufacturing power storage device |
US8152865B2 (en) | 2002-12-26 | 2012-04-10 | Fuji Jukogyo Kabushiki Kaisha | Electrical storage device and manufacturing method of the same |
JP2008077963A (en) * | 2006-09-21 | 2008-04-03 | Matsushita Electric Ind Co Ltd | Method and device to store lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery |
JP2012049500A (en) * | 2010-08-27 | 2012-03-08 | Samsung Electro-Mechanics Co Ltd | Manufacturing method of lithium ion capacitor |
JP2012049543A (en) * | 2010-08-27 | 2012-03-08 | Samsung Electro-Mechanics Co Ltd | Doping apparatus for manufacturing electrode of energy storage device, and electrode manufacturing method using the apparatus |
JP2017011068A (en) * | 2015-06-19 | 2017-01-12 | 日本電気株式会社 | Method of manufacturing electrode for power storage device and apparatus for manufacturing the electrode |
WO2017057486A1 (en) * | 2015-09-28 | 2017-04-06 | Jsr株式会社 | Method for manufacturing electrode material, cell, and capacitor; and device for manufacturing electrode material |
CN107851797A (en) * | 2015-09-28 | 2018-03-27 | Jsr株式会社 | The manufacture device of electrode material, the manufacture method of battery and capacitor and electrode material |
JPWO2017057486A1 (en) * | 2015-09-28 | 2018-08-16 | Jsr株式会社 | Electrode material, battery, capacitor manufacturing method, and electrode material manufacturing apparatus |
EP3358657A4 (en) * | 2015-09-28 | 2019-05-29 | JSR Corporation | Method for manufacturing electrode material, cell, and capacitor; and device for manufacturing electrode material |
US10580592B2 (en) | 2015-09-28 | 2020-03-03 | Jsr Corporation | Method for manufacturing electrode material, cell, and capacitor; and device for manufacturing electrode material |
CN107851797B (en) * | 2015-09-28 | 2020-12-11 | Jsr株式会社 | Electrode material, method for producing battery and capacitor, and apparatus for producing electrode material |
WO2017110797A1 (en) * | 2015-12-22 | 2017-06-29 | Jsr株式会社 | System for manufacturing electrode material, electrode material, electrode, cell, and method for manufacturing capacitor |
WO2019088139A1 (en) * | 2017-11-02 | 2019-05-09 | 国立大学法人東京大学 | Secondary battery negative electrode, secondary battery, and methods for manufacturing these |
JPWO2019088139A1 (en) * | 2017-11-02 | 2020-12-24 | 国立大学法人 東京大学 | Negative electrodes for secondary batteries, secondary batteries, and their manufacturing methods |
JP2022191483A (en) * | 2017-11-02 | 2022-12-27 | 国立大学法人 東京大学 | Production method of negative electrode for secondary battery, and production method of secondary battery |
US11670756B2 (en) | 2017-11-02 | 2023-06-06 | The University Of Tokyo | Negative electrode for secondary battery, secondary battery, and manufacturing methods thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0541249A (en) | Lithium secondary battery and method of pouring lithium ion into negative electrode structure for use in lithium battery | |
Baker et al. | The role of additives in the positive active mass of the lead/acid cell | |
Koksbang et al. | Rechargeability and rate capability of polymer electrolyte batteries at room temperature | |
CN110061299A (en) | A kind of method of lithium ion cell electrode pre- embedding lithium in situ | |
JPH07296849A (en) | Nonaqueous electrolyte secondary battery | |
Barnett | Proceedings of the symposium on New Sealed Rechargeable Batteries and Supercapacitors | |
CN109671902A (en) | A kind of long-life lithium metal battery cathode preparation method and lithium battery | |
US4508147A (en) | Method of manufacturing a positive electrode for a lead acid electric storage cell | |
JP2002298925A (en) | Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same | |
JP3403858B2 (en) | Organic electrolyte battery | |
JPS6132348A (en) | Outer fitting of elementary cell | |
JPH0855637A (en) | Nonaqueous electrolytic secondary battery | |
JPH0371566A (en) | Charging method for polymer electrolyte secondary cell | |
JP2757398B2 (en) | Non-aqueous electrolyte secondary battery | |
Newnham et al. | A composite carbon anode for use in a polymer electrolyte battery | |
JPH06310116A (en) | Zinc alkaline secondary battery | |
Levy et al. | Batteries: portable power for the future | |
Hendrikx et al. | The cycling behaviour of zinc electrodes in a nickel oxide-zinc accumulator | |
CN110676527A (en) | Device for removing charge and discharge burrs and battery | |
CN116399759A (en) | Method and device for evaluating diffusion coefficient of battery and storage medium | |
JP2521909B2 (en) | Lithium / manganese dioxide secondary battery | |
Zhentao | STUDY ON REDOX SHUTTLES USED AS OVERCHARGE PROTECTION ADDITIVES FOR LITHIUM ION RECHARGEABLE BATTERIES | |
CN102543458B (en) | Alkali pseudo-capacitor alloplastic electrode and matching method therefor | |
JP2012032343A (en) | Electrolytic solution evaluation method | |
HAO | Experimental determination of dynamic characteristics of hydrogen oxygen fuel cell systems[Ph. D. Thesis] |