JPH06196086A - Electric field emission negative electrode and its forming method - Google Patents

Electric field emission negative electrode and its forming method

Info

Publication number
JPH06196086A
JPH06196086A JP34241692A JP34241692A JPH06196086A JP H06196086 A JPH06196086 A JP H06196086A JP 34241692 A JP34241692 A JP 34241692A JP 34241692 A JP34241692 A JP 34241692A JP H06196086 A JPH06196086 A JP H06196086A
Authority
JP
Japan
Prior art keywords
photoresist
field emission
binder
electrode material
fine needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34241692A
Other languages
Japanese (ja)
Inventor
Munehito Kumagai
宗人 熊谷
Yuichi Sakai
裕一 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP34241692A priority Critical patent/JPH06196086A/en
Publication of JPH06196086A publication Critical patent/JPH06196086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To provide an electric field emission negative electrode with large current density and stable characteristic which is advantageous for enlargement of area by forming, on a base, a negative electrode part having a fine needle electrode oriented in a determined direction and having one end exposed so as to have a determined form. CONSTITUTION:A photoresist 7 in which a fine needle electrode material 6 of ultrafine grain is mixed is applied onto a silicon base 1. This electrode material 6 is oriented to the right angle to the silicon base 1, and the photoresist 7 is then hardened. The photoresist 7 is photo-etched and patterned into columns. The photoresist 7 is electively etched to protrude one end of the electrode material 6 from the upper part of the photoresist 7. Thereafter, a voltage applying conductive film 8 is formed on the silicon base 1 and the photoresist 7, and patterned into a determined form by etching. Thus, a field emission negative electrode in which one end of the fine needle electrode is exposed from the negative electrode part on the base is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、マイクロ真空デバイ
スなどにおける電界放出陰極及びその形成方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission cathode in a micro vacuum device and a method for forming the same.

【0002】[0002]

【従来の技術】最近、微小な電界放出陰極を利用し、超
高速の真空ICや高精細のフラットパネルCRTを形成
しようという試みが始まっている。これらのマイクロ真
空デバイスは、半導体の微細加工技術を用いて形成さ
れ、素子の高機能化と高集積化を目指すものである。
2. Description of the Related Art Recently, attempts have been made to form ultra-high-speed vacuum ICs and high-definition flat panel CRTs by utilizing minute field emission cathodes. These micro vacuum devices are formed by using a semiconductor microfabrication technology, and aim at high functionality and high integration of elements.

【0003】電界放出陰極はマイクロ真空デバイスの主
要構成要素であり、その形状から錐型とクサビ型の2種
類に分けることができる。錐型の電界放出陰極は基板と
垂直の方向に電子を放出し、クサビ型の電界放出陰極は
水平方向に電子を放出する。又、錐型の電界放出陰極の
形成方法は蒸着型とエッチング型の2種類に分けること
ができ、蒸着型の場合は陰極が金属の蒸着により形成さ
れ、エッチング型の場合にはシリコンの異方性エッチン
グにより形成される。又、クサビ型の場合には金属の蒸
着とそのエッチングにより形成される。このように形成
された電界放出陰極を適用したデバイスとして前述のよ
うにフラットパネルCRTがあり、これは電界放出陰極
の高集積度を最大限に利用しようとするものである。
A field emission cathode is a main constituent element of a micro vacuum device, and can be classified into two types, a cone type and a wedge type, depending on its shape. The conical field emission cathode emits electrons in a direction vertical to the substrate, and the wedge field emission cathode emits electrons in a horizontal direction. Further, the method of forming the conical field emission cathode can be divided into two types, a vapor deposition type and an etching type. In the case of the vapor deposition type, the cathode is formed by vapor deposition of metal, and in the case of the etching type, anisotropic silicon Formed by reactive etching. In the case of the wedge type, it is formed by vapor deposition of metal and its etching. As a device to which the field emission cathode formed as described above is applied, there is the flat panel CRT as described above, which is intended to maximize the high integration degree of the field emission cathode.

【0004】図6は従来のマイクロ真空デバイスの錐型
電界放出陰極を中心とした構成を示し、1はシリコン基
板、2はゲート電極、3は絶縁膜、4は電界放出陰極
(エミッタコーン)である。シリコン基板1上には円錐
状あるいは角錐状の電界放出陰極4が形成され、またシ
リコン基板1上にはSiO2 からなる絶縁膜3を介して
ゲート電極2が形成される。そして、電界放出陰極4と
アノード(図示せず)間に電圧を印加し、かつ電界放出
陰極4とゲート電極2間に電圧を印加することにより、
電界放出陰極4の先端から電子が引出される。電界放出
陰極4の先端の曲率半径は数百Åである。
FIG. 6 shows the structure of a conventional micro-vacuum device centering on a cone-shaped field emission cathode, 1 is a silicon substrate, 2 is a gate electrode, 3 is an insulating film, and 4 is a field emission cathode (emitter cone). is there. A conical or pyramidal field emission cathode 4 is formed on the silicon substrate 1, and a gate electrode 2 is formed on the silicon substrate 1 with an insulating film 3 made of SiO 2 interposed therebetween. Then, by applying a voltage between the field emission cathode 4 and the anode (not shown) and by applying a voltage between the field emission cathode 4 and the gate electrode 2,
Electrons are extracted from the tip of the field emission cathode 4. The radius of curvature of the tip of the field emission cathode 4 is several hundred Å.

【0005】図7は図6に示したマイクロ真空デバイス
のエッチング型の製造方法を示し、図7(a)において
シリコン基板1は、導電性を上げるために予めその(0
01)面にリンをドープし、N型Siとしておく。シリ
コン基板1上にはSi3 4やSiO2 などからなるエ
ッチングマスク5を所望の大きさ(直径1〜2μmの円
形)に形成する。
FIG. 7 shows a method of manufacturing the etching type of the micro vacuum device shown in FIG. 6, and the silicon substrate 1 in FIG.
The (01) plane is doped with phosphorus to be N-type Si. On the silicon substrate 1, an etching mask 5 made of Si 3 N 4 or SiO 2 is formed in a desired size (circle having a diameter of 1 to 2 μm).

【0006】次に、KOHなどのエッチング液を用いて
シリコン基板1を異方性エッチングすると、図7(b)
に示すようにシリコン基板1上にピラミッド状の電界放
出陰極4が形成される。電界放出陰極4の先端の曲率半
径は1000Å以下である。次に、図7(c)に示すよ
うに電界放出陰極4の周囲のシリコン基板1上にSiO
2 からなる厚さ1〜2μmの絶縁膜3をCVD法により
形成し、絶縁膜3上にW,Mo,Taなどのゲート用金
属からなる厚さ0.5μmのゲート電極2をEB蒸着法
により形成する。
Next, when the silicon substrate 1 is anisotropically etched using an etching solution such as KOH, FIG.
As shown in FIG. 3, a pyramidal field emission cathode 4 is formed on the silicon substrate 1. The radius of curvature of the tip of the field emission cathode 4 is 1000 Å or less. Next, as shown in FIG. 7C, SiO is formed on the silicon substrate 1 around the field emission cathode 4.
An insulating film 3 made of 2 and having a thickness of 1 to 2 μm is formed by a CVD method, and a gate electrode 2 made of a metal for gate such as W, Mo and Ta and having a thickness of 0.5 μm is formed on the insulating film 3 by an EB vapor deposition method. Form.

【0007】[0007]

【発明が解決しようとする課題】上記したように従来で
は、電界放出陰極4をシリコン基板1の異方性エッチン
グにより形成するので、大面積で歩留り良く形成するこ
とが困難であった。又、シリコン基板1自体が電極構成
材料となるために、電流密度が小さく、電流−電圧特性
も不規則になるという課題があった。
As described above, the field emission cathode 4 is conventionally formed by anisotropic etching of the silicon substrate 1, so that it is difficult to form it in a large area with a high yield. Further, since the silicon substrate 1 itself is an electrode constituent material, there is a problem that the current density is small and the current-voltage characteristics are irregular.

【0008】この発明は上記のような課題を解決するた
めの成されたものであり、電流密度が大きく、特性が安
定し、かつ大面積化に有利な電界放出陰極を形成するこ
とができる電界放出陰極及びその形成方法を得ることを
目的とする。
The present invention has been made to solve the above problems, and has a large current density, stable characteristics, and an electric field capable of forming a field emission cathode which is advantageous in increasing the area. An object is to obtain an emission cathode and a method for forming the same.

【0009】[0009]

【課題を解決するための手段】この発明の請求項1に係
る電界放出陰極は、基板と、基板上の陰極部とからな
り、陰極部には一端が露出した微小針状電極を設けたも
のである。請求項2に係る電界放出陰極は、請求項1の
陰極部及び微小針状電極の表面を導電性膜で覆ったもの
である。
A field emission cathode according to claim 1 of the present invention comprises a substrate and a cathode portion on the substrate, and the cathode portion is provided with a microneedle electrode having one end exposed. Is. The field emission cathode according to claim 2 is the one in which the surfaces of the cathode part and the microneedle-shaped electrodes of claim 1 are covered with a conductive film.

【0010】この発明の請求項3に係る電界放出陰極
は、導電性膜を形成した基板と、基板上に形成された陰
極部と、陰極部から突出した微小針状電極を設けたもの
である。この発明の請求項4に係る電界放出陰極の形成
方法は、基板上に微小針状電極材料を所定の配向方向で
混合したフォトレジストを塗布する工程と、このフォト
レジストをフォトエッチングによりパターニングする工
程と、フォトレジストを選択エッチングして微小針状電
極材料の一端をフォトレジストから突出させる工程と、
フォトレジスト上に導電性膜を形成する工程を設けたも
のである。
A field emission cathode according to a third aspect of the present invention is provided with a substrate on which a conductive film is formed, a cathode portion formed on the substrate, and fine needle-shaped electrodes protruding from the cathode portion. . The method for forming a field emission cathode according to claim 4 of the present invention comprises a step of applying a photoresist on a substrate in which fine needle-shaped electrode materials are mixed in a predetermined orientation direction, and a step of patterning the photoresist by photoetching. And a step of selectively etching the photoresist to project one end of the fine needle-shaped electrode material from the photoresist,
The step of forming a conductive film on the photoresist is provided.

【0011】又、請求項5に係る電界放出陰極の形成方
法は、基板上に微小針状電極材料を所定の配向で混合し
たバインダを塗布する工程と、バインダ上にフォトレジ
ストを塗布する工程と、このフォトレジストをパターニ
ングする工程と、フォトレジストをマスクとしてバイン
ダをパターニングした後フォトレジストを除去する工程
と、バインダを選択エッチングして微小針状電極材料を
突出させる工程と、バインダ上に導電性膜を形成する工
程を設けたものである。又、請求項6に係る電界放出陰
極の形成方法は、基板上に導電性膜を形成する工程と、
導電性膜上に微小針状電極材料を所定方向に混合した導
電性バインダを塗布する工程と、バインダ上にフォトレ
ジストを塗布する工程と、フォトレジストをパターニン
グする工程と、このフォトレジストをマスクとしてバイ
ンダをパターニングした後フォトレジストを除去する工
程と、バインダを選択エッチングして微小針状電極材料
を突出させる工程を設けたものである。
Further, a method of forming a field emission cathode according to a fifth aspect of the present invention comprises a step of applying a binder on a substrate in which fine needle-shaped electrode materials are mixed in a predetermined orientation, and a step of applying a photoresist on the binder. , A step of patterning this photoresist, a step of patterning the binder using the photoresist as a mask and then removing the photoresist, a step of selectively etching the binder to project the fine needle-shaped electrode material, and a conductive layer on the binder. The step of forming a film is provided. A method of forming a field emission cathode according to claim 6 includes a step of forming a conductive film on a substrate,
A step of applying a conductive binder in which a fine needle electrode material is mixed in a predetermined direction on the conductive film, a step of applying a photoresist on the binder, a step of patterning the photoresist, and using this photoresist as a mask The step of removing the photoresist after patterning the binder and the step of selectively etching the binder to project the fine needle-shaped electrode material are provided.

【0012】[0012]

【作用】この発明の請求項1においては、基板上に陰極
部が形成され、陰極部から微小針状電極の一端が露出す
る構成となっており、異方性エッチングが行われず、大
面積化に有利になる。請求項2,3においては、請求項
1に加えて、陰極部の上又は下に導電性膜が形成され、
陰極部が金属で形成されたことになり、電流密度が大き
くなり、特性が向上する。この発明の請求項4〜6にお
いては、微小針状電極が所定の配向方向で充填されたフ
ォトレジスト等が基板上に塗布された後このフォトレジ
スト等がパターニングされ、選択エッチングにより微小
針状電極がフォトレジスト等から突出され、さらにフォ
トレジスト等の上部又は下部に導電性膜が形成される。
従って、電界放出陰極が金属で形成されたことになり、
電流密度が大きくなり、特性も安定する。又、異方性エ
ッチングが行われないので、大面積化に有利となる。
According to the first aspect of the present invention, the cathode portion is formed on the substrate, and one end of the fine needle-shaped electrode is exposed from the cathode portion, so that anisotropic etching is not performed and the area is increased. Be advantageous to. In claims 2 and 3, in addition to claim 1, a conductive film is formed above or below the cathode part,
Since the cathode portion is made of metal, the current density is increased and the characteristics are improved. According to the fourth to sixth aspects of the present invention, the photoresist or the like in which the fine needle-shaped electrodes are filled in a predetermined alignment direction is applied on the substrate, and then the photoresist or the like is patterned, and the fine needle-shaped electrodes are selectively etched. Is projected from the photoresist or the like, and a conductive film is further formed on or below the photoresist or the like.
Therefore, the field emission cathode is made of metal,
The current density increases and the characteristics are stable. Further, anisotropic etching is not performed, which is advantageous for increasing the area.

【0013】[0013]

【実施例】【Example】

実施例1 以下、この発明の実施例を図面とともに説明する。図1
は実施例1によるマイクロ真空デバイスの電界放出陰極
の形成方法を示す断面図であり、まず図1(a)に示す
ようにシリコン基板1上に針状結晶の超微粒子6を充填
したフォトレジスト7を塗布する。超微粒子6は、その
長手方向がシリコン基板1と直角となるように配向され
ている。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Figure 1
1A is a sectional view showing a method for forming a field emission cathode of a micro vacuum device according to Example 1. First, as shown in FIG. 1A, a photoresist 7 in which needle-shaped crystal ultrafine particles 6 are filled on a silicon substrate 1 is used. Apply. The ultrafine particles 6 are oriented so that the longitudinal direction thereof is perpendicular to the silicon substrate 1.

【0014】次に、図1(b)に示すように、フォトレ
ジスト7をフォトエッチングして柱状にパターニングす
る。次に、図1(c)に示すように、フォトレジスト7
と超微粒子6を選択エッチングする。このとき、フォト
レジスト7の方がエッチングされ易くなっており、超微
粒子6の一端がフォトレジスト7の上部から突出する。
次に、図1(d)に示すように、シリコン基板1及びフ
ォトレジスト7の上に電圧印加用導電性膜8を成膜し、
エッチングにより所定の形状にパターニングする。図2
はこのようにして形成された電界放出陰極の拡大図であ
る。ここで、超微粒子6は例えばCrO2 により形成さ
れ、またフォトレジスト7は写真製版後柱状にエッチン
グされる前にハードベーキングされる。
Next, as shown in FIG. 1B, the photoresist 7 is photo-etched and patterned into a columnar shape. Next, as shown in FIG.
Then, the ultrafine particles 6 are selectively etched. At this time, the photoresist 7 is more easily etched, and one end of the ultrafine particle 6 projects from the upper portion of the photoresist 7.
Next, as shown in FIG. 1D, a conductive film 8 for voltage application is formed on the silicon substrate 1 and the photoresist 7.
Patterning is performed into a predetermined shape by etching. Figure 2
FIG. 3 is an enlarged view of the field emission cathode thus formed. Here, the ultrafine particles 6 are formed of, for example, CrO 2 , and the photoresist 7 is hard baked before photolithography and before being etched into a columnar shape.

【0015】実施例1では、超微粒子6がシリコン基板
1と直角方向に配向して充填されたフォトレジスト7が
柱状に形成され、さらにその上に導電性膜が形成される
ので、電界放出陰極が金属で形成されたことになり、電
流密度が高くなり、電流−電圧特性も安定する。又、異
方性エッチングが行われないので、大面積化に有利とな
る。
In Example 1, the photoresist 7 having the ultrafine particles 6 oriented in the direction perpendicular to the silicon substrate 1 and filled therein is formed in a columnar shape, and a conductive film is further formed thereon, so that the field emission cathode is formed. Is formed of metal, the current density is increased, and the current-voltage characteristics are stable. Further, anisotropic etching is not performed, which is advantageous for increasing the area.

【0016】実施例2 図3は実施例2による電界放出陰極の形成方法を示す断
面図であり、まず図3(a)に示すようにシリコン基板
1上にシリコン基板1と直角方向に配向された超微粒子
6が充填されたバインダ9を塗布し、次に図3(b)に
示すようにバインダ9上にフォトレジスト10を塗布す
る。次に、図3(c)に示すようにフォトレジスト10
をフォトエッチングして所望のパターンを得る。
Embodiment 2 FIG. 3 is a sectional view showing a method of forming a field emission cathode according to Embodiment 2. First, as shown in FIG. 3 (a), a silicon substrate 1 is oriented in a direction perpendicular to the silicon substrate 1. The binder 9 filled with the ultrafine particles 6 is applied, and then the photoresist 10 is applied on the binder 9 as shown in FIG. Next, as shown in FIG.
Is photoetched to obtain a desired pattern.

【0017】次に、図3(d)に示すように、このフォ
トレジスト10をマスクとしてバインダ9をエッチング
し、図3(e)に示すようにフォトレジスト9を除去す
る。次に、図3(f)に示すように超微粒子6及びバイ
ンダ9を選択エッチングし、バインダ9の方がエッチン
グされ易いので、超微粒子6の一端がバインダ9から突
出する。次に、図3(g)に示すようにバインダ9及び
シリコン基板1上に導電性膜8を成膜し、エッチングに
より所定の形状にパターニングして電界放出陰極を得
る。実施例2も実施例1と同様の効果を有する。
Next, as shown in FIG. 3D, the binder 9 is etched using the photoresist 10 as a mask, and the photoresist 9 is removed as shown in FIG. 3E. Next, as shown in FIG. 3F, the ultrafine particles 6 and the binder 9 are selectively etched. Since the binder 9 is more easily etched, one end of the ultrafine particles 6 protrudes from the binder 9. Next, as shown in FIG. 3 (g), a conductive film 8 is formed on the binder 9 and the silicon substrate 1 and patterned into a predetermined shape by etching to obtain a field emission cathode. The second embodiment also has the same effect as the first embodiment.

【0018】実施例3 図4は実施例3による電界放出陰極の形成方法を示す断
面図であり、まず図4(a)に示すようにシリコン基板
1上に導電性膜8を成膜し、次に図4(b)に示すよう
に超微粒子6を充填された導電性高分子膜11を導電性
膜8上に塗布する。超微粒子6はシリコン基板1と直角
に配向されている。次に、図4(c)に示すように導電
性高分子膜11上にフォトレジスト10を塗布し、図4
(d)に示すようにフォトレジスト10をフォトエッチ
ングにより所定の形状にパターニングする。
Example 3 FIG. 4 is a cross-sectional view showing a method for forming a field emission cathode according to Example 3. First, a conductive film 8 is formed on a silicon substrate 1 as shown in FIG. Next, as shown in FIG. 4B, the conductive polymer film 11 filled with the ultrafine particles 6 is applied on the conductive film 8. The ultrafine particles 6 are oriented at right angles to the silicon substrate 1. Next, as shown in FIG. 4C, a photoresist 10 is applied on the conductive polymer film 11,
As shown in (d), the photoresist 10 is patterned into a predetermined shape by photoetching.

【0019】次に、図4(e)に示すようにフォトレジ
スト10をマスクとして導電性高分子膜11及び導電性
膜8をエッチングによりパターニングし、図4(f)に
示すようにフォトレジスト10を除去する。次に、図4
(g)に示すように超微粒子6と導電性高分子膜11を
選択エッチングし、導電性高分子膜11の方がエッチン
グされ易いので、超微粒子6の一端が導電性高分子膜1
1の上部から突出する。こうして形成された電界放出陰
極も上記実施例と同様の効果を有する。なお、導電性膜
8のパターニングは上記した選択エッチングの後に行っ
てもよい。
Next, as shown in FIG. 4 (e), the conductive polymer film 11 and the conductive film 8 are patterned by etching using the photoresist 10 as a mask, and the photoresist 10 as shown in FIG. 4 (f). To remove. Next, FIG.
As shown in (g), the ultrafine particles 6 and the conductive polymer film 11 are selectively etched, and the conductive polymer film 11 is more easily etched.
It projects from the upper part of 1. The field emission cathode thus formed has the same effect as that of the above embodiment. The patterning of the conductive film 8 may be performed after the selective etching described above.

【0020】実施例4 図5は実施例4による電界放出陰極の斜視図を示し、形
成方法は実施例1と同様である。ただし、超微粒子6は
フォトレジスト7中のシリコン基板1と平行に配向され
ており、実施例1と同様な効果を有する。実施例2,3
の場合にも同様の配向方向となる。
Embodiment 4 FIG. 5 shows a perspective view of a field emission cathode according to Embodiment 4, and the forming method is the same as that of Embodiment 1. However, the ultrafine particles 6 are oriented parallel to the silicon substrate 1 in the photoresist 7 and have the same effect as that of the first embodiment. Examples 2 and 3
In the case of, the same orientation direction is obtained.

【0021】[0021]

【発明の効果】以上のようにこの発明の請求項1によれ
ば、基板上に陰極部を形成し、この陰極部から微小針状
電極を露出させるようにしており、異方性エッチングが
不要となり、大面積化が可能となる。又、請求項2,3
においては、陰極部の上又は下に導電性膜を形成してお
り、陰極部が金属で形成されたことになり、電流密度が
高く特性が安定し、性能及び信頼性を高めることができ
る。又、請求項4〜6によれば、基板上に微小針状電極
が所定の配向方向で充填されたフォトレジスト等を塗布
し、このフォトレジスト等をパターニングした後選択エ
ッチングにより微小針状電極をフォトレジスト等から突
出させ、さらにフォトレジスト等の上部又は下部に導電
性膜を形成しており、電界放出陰極が金属で形成された
ことになり、電流密度を高くすることができるととも
に、電流−電圧特性が安定し、性能及び信頼性を高める
ことができる。又、異方性エッチングを用いないので、
大面積化に有利となる。
As described above, according to the first aspect of the present invention, the cathode portion is formed on the substrate, and the fine needle-shaped electrode is exposed from the cathode portion, so that anisotropic etching is unnecessary. Therefore, it is possible to increase the area. In addition, claims 2 and 3
In the above, since the conductive film is formed on or below the cathode portion, and the cathode portion is made of metal, the current density is high, the characteristics are stable, and the performance and reliability can be improved. Further, according to claims 4 to 6, a fine needle-shaped electrode is coated on the substrate with a photoresist or the like filled in a predetermined orientation direction, and the fine needle-shaped electrode is selectively etched by patterning the photoresist or the like. The conductive film is made to project from the photoresist or the like, and the conductive film is formed on the upper or lower part of the photoresist or the like, which means that the field emission cathode is made of metal, so that the current density can be increased and the current- The voltage characteristics are stable, and the performance and reliability can be improved. Also, because anisotropic etching is not used,
This is advantageous for increasing the area.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1による電界放出陰極の形成方法を示す
断面図である。
FIG. 1 is a cross-sectional view showing a method for forming a field emission cathode according to a first embodiment.

【図2】実施例1により形成された電界放出陰極の断面
図である。
FIG. 2 is a cross-sectional view of a field emission cathode formed according to Example 1.

【図3】実施例2による電界放出陰極の形成方法を示す
断面図である。
FIG. 3 is a cross-sectional view showing a method for forming a field emission cathode according to a second embodiment.

【図4】実施例3による電界放出陰極の形成方法を示す
断面図である。
FIG. 4 is a sectional view showing a method of forming a field emission cathode according to a third embodiment.

【図5】実施例4による電界放出陰極の斜視図である。5 is a perspective view of a field emission cathode according to Example 4. FIG.

【図6】従来のマイクロ真空デバイスの電界放出陰極を
中心とした断面図である。
FIG. 6 is a cross-sectional view mainly showing a field emission cathode of a conventional micro vacuum device.

【図7】従来の電界放出陰極の形成方法を示す断面図で
ある。
FIG. 7 is a cross-sectional view showing a method for forming a conventional field emission cathode.

【符号の説明】[Explanation of symbols]

1 シリコン基板 6 超微粒子 7,10 フォトレジスト 8 導電性膜 9 バインダ 11 導電性高分子膜 1 Silicon Substrate 6 Ultra Fine Particles 7,10 Photoresist 8 Conductive Film 9 Binder 11 Conductive Polymer Film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板と、この基板上に所定の形状に形成
された陰極部とから成り、この陰極部中に、所定の方向
に配向されるとともに一端が陰極部から露出する微小針
状電極を備えたことを特徴とする電界放出陰極。
1. A microneedle electrode comprising a substrate and a cathode portion formed in a predetermined shape on the substrate, in the cathode portion, oriented in a predetermined direction and having one end exposed from the cathode portion. A field emission cathode comprising:
【請求項2】 上記陰極部及び上記陰極部から露出した
微小針状電極の表面を導電性膜で覆う導体を備えたこと
を特徴とする請求項1記載の電界放出陰極。
2. The field emission cathode according to claim 1, further comprising a conductor that covers a surface of the cathode portion and the surface of the minute needle-shaped electrode exposed from the cathode portion with a conductive film.
【請求項3】 導電性膜を形成した基板と、この導電性
膜と接して基板上に形成された導電性の陰極部と、陰極
部から突出した微小針状電極とからなることを特徴とす
る電界放出陰極。
3. A substrate having a conductive film formed thereon, a conductive cathode portion formed on the substrate in contact with the conductive film, and fine needle electrodes protruding from the cathode portion. Field emission cathode.
【請求項4】 基板上に微小針状電極材料を混合したフ
ォトレジストを塗布し、微小針状電極材料を所定の方向
に配向し、固化する工程と、このフォトレジストをフォ
トエッチングによりパターニングする工程と、上記フォ
トレジストを選択エッチングして上記微小針状電極材料
の一端を上記フォトレジストから突出させる工程と、上
記微小針状電極材料の一端が突出した上記フォトレジス
ト上に導電性膜を形成する工程を備えたことを特徴とす
る電界放出陰極の形成方法。
4. A step of applying a photoresist mixed with a fine needle-shaped electrode material on a substrate, orienting the fine needle-shaped electrode material in a predetermined direction and solidifying, and a step of patterning the photoresist by photoetching. And a step of selectively etching the photoresist to project one end of the microneedle-shaped electrode material from the photoresist, and forming a conductive film on the photoresist having one end of the microneedle-shaped electrode material projected. A method of forming a field emission cathode, comprising the steps of:
【請求項5】 基板上に微小針状電極材料を混合したバ
インダを塗布し、上記微小針状電極材料を所定の方向に
配向し、固化する工程と、バインダ上にフォトレジスト
を塗布する工程と、このフォトレジストをフォトエッチ
ングによりパターニングする工程と、上記フォトレジス
トをマスクとして上記バインダをエッチングによりパタ
ーニングする工程と、上記フォトレジストを除去する工
程と、上記バインダを選択エッチングして上記微小針状
電極材料の一端を上記バインダから突出させる工程と、
上記微小針状電極材料の一端が突出したバインダ上に導
電性膜を形成する工程を備えたことを特徴とする電界放
出陰極の形成方法。
5. A step of applying a binder mixed with a fine needle-shaped electrode material on a substrate, orienting the fine needle-shaped electrode material in a predetermined direction and solidifying, and a step of applying a photoresist on the binder. A step of patterning the photoresist by photo-etching, a step of patterning the binder by etching using the photoresist as a mask, a step of removing the photoresist, and a step of selectively etching the binder for the microneedle electrode. Projecting one end of the material from the binder,
A method for forming a field emission cathode, comprising the step of forming a conductive film on a binder having one end of the microneedle-shaped electrode material protruding.
【請求項6】 基板上に導電性膜を形成する工程と、上
記導電性膜上に金属からなる微小針状電極材料を混合し
た導電性を有するバインダを塗布し、微小針状電極材料
を所定の方向に配向する工程と、上記バインダ上にフォ
トレジストを塗布する工程と、このフォトレジストをフ
ォトエッチングによりパターニングする工程と、上記フ
ォトレジストをマスクとして上記バインダをエッチング
によりパターニングする工程と、上記フォトレジストを
除去する工程と、上記バインダを選択エッチングして上
記微小針状電極材料の一端を上記バインダから突出させ
る工程を備えたことを特徴とする電界放出陰極の形成方
法。
6. A step of forming a conductive film on a substrate, and a conductive binder mixed with a fine needle-shaped electrode material made of a metal is applied on the conductive film to form a predetermined fine needle-shaped electrode material. In the direction of, a step of applying a photoresist on the binder, a step of patterning the photoresist by photoetching, a step of patterning the binder by etching using the photoresist as a mask, A method of forming a field emission cathode, comprising: a step of removing a resist; and a step of selectively etching the binder to project one end of the microneedle electrode material from the binder.
JP34241692A 1992-12-22 1992-12-22 Electric field emission negative electrode and its forming method Pending JPH06196086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34241692A JPH06196086A (en) 1992-12-22 1992-12-22 Electric field emission negative electrode and its forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34241692A JPH06196086A (en) 1992-12-22 1992-12-22 Electric field emission negative electrode and its forming method

Publications (1)

Publication Number Publication Date
JPH06196086A true JPH06196086A (en) 1994-07-15

Family

ID=18353563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34241692A Pending JPH06196086A (en) 1992-12-22 1992-12-22 Electric field emission negative electrode and its forming method

Country Status (1)

Country Link
JP (1) JPH06196086A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015002A1 (en) * 1993-11-24 1995-06-01 Tdk Corporation Cold-cathode electron source element and method for producing the same
JP2002100282A (en) * 2000-07-19 2002-04-05 Matsushita Electric Ind Co Ltd Electron-emitting element, its manufacturing method and image display device using the same
WO2002037518A1 (en) * 2000-11-06 2002-05-10 Fujitsu Limited Field-emission cathode and method for manufacturing the same
WO2003009325A1 (en) * 2001-07-18 2003-01-30 Sony Corporation Electron emitter and method for fabricating the same, cold cathode field electron emission element and method for fabricating the same, and cold cathode field electron emission display and method for manufacturing the same
WO2004027843A1 (en) * 2002-09-18 2004-04-01 Tokyo University Of Science Surface processing method
KR100577860B1 (en) * 2004-12-30 2006-05-10 학교법인 성균관대학 Triode electric field emission device and manufacturing method thereof
JP2006260922A (en) * 2005-03-17 2006-09-28 Sonac Kk Electron emission element and manufacturing method of the same
JP2009231789A (en) * 2007-08-30 2009-10-08 Tokyo Univ Of Science Method of manufacturing three-dimensional mold, the three-dimensional mold, workpiece, and resin molded article
US7629596B2 (en) 2005-02-21 2009-12-08 Tokyo University Of Science Educational Foundation Administrative Organization Method of producing 3-D mold, method of producing finely processed product, method of producing fine-pattern molded product, 3-D mold, finely processed product, fine-pattern molded product and optical component

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760536A (en) * 1993-11-24 1998-06-02 Tdk Corporation Cold cathode electron source element with conductive particles embedded in a base
US5860844A (en) * 1993-11-24 1999-01-19 Tdk Corporation Cold cathode electron source element and method for making
WO1995015002A1 (en) * 1993-11-24 1995-06-01 Tdk Corporation Cold-cathode electron source element and method for producing the same
JP2002100282A (en) * 2000-07-19 2002-04-05 Matsushita Electric Ind Co Ltd Electron-emitting element, its manufacturing method and image display device using the same
US7030545B2 (en) 2000-11-06 2006-04-18 Fujitsu Limited Field emission cathode with emitters formed of acicular protrusions with secondary emitting protrusions formed thereon
WO2002037518A1 (en) * 2000-11-06 2002-05-10 Fujitsu Limited Field-emission cathode and method for manufacturing the same
KR100701476B1 (en) * 2000-11-06 2007-03-29 후지쯔 가부시끼가이샤 Field-emission cathode and method for manufacturing the same
WO2003009325A1 (en) * 2001-07-18 2003-01-30 Sony Corporation Electron emitter and method for fabricating the same, cold cathode field electron emission element and method for fabricating the same, and cold cathode field electron emission display and method for manufacturing the same
WO2004027843A1 (en) * 2002-09-18 2004-04-01 Tokyo University Of Science Surface processing method
JP2005539393A (en) * 2002-09-18 2005-12-22 学校法人東京理科大学 Surface processing method
KR100577860B1 (en) * 2004-12-30 2006-05-10 학교법인 성균관대학 Triode electric field emission device and manufacturing method thereof
US7629596B2 (en) 2005-02-21 2009-12-08 Tokyo University Of Science Educational Foundation Administrative Organization Method of producing 3-D mold, method of producing finely processed product, method of producing fine-pattern molded product, 3-D mold, finely processed product, fine-pattern molded product and optical component
JP2006260922A (en) * 2005-03-17 2006-09-28 Sonac Kk Electron emission element and manufacturing method of the same
JP2009231789A (en) * 2007-08-30 2009-10-08 Tokyo Univ Of Science Method of manufacturing three-dimensional mold, the three-dimensional mold, workpiece, and resin molded article

Similar Documents

Publication Publication Date Title
JP2574500B2 (en) Manufacturing method of planar cold cathode
JP3255960B2 (en) Cold cathode emitter element
US6632114B2 (en) Method for manufacturing field emission device
US5457355A (en) Asymmetrical field emitter
US5502314A (en) Field-emission element having a cathode with a small radius
WO1999040600A2 (en) Gate electrode structure for field emission devices and method of making
JPH06196086A (en) Electric field emission negative electrode and its forming method
US5651713A (en) Method for manufacturing a low voltage driven field emitter array
US6036565A (en) Method of fabricating a field emmision cold cathode
EP0637050A2 (en) A method of fabricating a field emitter
US5607335A (en) Fabrication of electron-emitting structures using charged-particle tracks and removal of emitter material
US6572425B2 (en) Methods for forming microtips in a field emission device
JPH06111712A (en) Field emission cathode and its manufacture
JP3211572B2 (en) Field emission type electronic device and method of manufacturing the same
JP2987372B2 (en) Electron-emitting device
JPH05242797A (en) Manufacture of electron emission element
JP3413504B2 (en) Electron emitting device and method of manufacturing the same
JPH05225895A (en) Manufacture of electric-field emission cathode electrode
JPH0541152A (en) Manufacture of electric field emission cathode
KR100279749B1 (en) Manufacturing method of field emission array superimposed gate and emitter
JP3143679B2 (en) Electron emitting device and method of manufacturing the same
Fleming et al. Asymmetrical field emitter
KR100569269B1 (en) Method of manufacturing field emission display device
JPH06290703A (en) Electron emitting element and manufacture thereof
JPH08138531A (en) Electron emission element and manufacture thereof