JPH0541239A - High temperature type fuel cell module - Google Patents

High temperature type fuel cell module

Info

Publication number
JPH0541239A
JPH0541239A JP3146055A JP14605591A JPH0541239A JP H0541239 A JPH0541239 A JP H0541239A JP 3146055 A JP3146055 A JP 3146055A JP 14605591 A JP14605591 A JP 14605591A JP H0541239 A JPH0541239 A JP H0541239A
Authority
JP
Japan
Prior art keywords
stacks
cell module
fuel cell
manifold
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3146055A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuneizumi
浩志 常泉
Eiji Matsuda
英治 松田
Takuya Kadowaki
琢哉 門脇
Hirotaka Nakagawa
大隆 中川
Yuichi Watanabe
裕一 渡辺
Koichi Yokosuka
剛一 横須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3146055A priority Critical patent/JPH0541239A/en
Publication of JPH0541239A publication Critical patent/JPH0541239A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To uniformly supply gas by constituting manifolds of a plurality of stacks. CONSTITUTION:A cell module comprises first through fourth stacks 41a-41d constituted of a plurality of cells each constituting of a fuel electrode, an electrolyte and an air electrode, and ceramic interconnectors between the cells, and a seal member 42 and partition plates 44, 46 formed at the corners of the stacks. The stacks constitute a fuel supplying manifold 42; and the stacks and the partition plates, air supplying manifolds 45, 47. Furthermore, the four stacks serve as fuel and air supplying/discharging pipes. Consequently, a cost can be reduced with a simple constitution. Additionally, each area of the electrodes can be utilized effectively, and gas can uniformly be supplied to the cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高温型燃料電池モジ
ュ−ルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature fuel cell module.

【0002】[0002]

【従来の技術】図14(A),(B)は従来の平板型ジル
コニア燃料電池を示す(従来例1)。ここで、図14
(A)は概略全体図、図14(B)は図14(A)を部分的
に拡大して示す展開図を示す。
2. Description of the Related Art FIGS. 14A and 14B show a conventional flat plate zirconia fuel cell (conventional example 1). Where Figure 14
FIG. 14A shows a schematic overall view, and FIG. 14B shows a partially expanded development view of FIG. 14A.

【0003】図中の1は単位電池を示し、セル部2とこ
れを挟む2枚のセパレ−タ3a,3bから構成される。
前記セル部2は、電解質と燃料極と空気極とから構成さ
れている。前記セパレ−タには、各電極面に燃料及び空
気を供給するためのガス通路溝が設けられている。前記
セパレ−タは、セル部2の発電部分で発電した電気を図
の左右方向に伝える役割を有している。なお、図中の4
はセル部に燃料を供給する配管、5は空気を供給する配
管、6はH2 O,CO2 を供給する配管、7はN2 を供
給する配管である。
Reference numeral 1 in the drawing denotes a unit battery, which is composed of a cell portion 2 and two separators 3a and 3b sandwiching the cell portion 2.
The cell portion 2 is composed of an electrolyte, a fuel electrode, and an air electrode. The separator is provided with gas passage grooves for supplying fuel and air to each electrode surface. The separator has a role of transmitting electricity generated in the power generation portion of the cell unit 2 in the left-right direction in the drawing. In addition, 4 in the figure
Is a pipe for supplying fuel to the cell portion, 5 is a pipe for supplying air, 6 is a pipe for supplying H 2 O and CO 2 , and 7 is a pipe for supplying N 2 .

【0004】図15は、従来の円筒型燃料電池の例を示す
(従来例2)。図中の11は、アルミナからなる外部マニ
ホ−ルドを示す。この外部マニホ−ルド11の下部には、
燃料を供給する配管4,空気を供給する配管5の他、燃
料を排出する配管12,空気を排出する配管13が設けられ
ている。前記外部マニホ−ルド11には、平面形状が略正
方形のスタック14がその4隅を外部マニホ−ルド11に接
するように収納される。ここで、前記スタック14は、燃
料極と電解質と空気極からなる複数のセル15と、これら
のセル間に夫々配置されたインタ−コネクタ16とから構
成されている。最上部と最下部を除く前記インタ−コネ
クタ16の上面,下面には、空気あるいは燃料を流すよう
に2種類の溝16a,16bが夫々設けられている。前記外
部マニホ−ルド11の上部には、蓋17がされる。
FIG. 15 shows an example of a conventional cylindrical fuel cell (conventional example 2). Reference numeral 11 in the figure denotes an external manifold made of alumina. At the bottom of this outer manifold 11,
In addition to the pipe 4 for supplying fuel and the pipe 5 for supplying air, a pipe 12 for discharging fuel and a pipe 13 for discharging air are provided. A stack 14 having a substantially square planar shape is housed in the outer manifold 11 such that its four corners are in contact with the outer manifold 11. Here, the stack 14 is composed of a plurality of cells 15 including a fuel electrode, an electrolyte, and an air electrode, and interconnectors 16 arranged between the cells. Two types of grooves 16a and 16b are provided on the upper surface and the lower surface of the interconnector 16 excluding the uppermost part and the lowermost part so that air or fuel flows. A lid 17 is provided on the upper portion of the outer manifold 11.

【0005】[0005]

【発明が解決しようとする課題】従来技術には、以下に
述べる問題点があった。
The prior art has the following problems.

【0006】(従来例1);セル部1の中心からガスを
導入する構成になっているため、本来なら有効利用でき
る電極面積(斜線部)が減少する。また、電極面積を広
くするために空気や燃料等のガス供給用の配管が細く構
成されているので、ガスの流れが悪く、スタックを組ん
だ時セル部1へのガス供給を均一に行なうことができな
い。
(Conventional Example 1): Since the gas is introduced from the center of the cell portion 1, the electrode area (hatched portion) that can be effectively used originally is reduced. Further, since the pipes for supplying gas such as air and fuel are made thin in order to increase the electrode area, the gas flow is bad and the gas is uniformly supplied to the cell part 1 when the stack is assembled. I can't.

【0007】(従来例2);各スタック14毎に外部マニ
ホ−ルド11が必要なため、製作コストが高くなる。各ス
タック14毎に燃料,空気供給用の配管が必要なため、モ
ジュ−ル構造が複雑になる。
(Conventional example 2): Since an external manifold 11 is required for each stack 14, the manufacturing cost is high. Since the fuel and air supply pipes are required for each stack 14, the module structure becomes complicated.

【0008】この発明はこうした事情を考慮してなされ
たもので、燃料極、固体電解質、空気極及びセラミック
セパレ−タからなるセルを複数個積層したスタックを少
なくとも2つ用いてマニホ−ルドを構成することによ
り、電極面積を有効に利用できるとともに、セル部への
ガス供給を均一になしえ、更にはコスト低減をなし得る
簡単な構造の高温型燃料電池モジュ−ルを得ることを目
的とする。
The present invention has been made in consideration of such circumstances, and a manifold is constructed by using at least two stacks in which a plurality of cells each of which is composed of a fuel electrode, a solid electrolyte, an air electrode and a ceramic separator are laminated. By doing so, it is possible to effectively utilize the electrode area, to uniformly supply gas to the cell portion, and to obtain a high-temperature fuel cell module having a simple structure which can reduce cost. ..

【0009】[0009]

【課題を解決するための手段】この発明は、燃料極、固
体電解質、空気極及びセラミックセパレ−タからなるセ
ルを複数個積層してなる少なくとも2つのスタックでマ
ニホ−ルドの一部又は全部を構成することを特徴とする
高温型燃料電池モジュ−ルである。
According to the present invention, at least two stacks are formed by laminating a plurality of cells each comprising a fuel electrode, a solid electrolyte, an air electrode and a ceramic separator, and a part or all of the manifold is formed. It is a high-temperature fuel cell module characterized by being configured.

【0010】前記燃料極の材料としては、Ni−ZrO
2 混合物等が挙げられる。前記固体電解質の材料として
は、Y2 3 安定化ZrO2 (イットリウム安定化ジル
コニア)等のイオン伝導性を有する材料が挙げられる。
前記空気極の材料としては、LaSrMnO3 (ランタ
ンストロンチウムマンガネ−ト),LaCoO3 (ラン
タンコバルトタイト)等のO2 のイオン化を助ける材料
が挙げられる。
The material of the fuel electrode is Ni-ZrO.
2 mixture and the like. Examples of the material of the solid electrolyte include materials having ion conductivity such as Y 2 O 3 stabilized ZrO 2 (yttrium stabilized zirconia).
Examples of the material of the air electrode include materials such as LaSrMnO 3 (lanthanum strontium manganese) and LaCoO 3 (lanthanum cobaltite) that help ionize O 2 .

【0011】前記マニホ−ルドは、図7のように少なく
とも2ケのスタックにより構成されるが、図1のように
仕切板を用いた4ケのスタックから構成される場合が最
も基本的な例であり、この他、6ケのスタックから構成
される場合(図2)、8ケのスタックから構成される場
合(図3)、16ケのスタックから構成される場合(図
4)、マニホ−ルドの平面形状をひし形形状にした場合
(図5)、仕切板により一片を構成する場合(図6)等
種々のケ−スが挙げられる。また、前記スタックのうち
任意の2つのスタックが接する角部は通常カットし、こ
れら角部間にシ−ル材を配置してマニホ−ルドのシ−ル
性を保持することが望ましい。
The manifold is composed of at least two stacks as shown in FIG. 7, but the most basic example is composed of four stacks using partition plates as shown in FIG. In addition, when the stack is composed of 6 stacks (FIG. 2), the stack of 8 stacks (FIG. 3), the stack of 16 stacks (FIG. 4), There are various cases such as the case where the planar shape of the groove is a rhombus shape (FIG. 5) and the case where one piece is constituted by a partition plate (FIG. 6). In addition, it is desirable to normally cut the corners of any two of the stacks that are in contact with each other and arrange a seal material between these corners to maintain the sealability of the manifold.

【0012】[0012]

【作用】この発明に係る高温型燃料電池モジュ−ルの燃
料(H2 ),空気の流れは、図13に示す通りである。但
し、図において、21は下蓋、22は上蓋を示す。これらの
下蓋21,上蓋22間には、複数のスタック23a,23b,23
cが設けられている。前記下蓋21と上蓋22間には、負荷
24がかけられている。前記下蓋21の所定の位置には、H
2 をスタックへ供給するための入口配管25a,25b、空
気を供給するための入口配管26a,26b,26cが連結さ
れている。前記上蓋22の所定の位置には、H2 をスタッ
クから排出るための出口配管27a,27b、空気をスタッ
クから排出するための入口配管28a,28b,28cが連結
されている。
The flow of fuel (H 2 ) and air in the high temperature fuel cell module according to the present invention is as shown in FIG. However, in the figure, 21 indicates a lower lid and 22 indicates an upper lid. A plurality of stacks 23a, 23b, 23 are provided between the lower lid 21 and the upper lid 22.
c is provided. There is a load between the lower lid 21 and the upper lid 22.
It is multiplied by 24. At a predetermined position of the lower lid 21, H
Inlet pipes 25a, 25b for supplying 2 to the stack and inlet pipes 26a, 26b, 26c for supplying air are connected. At predetermined positions of the upper lid 22, outlet pipes 27a and 27b for discharging H 2 from the stack and inlet pipes 28a, 28b and 28c for discharging air from the stack are connected.

【0013】H2 は、例えば入口配管25aからスタック
23bに入り、図中左側から右側からスタック23bを通り
抜けた後、スタック23b,23c等により囲まれた領域を
通過して上蓋22から出口配管27bからスタックの外側へ
排出される。一方、空気は、例えば入口配管26bから入
り、スタック23bを通り抜けた後、上蓋22に連結したの
出口配管28bからスタック23bの外側へ排出される。前
記スタック23bを構成するセル中では、空気中のO2
電解中の電子(2e)と反応してO2-となり、またこの
2-がH2 と反応して2e+H2 Oとなる。
For example, H 2 is accumulated from the inlet pipe 25a.
23b, passing through the stack 23b from the left side to the right side in the drawing, and then passing through a region surrounded by the stacks 23b, 23c and the like, discharged from the upper lid 22 through the outlet pipe 27b to the outside of the stack. On the other hand, air enters, for example, from the inlet pipe 26b, passes through the stack 23b, and is then discharged to the outside of the stack 23b from the outlet pipe 28b connected to the upper lid 22. In the cells forming the stack 23b, the O 2 Reacts with the electron (2e) in the electrolysis to become O 2- , and this O 2- reacts with H 2 to become 2e + H 2 O.

【0014】[0014]

【実施例】以下、この発明の実施例について、図面を参
照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】(実施例1)この実施例1の高温型燃料電
池モジュ−ルは、図1に示す通りである。図中の41a,
41b,41c,41dは、夫々平面形状が略正方形状の第1
スタック,第2スタック,第3スタック,第4スタック
である。これらの各スタックによりマニホ−ルド42が構
成されている。前記スタックのマニホ−ルド42に位置す
る側の角部はフラットになっており、これらの角部間に
シ−ル材43(図示せず)が設けられて、マニホ−ルド42
のシ−ル性が保持されている。前記シ−ル材43として
は、例えばAI2 3 粉を成分とするセラミックセメン
トを用いた。
(Embodiment 1) The high temperature fuel cell module of Embodiment 1 is as shown in FIG. 41a in the figure,
41b, 41c, and 41d are first square-shaped planes, respectively.
A stack, a second stack, a third stack, and a fourth stack. Each of these stacks constitutes a manifold 42. The corners on the side of the stack located at the manifold 42 are flat, and a seal material 43 (not shown) is provided between these corners so that the manifold 42
The sealing property is maintained. As the seal material 43, for example, a ceramic cement containing AI 2 O 3 powder as a component is used.

【0016】前記各スタックは、従来例1で述べたよう
に、燃料極と電解質と空気極からなる複数のセルと、こ
れらのセル間に夫々配置されたセラミック製のインタ−
コネクタとから構成されている。最上部と最下部を除く
前記インタ−コネクタの上面,下面には、空気あるいは
燃料(例えばH2 )を流すように互いに交差する2種類
の溝が夫々設けられている。前記燃料極の材料としては
Ni−ZrO2 混合物、前記固体電解質の材料としては
2 3 安定化ZrO2 、さらに前記空気極の材料とし
てはLaSrMnO3 を用いた。
As described in the first conventional example, each of the stacks has a plurality of cells composed of a fuel electrode, an electrolyte, and an air electrode, and a ceramic interface disposed between these cells.
It consists of a connector and. Except for the uppermost part and the lowermost part, two types of grooves intersecting with each other are provided on the upper surface and the lower surface of the interconnector so that air or fuel (for example, H 2 ) flows. A Ni—ZrO 2 mixture was used as the material of the fuel electrode, Y 2 O 3 stabilized ZrO 2 was used as the material of the solid electrolyte, and LaSrMnO 3 was used as the material of the air electrode.

【0017】前記第1スタック41aと第4スタック41d
の所定の角部間には第1の仕切板44が設けられて空気供
給用マニホ−ルド45が構成され、前記第2スタック41a
と第3スタック41dの所定の角部間には第2の仕切板46
が設けられて空気供給用マニホ−ルド47が構成されてい
る。なお、図示しないが、各スタックの上部,下部には
図13のように上蓋,下蓋が設けられ、上記「作用」で述
べたような動作が行われる。
The first stack 41a and the fourth stack 41d
A first partition plate 44 is provided between the predetermined corners of the second stack 41a to form an air supply manifold 45.
And a second partition plate 46 between the predetermined corners of the third stack 41d.
Is provided to form an air supply manifold 47. Although not shown, an upper lid and a lower lid are provided on the upper and lower portions of each stack as shown in FIG. 13, and the operation as described in the above “action” is performed.

【0018】こうした構成のモジュ−ルにおいて、燃料
(F;Fuel)はマニホ−ルド42から矢印(実線)に示す
ように第1〜第4スタックを通過して外側に流れ、空気
(A;Air )は第1・第4スタック41a,41dと仕切板
44に囲まれたマニホ−ルド45から矢印(点線)に示すよ
うに第2・第4スタック41a,41dを通過して外側に,
かつ第2・第3スタック41b,41cと仕切板45に囲まれ
たマニホ−ルド47から第2・第3スタック41b,41cを
通過して外側に流れるようになっている。
In the module having such a configuration, fuel (F; Fuel) flows from the manifold 42 to the outside through the first to fourth stacks as shown by arrows (solid line), and air (A; Air). ) Is the first and fourth stacks 41a and 41d and a partition plate
From the manifold 45 surrounded by 44, as shown by the arrow (dotted line), passes through the second and fourth stacks 41a and 41d to the outside,
In addition, the manifold 47 surrounded by the second and third stacks 41b and 41c and the partition plate 45 passes through the second and third stacks 41b and 41c and flows outward.

【0019】上記実施例1に係る高温型燃料電池モジュ
−ルは、燃料極と電解質と空気極からなる複数のセル,
及びこれらのセル間に夫々配置されたセラミック製のイ
ンタ−コネクタとから構成された第1〜第4スタック41
a,41b,41c,41dと、所定のスタックの角部間に設
けたシ−ル材43と、仕切板45,46とを有した構成になっ
ているため、前記各スタックで燃料供給用のマニホ−ル
ド42を構成でき、更に所定のスタックと仕切板44,46に
より空気供給用マニホ−ルド45,47を構成できる。従っ
て、従来(図15)のように個々のスタックごとに外部マ
ニホ−ルドを設ける必要がない。また、空気供給用マニ
ホ−ルド45(又は47)は仕切板44(又は46)を用いて簡
単に作製することができる。更に、燃料及び空気の供
給,排出用の配管も4ケのスタックで共用できる。この
ように、実施例1によれば、全体として簡単な構成の燃
料電池モジュ−ルを得ることができ、コスト低減を実現
できる。なお、上記スタックの角部間の領域に夫々支柱
を設けることにより、モジュ−ル全体の強度を上げるこ
とができる。
The high temperature fuel cell module according to the first embodiment has a plurality of cells each including a fuel electrode, an electrolyte and an air electrode.
And first to fourth stacks 41 composed of ceramic interconnectors arranged between these cells, respectively.
a, 41b, 41c, 41d, a seal member 43 provided between the corners of a predetermined stack, and partition plates 45, 46, so that each of the stacks for fuel supply is provided. The manifold 42 can be constructed, and the air supply manifolds 45, 47 can be constructed by a predetermined stack and partition plates 44, 46. Therefore, it is not necessary to provide an external manifold for each stack as in the prior art (FIG. 15). Further, the air supply manifold 45 (or 47) can be easily manufactured by using the partition plate 44 (or 46). Further, the fuel and air supply and discharge pipes can be shared by the four stacks. As described above, according to the first embodiment, a fuel cell module having a simple structure as a whole can be obtained, and cost reduction can be realized. The strength of the entire module can be increased by providing columns in the regions between the corners of the stack.

【0020】なお、上記実施例1において、マニホ−ル
ド42の外側に排出される燃料は燃焼させてもよい。ま
た、空気はスタックの外部に排出されても特に有害なも
のでないため、仕切板44,46は必ずしも必要なものでは
ない。
In the first embodiment, the fuel discharged outside the manifold 42 may be burned. Further, since the air is not particularly harmful even if it is discharged to the outside of the stack, the partition plates 44 and 46 are not always necessary.

【0021】(実施例2)この実施例2の高温型燃料電
池モジュ−ルは、図2に示すように、6ケのスタック41
a,41b,41c,41d,41e,41fにより燃料供給用の
マニホ−ルド42を構成したものである。なお、図示して
いないが、各スタックの所定の角部間には、シ−ル材が
設けられている(これ以後の実施例の場合も同様)。
(Embodiment 2) As shown in FIG. 2, a high temperature fuel cell module according to Embodiment 2 has six stacks 41.
A manifold 41 for supplying fuel is constituted by a, 41b, 41c, 41d, 41e and 41f. Although not shown, a seal material is provided between the predetermined corners of each stack (the same applies to the subsequent embodiments).

【0022】(実施例3)この実施例3の高温型燃料電
池モジュ−ルは、図3に示すように、8ケのスタック41
a〜41hにより燃料供給用のマニホ−ルド42,空気供給
用のマニホ−ルド45を構成したものである。
(Embodiment 3) As shown in FIG. 3, a high temperature fuel cell module according to Embodiment 3 has eight stacks 41.
A manifold 41 for fuel supply and a manifold 45 for air supply are constituted by a to 41h.

【0023】(実施例4)この実施例4の高温型燃料電
池モジュ−ルは、図4及び図11に示すように、16ケの
スタック41により燃料供給用のマニホ−ルド42,空気供
給用のマニホ−ルド45を構成するとともに、スタックの
並び方向(列方向Z1 ,Z2 )がX,Y方向と45度に
傾斜するように構成したものである。
(Embodiment 4) As shown in FIGS. 4 and 11, a high temperature fuel cell module of Embodiment 4 includes a stack of 16 fuel cells 41 for supplying fuel and a manifold 42 for supplying air. In addition to the above-mentioned manifold 45, the stacking direction (column direction Z 1 , Z 2 ) is inclined at 45 degrees with respect to the X and Y directions.

【0024】(実施例5)この実施例5の高温型燃料電
池モジュ−ルは、図5に示すように、スタック41(例え
ば41a,41b,41c,41d)で囲まれるマニホ−ルド42
の平面形状をひし形にしたことを特徴とする。こうした
構成にすることにより、実施例1の場合等と比べて同じ
面積内にスタックを多く配設することができ、モジュ−
ルの容積効率を高くすることができる。
(Fifth Embodiment) As shown in FIG. 5, a high temperature fuel cell module according to a fifth embodiment has a manifold 42 surrounded by a stack 41 (for example, 41a, 41b, 41c, 41d).
It is characterized in that the planar shape of is a rhombus. With such a configuration, a larger number of stacks can be arranged in the same area as in the case of the first embodiment and the like.
The volume efficiency of the module can be increased.

【0025】(実施例6)この実施例6の高温型燃料電
池モジュ−ルは、図6に示すように、スタック41a,41
b,41c,41d及び仕切板51によりマニホ−ルド42を構
成したことを特徴とする。なお、スタックの数が4ケに
限定されないことは勿論のことである。 (実施例7)この実施例7の高温型燃料電池モジュ−ル
は、図7に示すように、2ケのスタック41a,41bによ
りマニホ−ルド42を構成したことを特徴とする。ここ
で、前記スタック41a,41bの対向する側壁面は、外側
に突出するように曲面形状になっていて、両スタック間
のマニホ−ルド42のシ−ル性が保持されるようになって
いる。
(Embodiment 6) The high temperature fuel cell module according to Embodiment 6 has stacks 41a and 41a as shown in FIG.
The manifold 42 is constituted by b, 41c, 41d and the partition plate 51. It goes without saying that the number of stacks is not limited to four. (Embodiment 7) The high temperature fuel cell module of Embodiment 7 is characterized in that a manifold 42 is composed of two stacks 41a and 41b as shown in FIG. Here, the opposing side wall surfaces of the stacks 41a and 41b are curved so as to project outward so that the sealability of the manifold 42 between both stacks is maintained. ..

【0026】(実施例8)この実施例8の高温型燃料電
池モジュ−ルは、図8に示すように、36ケのスタック
41により燃料供給用のマニホ−ルド42,空気供給用のマ
ニホ−ルド45を構成したことを特徴とする。
(Embodiment 8) The high temperature fuel cell module of Embodiment 8 has a stack of 36 units as shown in FIG.
41 is characterized in that a manifold 42 for fuel supply and a manifold 45 for air supply are configured.

【0027】(実施例9)この実施例9の高温型燃料電
池モジュ−ルは、実施例8に比べ、図9に示すように、
一点鎖線で囲まれた領域のスタック41によりなる燃料供
給用のマニホ−ルド42に燃料を供給しないような構成し
たことを特徴とする。
(Embodiment 9) The high-temperature fuel cell module of this Embodiment 9 is different from that of Embodiment 8 as shown in FIG.
It is characterized in that the fuel is not supplied to the fuel supply manifold 42 composed of the stack 41 in the area surrounded by the one-dot chain line.

【0028】(実施例10)この実施例10の高温型燃料電
池モジュ−ルは、実施例8に比べ、スタックで囲まれた
多数のマニホ−ルドに燃料や空気を供給するのではな
く、図10に示すように、所定のスタック41で囲まれた少
数のマニホ−ルド42にのみ燃料や空気を供給する構成に
したことを特徴とする。
(Embodiment 10) The high temperature fuel cell module of Embodiment 10 is different from that of Embodiment 8 in that fuel and air are not supplied to a large number of manifolds surrounded by a stack. As shown in FIG. 10, it is characterized in that fuel and air are supplied only to a small number of manifolds 42 surrounded by a predetermined stack 41.

【0029】(実施例11)この実施例11の高温型燃料電
池モジュ−ルは、実施例4に比べ、スタック41の配列を
X,Y方向に同数配置し、かつ該スタック41の側壁面が
X,Y方向に平行(又は垂直)となるように配列した構
成にしたことを特徴とする。
(Embodiment 11) The high temperature fuel cell module of Embodiment 11 is different from that of Embodiment 4 in that the stacks 41 are arranged in the same number in the X and Y directions and the side wall surfaces of the stacks 41 are different from each other. It is characterized in that it is arranged so as to be parallel (or perpendicular) to the X and Y directions.

【0030】[0030]

【発明の効果】以上詳述したようにこの発明によれば、
燃料極、固体電解質、空気極及びセラミックセパレ−タ
からなるセルを複数個積層したスタックを少なくとも2
つ用いてマニホ−ルドを構成することにより、従来のセ
ラミック製の燃料電池モジュ−ルと比べ、燃料,空気供
給用の配管の数を少なくする等の改善を図ることがで
き、もって電極面積を有効に利用できるとともに、セル
部へのガス供給を均一になしえ、更にはコスト低減をな
し得る簡単な構造の高温型燃料電池モジュ−ルを得るこ
とができる。
As described in detail above, according to the present invention,
At least two stacks of a plurality of cells each including a fuel electrode, a solid electrolyte, an air electrode and a ceramic separator are stacked.
By constructing the manifold using the two, it is possible to improve the number of pipes for supplying fuel and air as compared with the conventional ceramic fuel cell module, and thus to improve the electrode area. It is possible to obtain a high temperature fuel cell module having a simple structure that can be effectively used, can uniformly supply gas to the cell portion, and can further reduce cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る高温型燃料電池モジュ
−ルの概略平面図。
FIG. 1 is a schematic plan view of a high temperature fuel cell module according to a first embodiment of the present invention.

【図2】本発明の実施例2に係る高温型燃料電池モジュ
−ルの概略平面図。
FIG. 2 is a schematic plan view of a high temperature fuel cell module according to a second embodiment of the present invention.

【図3】本発明の実施例3に係る高温型燃料電池モジュ
−ルの概略平面図。
FIG. 3 is a schematic plan view of a high temperature fuel cell module according to a third embodiment of the present invention.

【図4】本発明の実施例4に係る高温型燃料電池モジュ
−ルの概略平面図。
FIG. 4 is a schematic plan view of a high temperature fuel cell module according to Embodiment 4 of the present invention.

【図5】本発明の実施例5に係る高温型燃料電池モジュ
−ルの概略平面図。
FIG. 5 is a schematic plan view of a high temperature fuel cell module according to a fifth embodiment of the present invention.

【図6】本発明の実施例6に係る高温型燃料電池モジュ
−ルの概略平面図。
FIG. 6 is a schematic plan view of a high temperature fuel cell module according to a sixth embodiment of the present invention.

【図7】本発明の実施例7に係る高温型燃料電池モジュ
−ルの概略平面図。
FIG. 7 is a schematic plan view of a high temperature fuel cell module according to a seventh embodiment of the present invention.

【図8】本発明の実施例8に係る高温型燃料電池モジュ
−ルの概略平面図。
FIG. 8 is a schematic plan view of a high temperature fuel cell module according to Embodiment 8 of the present invention.

【図9】本発明の実施例9に係る高温型燃料電池モジュ
−ルの概略平面図。
FIG. 9 is a schematic plan view of a high temperature fuel cell module according to a ninth embodiment of the present invention.

【図10】本発明の実施例10に係る高温型燃料電池モジ
ュ−ルの概略平面図。
FIG. 10 is a schematic plan view of a high temperature fuel cell module according to Embodiment 10 of the present invention.

【図11】図4の概略斜視図。11 is a schematic perspective view of FIG.

【図12】本発明の実施例11に係る高温型燃料電池モジ
ュ−ルの概略平面図。
FIG. 12 is a schematic plan view of a high temperature fuel cell module according to Embodiment 11 of the present invention.

【図13】本発明に係る高温型燃料電池モジュ−ルにお
ける燃料及び空気の流れの原理説明図。
FIG. 13 is an explanatory view of the principle of the flow of fuel and air in the high temperature fuel cell module according to the present invention.

【図14】従来例1に係る平板型ジルコニア燃料電池の
説明図。
FIG. 14 is an explanatory diagram of a flat plate type zirconia fuel cell according to Conventional Example 1.

【図15】従来例2に係る円筒型燃料電池の説明図。FIG. 15 is an explanatory diagram of a cylindrical fuel cell according to Conventional Example 2.

【符号の説明】[Explanation of symbols]

41,41a〜41h…スタック、42…燃料供給用マニホ−ル
ド、43…シ−ル材、44,46,51…仕切板、45,47…空気
供給用マニホ−ルド。
41, 41a to 41h ... Stack, 42 ... Manifold for fuel supply, 43 ... Seal material, 44, 46, 51 ... Partition plate, 45, 47 ... Manifold for air supply.

フロントページの続き (72)発明者 中川 大隆 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 渡辺 裕一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 横須賀 剛一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Front Page Continuation (72) Inventor Daitaka Nakagawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Yuichi Watanabe 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Pipe Co., Ltd. (72) Inventor Goichi Yokosuka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Tube Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料極、固体電解質、空気極及びセラミ
ックセパレ−タからなるセルを複数個積層してなる少な
くとも2つのスタックでマニホ−ルドの一部又は全部を
構成することを特徴とする高温型燃料電池モジュ−ル。
1. A high temperature, characterized in that a part or all of the manifold is constituted by at least two stacks formed by stacking a plurality of cells each comprising a fuel electrode, a solid electrolyte, an air electrode and a ceramic separator. Type fuel cell module.
【請求項2】 2つ以上のスタックのすべてが1つのマ
ニホ−ルドの一部又は全部を構成する請求項1記載の高
温型燃料電池モジュ−ル。
2. The high temperature fuel cell module according to claim 1, wherein all of the two or more stacks constitute a part or all of one manifold.
【請求項3】 複数のスタックで囲まれた領域内に燃料
ガスを流す請求項1又は請求項2何れかに記載の高温型
燃料電池モジュ−ル。
3. The high temperature fuel cell module according to claim 1, wherein the fuel gas is caused to flow in a region surrounded by a plurality of stacks.
JP3146055A 1991-06-18 1991-06-18 High temperature type fuel cell module Pending JPH0541239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3146055A JPH0541239A (en) 1991-06-18 1991-06-18 High temperature type fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3146055A JPH0541239A (en) 1991-06-18 1991-06-18 High temperature type fuel cell module

Publications (1)

Publication Number Publication Date
JPH0541239A true JPH0541239A (en) 1993-02-19

Family

ID=15399072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3146055A Pending JPH0541239A (en) 1991-06-18 1991-06-18 High temperature type fuel cell module

Country Status (1)

Country Link
JP (1) JPH0541239A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022179A1 (en) * 1993-03-19 1994-09-29 Daimler-Benz Aktiengesellschaft Arrangement for connecting stacks of high temperature fuel cells
WO1994029922A1 (en) * 1993-06-14 1994-12-22 Siemens Aktiengesellschaft High-temperature fuel cell installation
EP0637091A1 (en) * 1993-07-24 1995-02-01 DORNIER GmbH Connecting fuel cells
US5914200A (en) * 1993-06-14 1999-06-22 Siemens Aktiengesellschaft High-temperature fuel cell stack arrangement with centrally located exit air space
WO2002027839A3 (en) * 2000-09-26 2003-05-08 Reliant Energy Power Systems I Proton exchange membrane fuel cell system by use of radial placement and integrated structural support system
US6582842B1 (en) 2000-09-26 2003-06-24 Reliant Energy Power Systems, Inc. Enhancement of proton exchange membrane fuel cell system by use of radial placement and integrated structural support system
US7001687B1 (en) 2002-10-04 2006-02-21 The Texas A&M University System Unitized MEA assemblies and methods for making same
US7005209B1 (en) 2002-10-04 2006-02-28 The Texas A&M University System Fuel cell stack assembly
KR100846920B1 (en) * 2006-09-04 2008-07-17 현대자동차주식회사 A fuel cell stack having multi-module mounting structure
WO2009017147A1 (en) 2007-08-02 2009-02-05 Sharp Kabushiki Kaisha Fuel cell stack and fuel cell system
US9142853B2 (en) 2009-04-01 2015-09-22 Sharp Kabushiki Kaisha Fuel cell stack and electronic device provided with the same
CN106163805A (en) * 2013-08-09 2016-11-23 辛辛那提大学 Be suitable to the inorganic microporous ion exchange membrane of redox flow batteries
AT525484A1 (en) * 2021-09-21 2023-04-15 Avl List Gmbh Fuel cell system for generating electricity in stationary operation

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022179A1 (en) * 1993-03-19 1994-09-29 Daimler-Benz Aktiengesellschaft Arrangement for connecting stacks of high temperature fuel cells
WO1994029922A1 (en) * 1993-06-14 1994-12-22 Siemens Aktiengesellschaft High-temperature fuel cell installation
US5914200A (en) * 1993-06-14 1999-06-22 Siemens Aktiengesellschaft High-temperature fuel cell stack arrangement with centrally located exit air space
EP0637091A1 (en) * 1993-07-24 1995-02-01 DORNIER GmbH Connecting fuel cells
US7005210B2 (en) 2000-09-26 2006-02-28 The Texas A&M University System Flow fields for fuel cells
US6582842B1 (en) 2000-09-26 2003-06-24 Reliant Energy Power Systems, Inc. Enhancement of proton exchange membrane fuel cell system by use of radial placement and integrated structural support system
US6951698B2 (en) 2000-09-26 2005-10-04 The Texas A&M University System Fuel cell stack assembly
WO2002027839A3 (en) * 2000-09-26 2003-05-08 Reliant Energy Power Systems I Proton exchange membrane fuel cell system by use of radial placement and integrated structural support system
US7001687B1 (en) 2002-10-04 2006-02-21 The Texas A&M University System Unitized MEA assemblies and methods for making same
US7005209B1 (en) 2002-10-04 2006-02-28 The Texas A&M University System Fuel cell stack assembly
KR100846920B1 (en) * 2006-09-04 2008-07-17 현대자동차주식회사 A fuel cell stack having multi-module mounting structure
WO2009017147A1 (en) 2007-08-02 2009-02-05 Sharp Kabushiki Kaisha Fuel cell stack and fuel cell system
US8741500B2 (en) 2007-08-02 2014-06-03 Sharp Kabushiki Kaisha Fuel cell stack and fuel cell system
US9142853B2 (en) 2009-04-01 2015-09-22 Sharp Kabushiki Kaisha Fuel cell stack and electronic device provided with the same
CN106163805A (en) * 2013-08-09 2016-11-23 辛辛那提大学 Be suitable to the inorganic microporous ion exchange membrane of redox flow batteries
US9911985B2 (en) 2013-08-09 2018-03-06 University Of Cincinnati Inorganic microporous ion exchange membranes for redox flow batteries
CN106163805B (en) * 2013-08-09 2019-05-07 辛辛那提大学 Inorganic microporous amberplex suitable for redox flow batteries
AT525484A1 (en) * 2021-09-21 2023-04-15 Avl List Gmbh Fuel cell system for generating electricity in stationary operation

Similar Documents

Publication Publication Date Title
US4476197A (en) Integral manifolding structure for fuel cell core having parallel gas flow
US4476196A (en) Solid oxide fuel cell having monolithic cross flow core and manifolding
US5376472A (en) Semi-internally manifolded interconnect
US4761349A (en) Solid oxide fuel cell with monolithic core
EP0442741B1 (en) Solid oxide fuel cell
EP3279989B1 (en) Flat plate type fuel cell
JPH0541239A (en) High temperature type fuel cell module
JPH04237962A (en) Flat type solid electrolyte fuel cell
JP2008521178A (en) Solid oxide fuel cell with external manifold
JPH05159790A (en) Solid electrolyte fuel cell
US8409763B2 (en) Modified planar cell (MPC) and stack based on MPC
JP2989223B2 (en) Flat solid electrolyte fuel cell power generator
JPH05129033A (en) Solid electrolytic fuel cell
JPH01251562A (en) Flat plate type solid electrolyte fuel cell
JP4100169B2 (en) Fuel cell
JPH0521083A (en) Fuel cell
JPH0613099A (en) Fuel cell
JPS63166159A (en) Solid electrolyte fuel cell
JPH046753A (en) Flat plate laminated solid electrolyte type fuel cell
JPH01292759A (en) Monolithic solid electrolyte fuel cell
JP2736190B2 (en) Gas separator for solid oxide fuel cell
JP2583417Y2 (en) Fuel cell generator
JPH02288071A (en) Solid electrolyte fuel cell
JPH05135795A (en) Solid electrolyte fuel cell
JPH06310165A (en) Flat solid electrolytic fuel cell