JPH0541152A - Manufacture of electric field emission cathode - Google Patents

Manufacture of electric field emission cathode

Info

Publication number
JPH0541152A
JPH0541152A JP19768591A JP19768591A JPH0541152A JP H0541152 A JPH0541152 A JP H0541152A JP 19768591 A JP19768591 A JP 19768591A JP 19768591 A JP19768591 A JP 19768591A JP H0541152 A JPH0541152 A JP H0541152A
Authority
JP
Japan
Prior art keywords
field emission
emission cathode
substrate
etching
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19768591A
Other languages
Japanese (ja)
Inventor
Yuichi Sakai
裕一 坂井
Munehito Kumagai
宗人 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19768591A priority Critical patent/JPH0541152A/en
Publication of JPH0541152A publication Critical patent/JPH0541152A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electric field emission cathode for which metal can be used as a material, which has excellent characteristics, and of which shape can be controlled easily in manufacturing the electric field emission cathode to be used for a vacuum micro-device or the like. CONSTITUTION:A pyramid-shaped or a cone-shaped recess 31a is formed in a substrate 31, and an electric field emission cathode material 32 is formed on it by sputtering or the like. The substrate is then dissolved and removed, so as to form an electric field emission cathode. The electric field emission cathode having a high performance and reliability which can be manufactured at a low cost can thus be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はマイクロ真空デバイス
における電界放出陰極の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a field emission cathode in a micro vacuum device.

【0002】[0002]

【従来の技術】微小な電界放出陰極を利用し、超高速の
真空ICや、高精細のフラットパネルCRTを形成しよ
うという試みが始まっている。これらの真空デバイス
は、半導体の微細加工技術を用いて形成され、素子の高
機能化と高集積化を目指すものである。
2. Description of the Related Art Attempts have been made to form ultra-high-speed vacuum ICs and high-definition flat panel CRTs by using minute field emission cathodes. These vacuum devices are formed by using a fine processing technology for semiconductors, and aim at high functionality and high integration of elements.

【0003】電界放出陰極はマイクロ真空デバイスの主
要構成要素であり、その形状から錐型と楔型の2種類に
分けることができる。錐型の電界放出陰極は基板と垂直
の方向に電子を放出し、楔型は水平方向に放出する。錐
型の電界放出陰極はその形成方法で、蒸着型とエッチン
グ型の2種類に分けることができる。蒸着型は陰極を金
属の蒸着により形成され、エッチング型はシリコンの異
方性エッチングにより形成される。楔型は金属の蒸着と
そのエッチングによって形成される。
A field emission cathode is a main constituent element of a micro vacuum device, and can be classified into two types, a cone type and a wedge type, depending on its shape. The cone-shaped field emission cathode emits electrons in a direction perpendicular to the substrate, and the wedge-shaped field emission cathode emits electrons in a horizontal direction. The conical field emission cathode can be divided into two types, a vapor deposition type and an etching type, depending on the forming method. The vapor deposition type is formed by depositing a metal on the cathode, and the etching type is formed by anisotropic etching of silicon. The wedge shape is formed by vapor deposition of metal and its etching.

【0004】これらの電界放出陰極を適用したデバイス
として、フラットパネルCRTがある。フラットパネル
CRTは電界放出陰極の高集積度を最大限に利用しよう
とするものである。
A flat panel CRT is a device to which these field emission cathodes are applied. Flat panel CRTs seek to maximize the high integration of field emission cathodes.

【0005】次に錐型電界放出陰極の形状およびその形
成方法について説明する。図6に錐型の陰極の構造図を
示す。図において、51は基板、52はゲート膜、53
は絶縁膜、54は電界放出陰極である。
Next, the shape of the conical field emission cathode and the method for forming the same will be described. FIG. 6 shows the structure of a conical cathode. In the figure, 51 is a substrate, 52 is a gate film, and 53.
Is an insulating film and 54 is a field emission cathode.

【0006】Si基板51上に円錐状あるいは角錐状の
電界放出陰極54が形成されている。ゲート膜52はS
iO2 の絶縁膜53上に形成されている。電界放出陰極
(エミッタコーン)とアノード(図示しない)間に電圧
をかけ、かつ、エミッタとゲート間に電圧を印加するこ
とにより、エミッタ先端から電子が引き出される。先端
の曲率半径は数百Åである。
A conical or pyramidal field emission cathode 54 is formed on a Si substrate 51. The gate film 52 is S
It is formed on the insulating film 53 of iO 2 . Electrons are extracted from the tip of the emitter by applying a voltage between the field emission cathode (emitter cone) and the anode (not shown) and applying a voltage between the emitter and the gate. The radius of curvature of the tip is several hundred Å.

【0007】蒸着型、エッチング型の形成方法をそれぞ
れ図7、図8に示す。図7に示すのが蒸着型である。図
において、61はSiウェハー基板、62はSiO2
縁膜、63はMo膜、64はAl犠牲層、65はMo蒸
着膜、66は電界放出陰極である。
The vapor deposition type and etching type forming methods are shown in FIGS. 7 and 8, respectively. FIG. 7 shows a vapor deposition type. In the figure, 61 is a Si wafer substrate, 62 is a SiO 2 insulating film, 63 is a Mo film, 64 is an Al sacrificial layer, 65 is a Mo vapor deposition film, and 66 is a field emission cathode.

【0008】次に上述した蒸着型の製造工程について説
明する。表面ドープを施し導電性を良くしたSiウェハ
ー基板61上に、SiO2 絶縁膜62を1〜1.5μm
成膜し、Mo膜63を電子ビーム蒸着する。この上から
直径1μmの円状にMo膜63とSiO2 絶縁膜62を
エッチングで抜く。次にフッ酸でSiO2 絶縁膜62を
やや溶かしだし、その後Al犠牲層64を斜め方向から
蒸着する(図7A)。次にMo膜63を上方より真空蒸
着する。Mo膜63はAl−Mo−SiO2 の穴を通し
てSiウェハー基板61上に堆積するが、Mo膜63の
穴の縁にも堆積するため、次第に穴の径が小さくなり、
最終的には穴は閉じてしまう。そのためMo膜63はコ
ーン状になってSiウェハー基板61上に堆積する(図
7B)。最後にAl犠牲層64を溶解除去する(図7
C)。
Next, the manufacturing process of the above-mentioned vapor deposition type will be described. A SiO 2 insulating film 62 of 1 to 1.5 μm is formed on a Si wafer substrate 61 that has been surface-doped to improve conductivity.
The Mo film 63 is formed by electron beam evaporation. From above, the Mo film 63 and the SiO 2 insulating film 62 are removed by etching into a circular shape having a diameter of 1 μm. Next, the SiO 2 insulating film 62 is slightly melted with hydrofluoric acid, and then the Al sacrifice layer 64 is obliquely deposited (FIG. 7A). Next, the Mo film 63 is vacuum-deposited from above. The Mo film 63 is deposited on the Si wafer substrate 61 through the Al-Mo-SiO 2 hole, but since it is also deposited on the edge of the Mo film 63, the diameter of the hole is gradually reduced,
Eventually the hole closes. Therefore, the Mo film 63 has a cone shape and is deposited on the Si wafer substrate 61 (FIG. 7B). Finally, the Al sacrificial layer 64 is dissolved and removed (FIG. 7).
C).

【0009】図8に示すのがエッチング型である。図に
おいて、71はSiウェハー基板、72はエッチングマ
スク、73は絶縁膜、74はゲート電極、75は電界放
出陰極である。
The etching type is shown in FIG. In the figure, 71 is a Si wafer substrate, 72 is an etching mask, 73 is an insulating film, 74 is a gate electrode, and 75 is a field emission cathode.

【0010】次にエッチング型の製造工程について説明
する。導電性を上げるため、予めSiウェハー基板71の
面にリンをドープし、N型Siウェハーにしておく。そ
の上に、Si34 やSiO2 のエッチングマスク72を
所望の大きさ(1〜2μの円形)に形成する(図8
A)。次にKOHなどの溶液でSiウェハー基板71を
異方性エッチングするとSiウェハーはピラミッド状に
加工される。このピラミッドの先端曲率半径は1000
Å以下である(図8B)。そして陰極75の周囲にSi
2 の絶縁膜73(1〜2μm、CVD)とW,Mo,
Taなどのゲート用の電極74(0.5μm、EB蒸着)
を成膜する(図8C)。
Next, an etching type manufacturing process will be described. In order to increase the conductivity, the surface of the Si wafer substrate 71 is previously doped with phosphorus to form an N-type Si wafer. On top of that, an etching mask 72 of Si 3 N 4 or SiO 2 is formed in a desired size (circle of 1 to 2 μ) (FIG. 8).
A). Next, when the Si wafer substrate 71 is anisotropically etched with a solution such as KOH, the Si wafer is processed into a pyramid shape. The radius of curvature of the tip of this pyramid is 1000
Å or less (Fig. 8B). And Si around the cathode 75
O 2 insulating film 73 (1-2 μm, CVD) and W, Mo,
Gate electrode 74 such as Ta (0.5 μm, EB vapor deposition)
Is formed (FIG. 8C).

【0011】[0011]

【発明が解決しようとする課題】蒸着型は電界放出陰極
が金属でできているため高い電流密度が期待できるとい
う長所があるが、ミクロンオーダーの小さい開口部を通
して金属を蒸着するので、開口部の径により電界放出陰
極の径と高さが異なり、その制御が困難という問題点が
ある。一方、エッチング型はSiウェハーの異方性エッ
チングを利用して電界放出陰極を形成するので、形状の
制御が比較的容易であるが、電流密度が小さいことや不
規則な電流−電圧特性が問題点となる。
The vapor deposition type has an advantage that a high current density can be expected because the field emission cathode is made of metal, but since the metal is vapor-deposited through a small opening of micron order, the opening portion of The diameter and height of the field emission cathode differ depending on the diameter, and there is a problem that its control is difficult. On the other hand, the etching type is relatively easy to control the shape because the field emission cathode is formed by using anisotropic etching of a Si wafer, but the current density is small and the irregular current-voltage characteristic is a problem. It becomes a point.

【0012】この発明は上記のような問題点を解消する
ためになされたもので、金属でできた電界放出陰極を用
いることで高い電流密度を得、かつ錐型の形状を得るた
めに比較的容易な形状制御方法により形成することによ
り、性能、信頼性が高く、製造コストの安い電界放出陰
極の製造方法を得ることを目的とする。
The present invention has been made in order to solve the above problems, and it is relatively possible to obtain a high current density and a pyramidal shape by using a field emission cathode made of metal. It is an object of the present invention to obtain a method for manufacturing a field emission cathode having high performance and reliability and low manufacturing cost by forming by a simple shape control method.

【0013】[0013]

【課題を解決するための手段】この発明に係る電界放出
陰極の製造方法は、錐型の電界放出電極を持つマイクロ
真空デバイスにおいて、基板に錐型の凹みを形成し、こ
の凹みの上に電極材料を形成し、その後基板を除去する
ことにより錐型の電界放出電極を得るものである。
According to the method of manufacturing a field emission cathode according to the present invention, in a micro vacuum device having a conical field emission electrode, a conical recess is formed on a substrate and an electrode is formed on the concavity. By forming a material and then removing the substrate, a conical field emission electrode is obtained.

【0014】[0014]

【作用】この発明は、錐型の電界放出電極を持つマイク
ロ真空デバイスにおいて、基板に錐型の凹みを形成し、
その上に電界放出陰極の電極材料を形成し、その後基板
を除去することによって、電界放出電極の材料に金属を
用いることができ、高い電流密度を得ることができる。
またエッチングにより基板上に錐型の凹みを作るため、
形状の制御が比較的容易となる。そのため、性能、信頼
性が高く、製造コストの安い電界放出陰極を得ることが
できる。
According to the present invention, in a micro vacuum device having a conical field emission electrode, a conical recess is formed on a substrate,
By forming the electrode material of the field emission cathode on it and then removing the substrate, a metal can be used as the material of the field emission electrode and a high current density can be obtained.
Also, because a conical recess is made on the substrate by etching,
Shape control becomes relatively easy. Therefore, a field emission cathode having high performance and reliability and low manufacturing cost can be obtained.

【0015】[0015]

【実施例】以下、この発明による実施例を図について説
明する。図1はこの発明の製造方法の工程図を示す断面
図である。図において、11はSi基板、12は基板エ
ッチング用のマスク材である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a process chart of the manufacturing method of the present invention. In the figure, 11 is a Si substrate, and 12 is a mask material for etching the substrate.

【0016】この実施例の製造方法は、Si基板11(0.
5mm厚程度、結晶方位)上にエッチングマスク材12と
してSiO2 膜を3000Åスパッタ形成する(図1
A)。このSiO2 膜は熱酸化膜あるいはSi34 膜等
でもよい。その上に写真製版を施し、Si基板11に錐
型の凹みを設ける部分以外をレジストで覆う。次にフッ
化水素酸、フッ化アンモニウム水溶液を用いてSiO2
マスクを溶解除去する(図1B)。さらにKOH水溶液
に基板を浸漬し、異方性エッチングにより角錐状の凹み
11aをSi基板11表面に形成する(図1C)。マス
クであるSiO2 膜をフッ酸等でエッチング除去し、S
i基板に角錐状の凹み11aが形成できる(図1D)。
In the manufacturing method of this embodiment, the Si substrate 11 (0.
A SiO 2 film of 3000 Å is formed as an etching mask material 12 on a crystal orientation of about 5 mm (FIG. 1).
A). This SiO 2 film may be a thermal oxide film or a Si 3 N 4 film. Photolithography is performed thereon, and the Si substrate 11 is covered with a resist except the portion where the conical recess is provided. Next, using hydrofluoric acid and an ammonium fluoride aqueous solution, SiO 2
The mask is dissolved and removed (FIG. 1B). Further, the substrate is dipped in a KOH aqueous solution and anisotropically etched to form pyramidal depressions 11a on the surface of the Si substrate 11 (FIG. 1C). The SiO 2 film that is the mask is removed by etching with hydrofluoric acid or the like,
A pyramidal depression 11a can be formed on the i substrate (FIG. 1D).

【0017】Siエッチング液には、フッ酸硝酸系以外
にアルカリエッチ液があり、苛性カリあるいは有機アル
カリ水溶液を加熱すれば、かなりのエッチング速度に達
する。そしてこの種のエッチング液は結晶方位依存性が
大きく、図2に示すように(100)方向のエッチング
速度は早く、これに反して(111)方向のエッチング
速度は最も遅い。
As the Si etching liquid, there are alkaline etching liquids other than the hydrofluoric acid / nitric acid type, and when a caustic potash or an organic alkaline aqueous solution is heated, a considerable etching rate is reached. This type of etching solution has a large crystal orientation dependency, and as shown in FIG. 2, the etching rate in the (100) direction is fast, whereas the etching rate in the (111) direction is the slowest.

【0018】そこで(100)面のウェハーを用い、パ
ターンの線を(111)方向にすれば、この線を含む
(111)面が現れる。そしてこの方向にはエッチング
がほとんど進行しないので、エッチング形状は図2に示
したようになる。
If a (100) plane wafer is used and the pattern line is oriented in the (111) direction, the (111) plane containing this line appears. Since etching hardly progresses in this direction, the etching shape is as shown in FIG.

【0019】以下この発明による他の実施例を図につい
て説明する。図3は本発明の製造方法の工程図を示す断
面図である。図において、21はSi基板、22は基板
エッチング用のマスク材であるフォトレジストである。
Another embodiment according to the present invention will be described below with reference to the drawings. FIG. 3 is a cross-sectional view showing a process drawing of the manufacturing method of the present invention. In the figure, 21 is a Si substrate, and 22 is a photoresist which is a mask material for etching the substrate.

【0020】この実施例の製造方法は、Si基板21
(0.5mm厚程度)上にフォトレジスト22を塗布する
(図3A)。次に、写真製版を施し、Si基板21に錐
型の凹みを設ける部分のレジストを除去する(図3
B)。次にSi基板21をイオンビームエッチング(I
BE)装置内に載置する。IBE層によりアルゴンのイ
オンビームを照射して、円錐状の凹み21aをSi基板
表面に形成する(図3C)。最後にアッシャー等を用い
てフォトレジスト22を除去する(図3D)。
In the manufacturing method of this embodiment, the Si substrate 21
A photoresist 22 is applied on (about 0.5 mm thickness) (FIG. 3A). Next, photoengraving is performed to remove the resist in the portion where the conical recess is formed in the Si substrate 21 (FIG. 3).
B). Next, the Si substrate 21 is subjected to ion beam etching (I
BE) Place in the device. The IBE layer is irradiated with an argon ion beam to form a conical depression 21a on the surface of the Si substrate (FIG. 3C). Finally, the photoresist 22 is removed using an asher or the like (FIG. 3D).

【0021】このときSi基板21は、アルゴンのイオ
ンビームによってエッチングされるが、イオンビームの
直進性がよいため異方性が良くエッチングされる。この
ときイオンビームの方向に対して基板21を傾けると、
イオンビームの影になる部分ができ、斜めにエッチング
することができる。
At this time, the Si substrate 21 is etched by an ion beam of argon, but since the ion beam has a good linearity, it has good anisotropy. At this time, if the substrate 21 is tilted with respect to the direction of the ion beam,
There is a shadow of the ion beam, which can be etched diagonally.

【0022】上記2つの実施例についてウェットエッチ
ングあるいはIBEによるエッチングによりSi表面に
形成する凹みは、それぞれ角錐状、円錐状となる。この
形状の違いはエッチングの方法によって変わるので、電
界放出陰極を用いるデバイスの目的仕様によって選べば
よい。
The recesses formed on the Si surface by wet etching or IBE etching in the above two embodiments have a pyramid shape and a cone shape, respectively. Since this difference in shape varies depending on the etching method, it may be selected according to the target specifications of the device using the field emission cathode.

【0023】以下この発明による電界放出陰極の製造方
法を図4について説明する。図において、31はSi基
板、32は電界放出陰極材料、33は接着剤層、34は
電界放出陰極支持基板である。
A method of manufacturing a field emission cathode according to the present invention will be described below with reference to FIG. In the figure, 31 is a Si substrate, 32 is a field emission cathode material, 33 is an adhesive layer, and 34 is a field emission cathode support substrate.

【0024】上述した電界放出陰極の製造方法について
説明する。表面に錐型の凹み31aをもったSi基板3
1(図4A)をスパッタ装置内に載置し、その表面にタ
ングステン(W)の電界放出陰極材料32を2ミクロン
の厚さにスパッタ形成する(図4B)。さらにその上に
電界放出陰極の支持基板としてガラスなどの基板34を
接着剤層33あるいは陽極接合法などによって接合する
(図4C)。接合の終わったSi基板31をKOH水溶
液の中に浸漬し、Si基板を溶解除去することで電界放
出陰極35ができる(図4D)。
A method of manufacturing the above-mentioned field emission cathode will be described. Si substrate 3 having a conical recess 31a on the surface
1 (FIG. 4A) is placed in a sputtering apparatus, and a field emission cathode material 32 of tungsten (W) is formed on the surface thereof by sputtering to a thickness of 2 μm (FIG. 4B). Further, a substrate 34 such as glass as a supporting substrate for the field emission cathode is bonded thereon by an adhesive layer 33 or an anodic bonding method (FIG. 4C). The Si substrate 31 after the joining is immersed in a KOH aqueous solution, and the Si substrate is dissolved and removed to form the field emission cathode 35 (FIG. 4D).

【0025】次にこの発明によるその他の実施例を図に
ついて説明する。図5はこの発明の製造方法の工程図を
示す断面図である。図において、41はSi基板、42
は電界放出陰極表面材料、43は電界放出陰極材料、4
4は接着剤層、45は電界放出陰極支持基板である。
Next, another embodiment according to the present invention will be described with reference to the drawings. FIG. 5 is a sectional view showing a process drawing of the manufacturing method of the present invention. In the figure, 41 is a Si substrate, 42
Is a field emission cathode surface material, 43 is a field emission cathode material, 4
4 is an adhesive layer, and 45 is a field emission cathode supporting substrate.

【0026】上述した製造方法では、表面に錐型の凹み
41aをもったSi基板41(0.5mm厚)(図5A)を
スパッタ装置内に載置し、その表面にタングステン
(W)の電界放出陰極表面材料42を2000Åの厚さ
にスパッタ形成する。その上にメッキによりニッケルの
電界放出陰極材料43を2ミクロンの厚さに形成する
(図5B)。電界放出陰極の支持基板としてガラスなど
の基板45を接着剤層44あるいは陽極接合法などによ
って接合する(図5C)。接合の終わった基板をKOH
水溶液の中に浸漬し、Si基板を溶解除去することで電
界放出陰極46ができる(図5D)。
In the manufacturing method described above, the Si substrate 41 (0.5 mm thick) (FIG. 5A) having the conical recess 41a on the surface is placed in the sputtering apparatus, and the electric field of tungsten (W) is applied to the surface. The emission cathode surface material 42 is sputtered to a thickness of 2000Å. A nickel field emission cathode material 43 having a thickness of 2 μm is formed thereon by plating (FIG. 5B). A substrate 45 made of glass or the like as a support substrate for the field emission cathode is bonded by the adhesive layer 44 or the anodic bonding method (FIG. 5C). KOH the bonded substrate
The field emission cathode 46 is formed by immersing in the aqueous solution and removing the Si substrate by dissolution (FIG. 5D).

【0027】[0027]

【発明の効果】この発明は、錐型の電界放出電極を持つ
マイクロ真空デバイスにおいて、基板に錐型の凹みを形
成し、その上に電界放出陰極の電極材料を形成し、その
後基板を除去することによって、電界放出電極の材料に
金属を用いることができ、高い電流密度を得ることがで
きる。またエッチングにより基板上に錐型の凹みを作る
ため、形状の制御が比較的容易となる。そのため、性
能、信頼性が高く、製造コストの安い電界放出陰極を得
ることができる。
According to the present invention, in a micro vacuum device having a cone-shaped field emission electrode, a cone-shaped recess is formed on a substrate, an electrode material for a field emission cathode is formed thereon, and then the substrate is removed. As a result, a metal can be used as the material of the field emission electrode, and a high current density can be obtained. Further, since the conical recess is formed on the substrate by etching, the shape can be controlled relatively easily. Therefore, a field emission cathode having high performance and reliability and low manufacturing cost can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による電界放出陰極の製造
方法の工程図を示す断面図である。
FIG. 1 is a cross-sectional view showing a step in a method for manufacturing a field emission cathode according to an embodiment of the present invention.

【図2】この発明の一実施例を示すエッチングにより現
れる結晶面の方向を示す説明図である。
FIG. 2 is an explanatory view showing directions of crystal planes which appear by etching showing an embodiment of the present invention.

【図3】この発明の他の実施例による電界放出陰極の製
造方法の工程図を示す断面図である。
FIG. 3 is a cross-sectional view showing a step in a method of manufacturing a field emission cathode according to another embodiment of the present invention.

【図4】この発明の別の実施例による電界放出陰極の製
造方法の工程図を示す断面図である。
FIG. 4 is a cross-sectional view showing a step in a method of manufacturing a field emission cathode according to another embodiment of the present invention.

【図5】この発明のさらに別の実施例による電界放出陰
極の製造方法の工程図を示す断面図である。
FIG. 5 is a cross-sectional view showing a step in a method of manufacturing a field emission cathode according to still another embodiment of the present invention.

【図6】従来の電界放出陰極の構成図である。FIG. 6 is a configuration diagram of a conventional field emission cathode.

【図7】従来の電界放出陰極の製造方法を示す工程図の
断面図である。
FIG. 7 is a cross-sectional view of a step diagram showing a conventional method for manufacturing a field emission cathode.

【図8】従来の電界放出陰極の他の製造方法を示す工程
図の断面図である。
FIG. 8 is a cross-sectional view of a process showing another method for manufacturing a conventional field emission cathode.

【符号の説明】[Explanation of symbols]

11 Si基板 12 マスク材 21 Si基板 22 マスク材 31 Si基板 31a 凹み 32 電界放出陰極材料 33 接着剤層 34 電界放出陰極支持基板 35 電界放出陰極 41 Si基板 41a 凹み 42 電界放出陰極表面材料 43 電界放出陰極材料 44 接着剤層 45 電界放出陰極支持基板 46 電界放出陰極 11 Si Substrate 12 Mask Material 21 Si Substrate 22 Mask Material 31 Si Substrate 31a Recess 32 Field Emission Cathode Material 33 Adhesive Layer 34 Field Emission Cathode Support Substrate 35 Field Emission Cathode 41 Si Substrate 41a Recess 42 Field Emission Cathode Surface Material 43 Field Emission Cathode material 44 Adhesive layer 45 Field emission cathode support substrate 46 Field emission cathode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 錐型の電界放出電極を持つマイクロ真空
デバイスにおいて、基板に錐型の凹みを形成し、この凹
みの上に電極材料を形成し、その後基板を除去すること
によって錐型の電界放出電極を得ることを特徴とする電
界放出陰極の製造方法。
1. In a micro-vacuum device having a cone-shaped field emission electrode, a cone-shaped electric field is formed by forming a cone-shaped recess on a substrate, forming an electrode material on the recess, and then removing the substrate. A method for manufacturing a field emission cathode, characterized in that an emission electrode is obtained.
JP19768591A 1991-08-07 1991-08-07 Manufacture of electric field emission cathode Pending JPH0541152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19768591A JPH0541152A (en) 1991-08-07 1991-08-07 Manufacture of electric field emission cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19768591A JPH0541152A (en) 1991-08-07 1991-08-07 Manufacture of electric field emission cathode

Publications (1)

Publication Number Publication Date
JPH0541152A true JPH0541152A (en) 1993-02-19

Family

ID=16378647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19768591A Pending JPH0541152A (en) 1991-08-07 1991-08-07 Manufacture of electric field emission cathode

Country Status (1)

Country Link
JP (1) JPH0541152A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509843A (en) * 1993-05-19 1996-04-23 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing needle shaped materials and method for manufacturing a microemitter
US5679960A (en) * 1994-01-28 1997-10-21 Kabushiki Kaisha Toshiba Compact display device
US5903092A (en) * 1994-05-18 1999-05-11 Kabushiki Kaisha Toshiba Device for emitting electrons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509843A (en) * 1993-05-19 1996-04-23 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing needle shaped materials and method for manufacturing a microemitter
US5679960A (en) * 1994-01-28 1997-10-21 Kabushiki Kaisha Toshiba Compact display device
US5903092A (en) * 1994-05-18 1999-05-11 Kabushiki Kaisha Toshiba Device for emitting electrons

Similar Documents

Publication Publication Date Title
US5389026A (en) Method of producing metallic microscale cold cathodes
JPH04501934A (en) Field emitter structure and manufacturing method
JP3226238B2 (en) Field emission cold cathode and method of manufacturing the same
JP2728813B2 (en) Field emission type electron source and method of manufacturing the same
JPH0850850A (en) Field emission type electron emission element and its manufacture
JP2000021287A (en) Field emission type electron source and its manufacture
JPH0541152A (en) Manufacture of electric field emission cathode
US5607335A (en) Fabrication of electron-emitting structures using charged-particle tracks and removal of emitter material
JPH06196086A (en) Electric field emission negative electrode and its forming method
KR0174126B1 (en) Method for making a field emission type electron gun
JPH0817330A (en) Field emission type electron source and its manufacture
JPH06111712A (en) Field emission cathode and its manufacture
JP3184890B2 (en) Electron emitting device and method of manufacturing the same
JP2946706B2 (en) Field emission device
JPH05205614A (en) Method of fabricating electric field emitting cathode
JPH05225895A (en) Manufacture of electric-field emission cathode electrode
JPH09270228A (en) Manufacture of field emission electron source
KR100257568B1 (en) Method for a field emitter array of a field emission display
JPH09134664A (en) Field emission type electron source and its manufacture
JP3625297B2 (en) Micro vacuum tube and manufacturing method thereof
JPH05198252A (en) Electron emission element and manufacture thereof
JPH04284325A (en) Electric field emission type cathode device
JP3143679B2 (en) Electron emitting device and method of manufacturing the same
JP3094464B2 (en) Method of manufacturing field emission type microcathode
JPH0794083A (en) Field emitting cathode and its manufacture