JPH0539503A - Production of punch for marking - Google Patents

Production of punch for marking

Info

Publication number
JPH0539503A
JPH0539503A JP19420891A JP19420891A JPH0539503A JP H0539503 A JPH0539503 A JP H0539503A JP 19420891 A JP19420891 A JP 19420891A JP 19420891 A JP19420891 A JP 19420891A JP H0539503 A JPH0539503 A JP H0539503A
Authority
JP
Japan
Prior art keywords
punch
marking
stamping
kneaded
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19420891A
Other languages
Japanese (ja)
Inventor
Kouichi Gondai
晃一 権代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP19420891A priority Critical patent/JPH0539503A/en
Publication of JPH0539503A publication Critical patent/JPH0539503A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a punch for marking hardly causing chipping at the time of marking and having a long service life in a small number of processes. CONSTITUTION:Metal powder 3-20mum average particle diameter is kneaded with a binder to obtain a kneaded body and this kneaded body is injected into a metal mold to form a molded body similar in shape to a desired punch for marking. The binder is then removed and sintering is carried out to obtain a punch for marking having >=99.5% relative density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属材料等に打刻によ
り刻印する場合に用いられる刻印用パンチの製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a punch for stamping, which is used when stamping on a metal material or the like.

【0002】[0002]

【従来の技術】材料に特定の文字、数字、図形等を表示
する場合、通常の塗料による表示の他に、金属材料に特
定文字等に対応する凸部または凹部を有する刻印用パン
チを用いて、打刻により特定の文字等を表示する方法が
ある。特に金属材料においては、材料の製造過程で熱処
理、表面処理等が行なわれる場合が多く、通常の塗料で
は、これらの処理に耐えられないため、刻印用パンチを
用いた表示方法が用いられている。従来の刻印用パンチ
の製造方法としては、溶製金属材料から素材を切り出
し、文字、数字または記号を刻印面に機械加工により付
与した後、熱処理するか、素材を熱処理した後、刻印面
に放電加工により形状を付与している。
2. Description of the Related Art In order to display specific characters, numbers, figures, etc. on a material, in addition to the usual display with paint, a punch for marking having a convex portion or a concave portion corresponding to the specific character on a metal material is used. , There is a method of displaying a specific character or the like by stamping. In particular, metal materials are often subjected to heat treatment, surface treatment, etc. in the manufacturing process of materials, and ordinary paints cannot withstand these treatments. Therefore, a marking method using a punch for marking is used. .. The conventional method of manufacturing punches for stamping is to cut out a material from a molten metal material and apply letters, numbers or symbols to the stamped surface by machining, and then heat-treat or heat-treat the material and then discharge the stamped surface. The shape is given by processing.

【0003】[0003]

【発明が解決しようとする課題】上述の刻印用パンチの
製造方法において、課題となるのは打刻面の加工方法で
ある。機械加工による場合は、1ヶずつの単品生産であ
り、大量生産に適さず、さらには刻印面にツールマーク
が残るという問題がある。また、細かい文字の加工では
ドリルの寿命が短いという問題もある。また、放電加工
による場合では複数の放電加工用電極を用い、一度に複
数の刻印面を加工し生産数を増やしているが、これでも
生産数には限度がある。また、刻印用パンチの材料とし
て溶製材料を用いると溶製材料は平均炭化物粒径が10μ
m以上と大きいため、それによりチッピングを生じるこ
とがあった。本発明の目的は、上記問題点に鑑み、刻印
面に機械加工、放電加工を行なうことなく、生産効率を
大幅に向上させ、かつ、靭性を改善した刻印用パンチの
製造方法を提供することである。
In the method of manufacturing the stamp for stamping described above, the problem is the method of processing the stamped surface. In the case of machining, it is a single product production one by one, which is not suitable for mass production, and further there is a problem that tool marks remain on the marking surface. There is also a problem that the life of the drill is short when processing fine characters. Further, in the case of electrical discharge machining, a plurality of electrodes for electrical discharge machining are used to process a plurality of marking surfaces at one time to increase the number of products produced, but the number of products produced is still limited. Also, when a melted material is used as the material for the punch for marking, the melted material has an average carbide grain size of 10μ.
Since it is as large as m or more, it may cause chipping. In view of the above problems, an object of the present invention is to provide a method for manufacturing a punch for stamping, which significantly improves the production efficiency, and which does not perform machining or electric discharge machining on the stamped surface, and which has improved toughness. is there.

【0004】[0004]

【課題を解決するための手段】本発明は、刻印用パンチ
の製造方法において、平均粒径が3〜20μmの金属粉末を
バインダと混練し、混練体得た後、該混練体を金型に射
出して、所望する刻印用パンチと相似形状の成形体と
し、前記バインダを除去した後、焼結し相対密度99.5%
以上の実密体とすることを特徴とする刻印用パンチの製
造方法である。本発明の最も特徴とするところは、原料
粉末の成形方法として射出成形法を用い、ニアネットシ
ェイプ化した点である。ニアネットシェイプの手法とし
ては、精密鋳造法も考えられるが、機械的性質上、特に
靭性値が十分とは言えない。金属粉末の成形法としては
プレス成形法、冷間静水圧プレス(以下CIPと称す
る)成形法が広く知られているが、プレス成形法では一
軸方向で成形できる形状に限られるため、刻印面以外に
刻印形状を表示するといった刻印用パンチに必要な加工
を同時に行なうことができない。CIP成形法では3次
元的形状が成形できるが、ゴム型の中に成形されるた
め、寸法精度が確保できない、量産性がない等の問題が
あった。
Means for Solving the Problems The present invention is a method of manufacturing a punch for stamping, in which a metal powder having an average particle size of 3 to 20 μm is kneaded with a binder to obtain a kneaded body, and then the kneaded body is injected into a mold. Then, a molding having a shape similar to the desired punch for stamping is formed, after removing the binder, it is sintered and the relative density is 99.5%.
A method for manufacturing a stamping punch, which is characterized in that the above-mentioned solid body is used. The most characteristic feature of the present invention is that an injection molding method is used as a method for molding the raw material powder and a near net shape is formed. As a near net shape method, a precision casting method can be considered, but it cannot be said that the toughness value is particularly sufficient in terms of mechanical properties. As a forming method of metal powder, a press forming method and a cold isostatic pressing (hereinafter referred to as CIP) forming method are widely known. However, since the press forming method is limited to a shape that can be formed in a uniaxial direction, other than a stamped surface. It is not possible to simultaneously perform the machining required for the marking punch such as displaying the marking shape on the. The CIP molding method can mold a three-dimensional shape, but since it is molded in a rubber mold, there are problems that dimensional accuracy cannot be ensured and mass productivity is not achieved.

【0005】金属粉末の平均粒径としては、焼結体のミ
クロ組織および炭化物粒径の微細化に関しては細かい方
が好ましい。しかしながら、あまり細かいと粉末の比表
面積が増大し、混練に要するバインダ量が増え、また脱
バインダ時の分解したバインダの通過する隙間が小さく
なり、脱バインダ不良が発生するため、平均粒径は3μ
m以上とした。また、平均粒径があまり大きくなると、
粉末自体の焼結性が低下し、焼結による真密度化が困難
になるか、高温での焼結が必要となり、ミクロ組織、炭
化物粒径の粗大化をまねくため20μm以下とした。金属
粉末の組成としては高速度工具鋼であることが特に好ま
しい。被刻印材の多様化で特に硬度の高いものに刻印す
る場合が増し、パンチ材の耐摩耗性が必要とされるため
であり、合金工具鋼クラスでは、被刻印材によっては、
高速度工具鋼よりは早期に摩耗が発生する場合がある。
また、超硬合金を用いると、打刻時にチッピングが発生
する場合があり、寿命が問題となる場合がある。
The average particle size of the metal powder is preferably fine with respect to the microstructure of the sintered body and miniaturization of the carbide particle size. However, if it is too fine, the specific surface area of the powder increases, the amount of binder required for kneading increases, and the gap through which the decomposed binder passes at the time of debinding decreases, resulting in defective debinding, so the average particle size is 3 μm.
m or more. Also, if the average particle size becomes too large,
The sinterability of the powder itself deteriorates, making it difficult to achieve true density by sintering, or sintering at high temperature is necessary, and this causes the microstructure and carbide grain size to become coarse, so the particle size was set to 20 μm or less. High-speed tool steel is particularly preferable as the composition of the metal powder. This is because, due to the diversification of the materials to be engraved, the number of cases with particularly high hardness is increased, and the wear resistance of punch materials is required.In the alloy tool steel class, depending on the materials to be engraved,
Wear may occur earlier than with high speed tool steel.
Further, when a cemented carbide is used, chipping may occur during stamping, which may cause a problem of life.

【0006】[0006]

【作用】本発明の刻印用パンチの製造方法では、三次形
的複雑形状品が対象であっても細部まで高精度に成形可
能で、かつ量産性に優れる射出成形法を用いることで、
焼結体の状態で最終形状を有し、後加工はほとんど一切
不要となる。また、金属粉末として平均粒径 3〜20μm
の高速度工具鋼粉末を原料にすれば、極めて微細で均一
なミクロ組織を有し、溶製材よりも靭性が高く、かつ耐
摩耗性の良好な刻印用パンチが得られる。
In the method of manufacturing a stamping punch according to the present invention, even if a cubic shaped article is targeted, it is possible to mold the details with high accuracy and use an injection molding method that is excellent in mass productivity.
It has the final shape in the state of a sintered body, and almost no post-processing is required. Also, as a metal powder, the average particle size is 3 to 20 μm.
If the high-speed tool steel powder is used as a raw material, a stamping punch having an extremely fine and uniform microstructure, higher toughness than the ingot, and good wear resistance can be obtained.

【0007】[0007]

【実施例】以下、本発明の実施例を詳細に説明する。 (実施例1)AISI T15相当の重量比でC 1.45
%、Si 0.40%、Mn 0.37%、Cr 4.2%、W 12.10%、Mo
0.9%、V 4.72%、Co 4.40%、残部Feおよび不可避的不
純物からなる予備合金粉末を作成した。平均粒径は39μ
mでO2含有量は4500ppmであった。この粉末をアトライ
タにより乾式粉砕した後、350メッシュで分級し平均粒
径11μmとした。この粉末に黒鉛粉末を0.3%添加し、V
型ブレンダで混合した後、重量部でポリブチルメタアク
リート 1.5部、エチレン酢酸ビニル共重合体 3.3部、パ
ラフィンワックス 2.0部、ジブチルフタレート 1.2部を
添加し、ヘンシェルミキサーで混練し、混練体とした。
この混練体を射出成形機にて、図1に示す刻印用凸部1
と刻印文字表示用凹部2を有する形状になるように金型
に射出し、成形体を得た。この成形体を窒素雰囲気中で
450℃、保持時間 30分で脱バインダ処理を行なった後、
真空中にて1233℃、保持時間45分で焼結を行なった。焼
結体のC含有量は1.53wt%で、比重は8.20g/cm3であり、
ミクロ組織上残留した空孔は認められず、実質上真密度
化していると判断された。またX線検査の結果、内部に
欠陥は見られなかった。上記刻印用パンチを1×10マイ
ナス4乗torrの真空炉にて1200℃で焼入れた後560℃で3
回焼もどしを行ない、硬さHRC63.0とした。これを打刻
機に取付け、SUS304の平板に打刻テストを行なっ
たところ、10万回の打刻テスト後においてもチッピング
は見られなかった。
EXAMPLES Examples of the present invention will be described in detail below. (Example 1) C 1.45 in a weight ratio equivalent to AISI T15
%, Si 0.40%, Mn 0.37%, Cr 4.2%, W 12.10%, Mo
A preliminary alloy powder consisting of 0.9%, V 4.72%, Co 4.40%, the balance Fe and unavoidable impurities was prepared. Average particle size is 39μ
The O 2 content in m was 4500 ppm. This powder was dry pulverized with an attritor and then classified with 350 mesh to have an average particle size of 11 μm. Add 0.3% of graphite powder to this powder, and add V
After mixing with a mold blender, 1.5 parts by weight of polybutyl metaacrylate, 3.3 parts of ethylene vinyl acetate copolymer, 2.0 parts of paraffin wax and 1.2 parts of dibutyl phthalate were added and kneaded with a Henschel mixer to obtain a kneaded product.
This kneaded body is injection-molded by an injection molding machine and the convex portion 1 for marking shown in FIG.
And a molded body was obtained by injecting into a mold so as to have a shape having the engraved character display concave portion 2. This molded body in a nitrogen atmosphere
After removing the binder at 450 ° C for a holding time of 30 minutes,
Sintering was carried out in vacuum at 1233 ° C. and a holding time of 45 minutes. The C content of the sintered body was 1.53 wt% and the specific gravity was 8.20 g / cm 3 ,
No residual pores were observed on the microstructure, and it was judged that the true density was substantially achieved. Further, as a result of X-ray inspection, no internal defect was found. Quench the above stamp for engraving at 1200 ° C in a vacuum furnace of 1 × 10 -4 torr and then at 560 ° C 3
It was tempered and tempered to a hardness of HRC63.0. When this was attached to an engraving machine and an engraving test was conducted on a flat plate of SUS304, no chipping was observed even after the engraving test of 100,000 times.

【0008】(実施例2)実施例1と実質的に同様の組
成を有する金属粉末であって、実施例として表1に示す
3〜20μmの平均粒径を持つ粉末に実施例1と同種のバイ
ンダを混練可能となるまで添加し混練した。各混練体を
実施例1と同様に射出成形し、脱バインダ、焼結を行な
った後、熱処理を行ない、図1に示す刻印用パンチを得
た。また、比較例として、平均粒径2μmおよび21μmの
粉末についても同様に得た。同じく比較例として、溶製
材は放電加工により、刻印用凸部を形成し、図1の形状
を得た。また、精鋳材では、図1に示す形状を鋳造によ
り直接得た。これらを打刻機に取付け、SUS304の
平板に打刻テストを行なった結果を表1に示す。
(Example 2) A metal powder having a composition substantially similar to that of Example 1 is shown in Table 1 as an example.
The same kind of binder as in Example 1 was added to the powder having an average particle diameter of 3 to 20 μm and kneaded until kneading was possible. Each kneaded body was injection-molded in the same manner as in Example 1 to remove the binder and sinter, and then heat-treated to obtain the stamping punch shown in FIG. Further, as comparative examples, powders having average particle diameters of 2 μm and 21 μm were obtained in the same manner. Similarly, as a comparative example, the ingot was formed by electric discharge machining to form a convex portion for marking, and the shape shown in FIG. 1 was obtained. In the case of the fine cast material, the shape shown in FIG. 1 was directly obtained by casting. Table 1 shows the results of mounting these on a stamping machine and performing a stamping test on a flat plate of SUS304.

【0009】[0009]

【表1】 [Table 1]

【0010】表1において、焼結体の欠陥は外観上の欠
陥であるクラックの有無を示したものである。また、密
度は組成より算出された理論密度の相対値である。ま
た、耐久性はチッピング発生が確認された打刻回数であ
る。表1より、原料となる金属粉末の粒径が3μmより小
さいとクラックが発生し、好ましくないことがわかる。
また、反対に粒径が20μmより大きいと密度低下とな
り、打刻時のチッピングが早期に発生し、寿命を低下さ
せ好ましくないことがわかる。また、比較例では溶製材
および精鋳品では、打刻テストにおいて、本発明材より
もチッピングが多く、靭性が劣っていることが確認され
た。
In Table 1, the defects of the sintered body indicate the presence or absence of cracks which are defects in appearance. The density is a relative value of the theoretical density calculated from the composition. Durability is the number of stamps in which chipping was confirmed. From Table 1, it can be seen that if the particle size of the metal powder as the raw material is smaller than 3 μm, cracks are generated, which is not preferable.
On the other hand, if the particle size is larger than 20 μm, the density decreases, chipping during stamping occurs early, and the life is shortened, which is not preferable. Further, in the comparative example, it was confirmed in the stamping test that the ingots and refined castings had more chipping and were inferior in toughness than the materials of the present invention.

【0011】(実施例3)重量比でC 3.10%、Si 0.44
%、Mn 0.37%、Cr 4.08%、W 9.00%、Mo7.8%、V 8.0
9%、Co 8.4%、残部Feおよび不可避的不純物からなる
水アトマイズ予備合金粉末を作成した。平均粒径は15μ
mでO2含有量は4500ppmであった。この粉末に10%のTi
N粉末を添加した後アトライターで乾式粉砕し、平均粒
径8μmとした。この粉末に黒鉛粉末を重量比で0.21%添
加し、V型ブレンダで12時間混合し、超硬質高速度工具
鋼の原料粉末とした。この混合粉末にポリブチルメタア
クリート 1.6部、エチレン酢酸ビニル共重合体 3.4部、
パラフィンワックス 2.0部、ジブチルフタレート 1.2部
を添加し、ヘンシェルミキサーで160℃にて混練後、粗
粉砕し、射出成形用の混練体とした。この混練体を実施
例1と同様に金型に射出し、図1に示す刻印用パンチの
成形体を得た。得られた成形体を水素雰囲気中で500℃
で1時間保持してバインダの除去を行なった。その後1×
10マイナス4乗torrの減圧雰囲気中で1240℃で1時間保持
して焼結を行なった。得られた焼結体の密度は100%の真
密度であった。この焼結体を1×10マイナス4乗torrの真
空炉にて1230℃で焼入れた後560℃で3回焼もどしを行な
い、硬さHRC71の刻印用パンチとした。この刻印用パン
チを打刻機に取付け、SUS304の平板に打刻テスト
を行なったところ、10万回の打刻テスト後においてもチ
ッピングは見られなかった。
(Example 3) C 3.10% by weight, Si 0.44
%, Mn 0.37%, Cr 4.08%, W 9.00%, Mo 7.8%, V 8.0
A water atomized prealloy powder consisting of 9%, Co 8.4%, balance Fe and unavoidable impurities was prepared. Average particle size is 15μ
The O 2 content in m was 4500 ppm. 10% Ti on this powder
After adding N powder, it was dry-ground with an attritor to obtain an average particle size of 8 μm. Graphite powder was added to this powder in a weight ratio of 0.21% and mixed with a V-type blender for 12 hours to obtain a raw powder of ultra-hard high-speed tool steel. To this mixed powder, 1.6 parts of polybutyl metaacrylate, 3.4 parts of ethylene vinyl acetate copolymer,
Paraffin wax (2.0 parts) and dibutyl phthalate (1.2 parts) were added, and the mixture was kneaded with a Henschel mixer at 160 ° C. and coarsely pulverized to obtain a kneaded body for injection molding. This kneaded body was injected into a mold in the same manner as in Example 1 to obtain a stamped punch compact shown in FIG. Obtained compacts in hydrogen atmosphere at 500 ℃
After that, the binder was removed by holding for 1 hour. Then 1x
Sintering was performed by holding at 1240 ° C. for 1 hour in a reduced pressure atmosphere of 10 −4 torr. The density of the obtained sintered body was 100% true density. This sintered body was hardened at 1230 ° C. in a vacuum furnace of 1 × 10 -4 torr and then tempered 3 times at 560 ° C. to obtain a punch for hardness HRC71. When this punch for marking was attached to a stamping machine and a stamping test was conducted on a flat plate of SUS304, no chipping was observed even after the stamping test of 100,000 times.

【0012】[0012]

【発明の効果】本発明によれば、従来多大な手間がかか
っていた刻印用パンチの製造工程を著しく軽減できる。
また、本発明により得られる刻印用パンチは、刻印時の
チッピングの発生が少なく、耐久性が高く、寿命の長い
刻印用パンチとなるため、刻印文字等の品質を保つ点に
おいて、極めて有用である。
According to the present invention, it is possible to remarkably reduce the manufacturing process of the punch for stamping, which has been time-consuming.
Further, the stamping punch obtained by the present invention is a stamping punch with less chipping at the time of stamping, high durability, and long life, and is extremely useful in maintaining the quality of stamped characters and the like. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により製造した刻印用パンチの外観図で
ある。
FIG. 1 is an external view of a marking punch manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

1 刻印用凸部 2 刻印文字表示用凹部 1 Convex part for engraving 2 Recessed part for engraved character display

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が3〜20μmの金属粉末をバイン
ダと混練し、混練体を得た後、該混練体を金型に射出し
て、所望する刻印用パンチと相似形状の成形体とし、前
記バインダを除去した後、焼結し、相対密度 99.5%以上
の実密体とすることを特徴とする刻印用パンチの製造方
法。
1. A metal powder having an average particle diameter of 3 to 20 μm is kneaded with a binder to obtain a kneaded body, and the kneaded body is injected into a mold to have a molding similar in shape to a desired punch for marking. The method for producing a stamp for stamping is characterized in that after the binder is removed, it is sintered to obtain a solid body having a relative density of 99.5% or more.
【請求項2】 金属粉末の組成が高速度工具鋼であるこ
とを特徴とする請求項1に記載の刻印用パンチの製造方
法。
2. The method for manufacturing a stamping punch according to claim 1, wherein the composition of the metal powder is high speed tool steel.
JP19420891A 1991-08-02 1991-08-02 Production of punch for marking Pending JPH0539503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19420891A JPH0539503A (en) 1991-08-02 1991-08-02 Production of punch for marking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19420891A JPH0539503A (en) 1991-08-02 1991-08-02 Production of punch for marking

Publications (1)

Publication Number Publication Date
JPH0539503A true JPH0539503A (en) 1993-02-19

Family

ID=16320756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19420891A Pending JPH0539503A (en) 1991-08-02 1991-08-02 Production of punch for marking

Country Status (1)

Country Link
JP (1) JPH0539503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532320A (en) * 2004-04-13 2007-11-15 アキュメント インテレクチュアル プロパティーズ エルエルシー Powdered metal multilobe tool and method of making

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532320A (en) * 2004-04-13 2007-11-15 アキュメント インテレクチュアル プロパティーズ エルエルシー Powdered metal multilobe tool and method of making

Similar Documents

Publication Publication Date Title
US4721599A (en) Method for producing metal or alloy articles
AU2003245820B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
KR100768700B1 (en) Fabrication method of alloy parts by metal injection molding and the alloy parts
JP4119750B2 (en) Powder metallurgy for producing high density molded parts
EP0516164A1 (en) Watch exterior parts and manufacturing method thereof
JP2001059103A (en) Production of metallic sintered body
JPH0539503A (en) Production of punch for marking
JPS61231102A (en) Powder based on iron containing ni and mo for producing highstrength sintered body
EP0409646A2 (en) Compound for an injection molding
JPH08333647A (en) Cemented carbide and its production
JPH0222121B2 (en)
JPH10317009A (en) Production of stainless sintered body
JPH059509A (en) Sintered body of high-alloy tool steel and production thereof
JP2786303B2 (en) Method for producing sintered alloy with excellent corrosion resistance and machinability
JPH04280903A (en) Manufacture of cemented carbide powder for injection molding and cemented carbide sintered product
KR102025798B1 (en) PREPARING METHOD OF HIGH-DENSITY SINTERED Co-Cr-Mo ALLOYS FOR BIOMATERIALS
JPH11315305A (en) Manufacture of sintered body
JPH11181541A (en) Production of stainless steel sintered body
JP2000144201A (en) Cermet powder for injection molding and production of cermet sintered body
JPH04323307A (en) Production of tungsten heavy metal product
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPH05171334A (en) Hard sintered part and its manufacture
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH0754004A (en) Production of sintered product of head metal powder
JP3366696B2 (en) Manufacturing method of high strength cermet