JPH0536562A - Ceramic multilayer capacitor - Google Patents

Ceramic multilayer capacitor

Info

Publication number
JPH0536562A
JPH0536562A JP21427191A JP21427191A JPH0536562A JP H0536562 A JPH0536562 A JP H0536562A JP 21427191 A JP21427191 A JP 21427191A JP 21427191 A JP21427191 A JP 21427191A JP H0536562 A JPH0536562 A JP H0536562A
Authority
JP
Japan
Prior art keywords
multilayer capacitor
ceramic
ceramic multilayer
layers
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21427191A
Other languages
Japanese (ja)
Inventor
Eiji Yatabe
英爾 矢田部
Hiroshi Tanemoto
啓 種本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21427191A priority Critical patent/JPH0536562A/en
Publication of JPH0536562A publication Critical patent/JPH0536562A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To provide a ceramic multilayer capacitor having small temperature dependency of a capacity and large capacity. CONSTITUTION:Ceramic dielectrics having different temperature characteristics of permittivities of layers, are laminated to form one multilayer capacitor. Since the capacity of the multilayer capacitor is the total sum of capacities of respective layers, a ceramic multilayer capacitor having small temperature dependency of the capacity can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は小型で大容量が得られる
セラミック積層コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic multilayer capacitor which is small in size and has a large capacity.

【0002】[0002]

【従来の技術】従来のセラミック積層コンデンサは図7
に示す構造をしており、厚さ数ミクロンの内部電極層2
と十から数十ミクロンのセラミック誘電体層が交互に層
状積み重ねられており、小型で大容量が得られる構造に
なっている。
2. Description of the Related Art A conventional ceramic multilayer capacitor is shown in FIG.
The internal electrode layer 2 having the structure shown in Fig.
And ceramic dielectric layers of 10 to several tens of microns are alternately stacked in layers to form a structure that is small in size and has a large capacity.

【0003】コンデンサの容量は、使用する材料の誘電
率、面積に比例し、使用する材料の厚みに半比例するこ
とから、図7に示す構造のセラミックコンデンサは小型
で大容量となる。セラミック誘電体としては、チタン酸
バリウム、チタン酸ジルコン酸鉛、マグネシウムニオブ
酸鉛等に代表される高誘電率のセラミック誘電体が用い
られる。又、誘電率の温度依存性、即ちセラミック積層
コンデンサの容量の温度依存性を小さくするために、シ
フター、デプレッサーと呼ばれる添加元素を添加したセ
ラミック誘電体がしばしば材料として用いられる。
Since the capacitance of a capacitor is proportional to the dielectric constant and area of the material used and is semi-proportional to the thickness of the material used, the ceramic capacitor having the structure shown in FIG. 7 is small and has a large capacity. As the ceramic dielectric, a high dielectric constant ceramic dielectric represented by barium titanate, lead zirconate titanate, lead magnesium niobate, or the like is used. Further, in order to reduce the temperature dependence of the dielectric constant, that is, the temperature dependence of the capacitance of the ceramic multilayer capacitor, a ceramic dielectric to which an additive element called shifter or depressor is added is often used as a material.

【0004】従来一つの積層体に使用される材料は一種
類であるが、各層で互いに異なる材料を積層した積層体
に関しては特開昭63−188905号公報に記載のよ
うに、2つ以上の機能を一つの積層体で実現することを
目的とするものだけであった。
Conventionally, there is only one type of material used for one laminated body, but regarding a laminated body in which different materials are laminated in each layer, as described in JP-A-63-188905, there are two or more materials. The only purpose was to realize the functions with a single laminated body.

【0005】[0005]

【発明が解決しようとする課題】従来は一つのセラミッ
ク積層コンデンサに使用するセラミック誘電体材料は一
種類であったために、容量の温度依存性の小さいセラミ
ック積層コンデンサを作製するためには、誘電率の温度
依存性が小さいセラミック誘電体材料を使用する必要が
あった。ここで、誘電率の温度依存性が小さいセラミッ
ク誘電体は誘電率が小さいので容量の温度依存性の小さ
いセラミック積層コンデンサは容量が小さいという欠点
があった。逆に比誘電率の大きい材料を用いたセラミッ
ク積層コンデンサは容量は大きいが容量の温度依存性が
大きいという欠点があった。
Conventionally, since only one type of ceramic dielectric material was used for one ceramic multilayer capacitor, in order to manufacture a ceramic multilayer capacitor having a small temperature dependence of capacitance, the dielectric constant should be reduced. It was necessary to use a ceramic dielectric material having a low temperature dependence of. Here, since the ceramic dielectric having a small temperature dependence of the dielectric constant has a small dielectric constant, the ceramic laminated capacitor having a small temperature dependence of the capacity has a drawback that the capacity is small. On the contrary, a ceramic multilayer capacitor using a material having a large relative dielectric constant has a large capacity, but has a drawback that the temperature dependence of the capacity is large.

【0006】例えば、マグネシウムニオブ酸鉛の複合ペ
ロブスカイトの場合、図8に示すように誘電率が最高と
なる温度での誘電率は、チタン酸バリウム等に比べ大き
いが、温度依存性が大きい。
For example, in the case of the composite perovskite of lead magnesium niobate, as shown in FIG. 8, the dielectric constant at the temperature at which the dielectric constant is highest is larger than that of barium titanate, but the temperature dependence is large.

【0007】そこで、この発明は容量の温度依存性が小
さく、かつ、容量が大きいセラミック積層コンデンサを
提供することを目的とする。
[0007] Therefore, an object of the present invention is to provide a ceramic laminated capacitor having a small capacity temperature dependency and a large capacity.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を達
成するために、セラミック積層コンデンサにおいて各層
で互いに異なる構成成分を有するセラミック誘電体層を
積層したものである。上記セラミック積層コンデンサに
用いるセラミック誘電体材料としては、最高誘電率とな
る温度がコンデンサを使用する温度範囲内にありかつ誘
電率が最高となる温度での誘電率が高い材料を何種類か
組み合わせるとよい。又、使用する温度範囲全域におい
てセラミック積層コンデンサの容量の温度依存性を小さ
くするために、最高誘電率となる温度が使用温度範囲内
で均等になるように何種類かの材料を選び、更に、誘電
率が最高となる温度での誘電率の逆数に比例した数を積
層することが好ましい。
In order to achieve the above object, the present invention is a ceramic multilayer capacitor in which ceramic dielectric layers having different constituents are laminated in each layer. As the ceramic dielectric material used for the above-mentioned ceramic multilayer capacitor, if the temperature at which the maximum dielectric constant is used is within the temperature range in which the capacitor is used and several types of materials having high dielectric constants at the temperature at which the maximum dielectric constant is used are combined, Good. In addition, in order to reduce the temperature dependence of the capacitance of the ceramic multilayer capacitor over the entire operating temperature range, several types of materials are selected so that the maximum dielectric constant temperature is uniform within the operating temperature range. It is preferable to stack a number proportional to the reciprocal of the dielectric constant at the temperature at which the dielectric constant is highest.

【0009】例として、3種類の材料を用いて使用温度
範囲内で容量が大きく、かつ、容量の温度依存性が小さ
い本発明のセラミック積層コンデンサ(積層数n、使用
温度T1 〜T2 [°C])を作製する場合を考える。ま
ず、3種類の材料としては以下に示すA、B、Cを選
ぶ。
As an example, a ceramic multilayer capacitor of the present invention (capacity n, operating temperature T 1 -T 2 [ ° C]) is considered. First, A, B, and C shown below are selected as the three types of materials.

【0010】A:温度T1 で誘電率が最高となり、T1
での誘電率がεA である誘電体 B:温度(T1 +T2 )/2で誘電率が最高となり、
(T1 +T2 )/2での誘導率がεB である誘電体 C:温度T2 で誘電率が最高となり、T2 での誘電率が
εC である誘電体これらA、B、Cを使用した誘電体層
の層数は以下の通りである。 材料Aを用いた層の数は n×(1/εA )/(1/εA +1/εB +1/εC ) 材料Bを用いた層の数は n×(1/εB )/(1/εA +1/εB +1/εC ) 材料Cを用いた層の数は n×(1/εC )/(1/εA +1/εB +1/εC
A: The dielectric constant reaches its maximum at temperature T 1 , and T 1
Dielectric permittivity of epsilon A in B: temperature (T 1 + T 2) / 2 in the dielectric constant is highest and
Dielectric C having an inductivity of ε B at (T 1 + T 2 ) / 2: Dielectric having the highest permittivity at temperature T 2 and having an ε C at T 2 of these A, B, C The number of dielectric layers using is as follows. The number of layers using the material A is n × (1 / ε A ) / (1 / ε A + 1 / ε B + 1 / ε C ). The number of layers using the material B is n × (1 / ε B ) / (1 / ε A + 1 / ε B + 1 / ε C ) The number of layers using the material C is n × (1 / ε C ) / (1 / ε A + 1 / ε B + 1 / ε C ).

【0011】マグネシウムニオブ酸鉛とチタン酸鉛の複
合ペロブスカイトを使用する場合、図8(エレクトロニ
クセラミック Vol.18.No.88 p.10)
に示すようにチタン酸鉛の含有量によって誘導率が最高
となる温度が−10°Cから100°Cまで変化するの
で、各層で互いにチタン酸鉛の含有量が異なるマグネシ
ウムニオブ酸鉛とチタン酸鉛の複合ペロプスカイトを積
層すればよい。この場合、各成分の積層数は誘電率が最
高となる温度での誘電率の逆数に比例させることが望ま
しい。
When a composite perovskite of lead magnesium niobate and lead titanate is used, FIG. 8 (Electronic Ceramics Vol. 18, No. 88 p. 10)
As shown in FIG. 5, the temperature at which the maximum induction rate varies depending on the content of lead titanate changes from −10 ° C. to 100 ° C. It suffices to stack lead composite perovskites. In this case, it is desirable to make the number of laminated layers of each component proportional to the reciprocal of the dielectric constant at the temperature at which the dielectric constant is highest.

【0012】[0012]

【作用】上記のように構成されたセラミック積層コンデ
ンサの各温度での容量は、その温度での各層の容量の和
となるので、使用温度範囲内で容量の温度依存性の小さ
く、かつ、容量の大きいセラミック積層コンデンサとな
る。
The capacitance of the ceramic multilayer capacitor constructed as described above at each temperature is the sum of the capacitance of each layer at that temperature, so that the temperature dependence of the capacitance is small within the operating temperature range, and It becomes a large ceramic laminated capacitor.

【0013】[0013]

【実施例】次に本発明の実施例について、図面を参照し
て説明する。まず、本発明の一実施例である図1に示す
セラミック積層コンデンサを作製するにあたって、図3
に示す形(即ち、誘電体層50層、外部ダミー層10
層、縦8ミリ、横6ミリ、高さ6.5ミリ)のセラミッ
ク積層コンデンサを使用する誘電体材料をかえて、以下
に示す3種類作製した。
Embodiments of the present invention will now be described with reference to the drawings. First, in manufacturing the ceramic multilayer capacitor shown in FIG. 1 which is an embodiment of the present invention,
(That is, the dielectric layer 50 layer, the external dummy layer 10)
Layers, 8 mm long, 6 mm wide, 6.5 mm high) were used, and the following three types were prepared by changing the dielectric material using a ceramic laminated capacitor.

【0014】 50層の誘電体層のすべてをマグネシ
ウムニオブ酸鉛を成分とする層としたもの 50層の誘電体層のすべてをマグネシウムニオブ酸
鉛にチタン酸鉛が6モル分率含有した複合ペロブスカイ
トを成分とする層としたもの 50層の誘電体層のすべてをマグネシウムニオブ酸
鉛にチタン酸鉛が17モル分率含有した複合ペロブスカ
イトを成分とする層としたもの
All 50 dielectric layers are layers containing lead magnesium niobate as a component All 50 dielectric layers are lead magnesium niobate composite perovskite containing lead titanate in a 6 mole fraction A layer containing 50% of the dielectric layer as a layer containing a composite perovskite containing lead magnesium niobate and lead titanate in a 17 mole fraction

【0015】これら3種類のセラミック積層コンデンサ
の容量の温度依存性測定結果をそれぞれ図4、図5、図
6に示す。
The results of measuring the temperature dependence of the capacitance of these three types of ceramic multilayer capacitors are shown in FIGS. 4, 5 and 6, respectively.

【0016】これらの結果、マグネシウムニオブ酸鉛だ
けで作製したものの容量が最高となる温度が−10°C
であり、このとき容量が2.18[μF]であった。
又、マグネシウムニオブ酸鉛にチタン酸鉛を6モル分率
含有した複合ペロブスカイトで作製したものの容量が最
高となる温度は20°Cであり、このときの容量が3.
00[μF]であった。
As a result of the above, the temperature at which the capacity of the lead magnesium niobate prepared only becomes maximum is -10 ° C.
And the capacitance was 2.18 [μF] at this time.
Further, the temperature at which the maximum capacity of the composite perovskite containing lead magnesium niobate and lead titanate at 6 mol fraction is 20 ° C., and the capacity at this time is 3.
It was 00 [μF].

【0017】マグネシウムニオブ酸鉛にチタン酸鉛を1
7モル分率含有した複合ペロブスカイトで作製したもの
の容量が最高となる温度は80°Cであり、このときの
容量が4.76[μF]であった。
1 lead titanate to lead magnesium niobate
The temperature at which the capacity of the composite perovskite containing 7 mole fractions became maximum was 80 ° C., and the capacity at this time was 4.76 [μF].

【0018】これらの結果から、各材料の積層数が最高
誘電率となる温度での誘電率の逆数に比例した数になる
ように各材料の積層数を計算すると、全積層数を50層
とした場合、マグネシウムニオブ酸鉛を成分とする層が
23層、チタン酸鉛を6モル分率含有する層が16層、
チタン酸鉛を17モル分率含有する層が11層となる。
From these results, when the number of layers of each material was calculated so that the number of layers of each material was proportional to the reciprocal of the dielectric constant at the temperature where the maximum dielectric constant was obtained, the total number of layers was 50 layers. In this case, 23 layers containing lead magnesium niobate as a component, 16 layers containing lead titanate in a 6 mole fraction,
There are 11 layers containing 17 mol% of lead titanate.

【0019】以上の結果をふまえて、図1に本発明の一
実施例を示す。誘電体層50層、外部ダミー層10層、
縦8ミリ、横6ミリ、高さ6.5ミリのセラミック積層
コンデンサを作製する。50層の誘電体層のうち、23
層はマグネシウムニオブ酸鉛を成分とする層、16層は
マグネシウムニオブ酸鉛にチタン酸鉛が6モル分率含有
した複合ペロブスカイトを成分とする層、11層はマグ
ネシウムニオブ酸鉛にチタン酸鉛が17モル分率含有し
た複合ペロブスカイトを成分とする層とした。
Based on the above results, FIG. 1 shows an embodiment of the present invention. 50 dielectric layers, 10 external dummy layers,
A ceramic laminated capacitor having a length of 8 mm, a width of 6 mm, and a height of 6.5 mm is manufactured. 23 out of 50 dielectric layers
The layer is a layer containing lead magnesium niobate as a component, the 16 layer is a layer containing composite perovskite containing lead magnesium niobate in a lead titanate content of 6 mole fractions, and the 11th layer is lead magnesium niobate in lead titanate. A layer containing a composite perovskite containing 17 mole fraction was prepared.

【0020】図2に図1に示すセラミック積層コンデン
サの容量の温度依存性測定結果を示す。単一の材料で構
成されたセラミック積層コンデンサの場合、図4、図
5、図6に示すように容量の最大値は大きいが、温度依
存性も大きい。一方、本発明に寄れば図2に示すように
容量が大きく、容量の温度依存性が小さいセラミック積
層コンデンサとなる。
FIG. 2 shows the results of measuring the temperature dependence of the capacitance of the ceramic multilayer capacitor shown in FIG. In the case of a ceramic multilayer capacitor composed of a single material, the maximum capacitance is large as shown in FIGS. 4, 5 and 6, but the temperature dependence is also large. On the other hand, according to the present invention, as shown in FIG. 2, the ceramic laminated capacitor has a large capacitance and a small temperature dependence of the capacitance.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、図
4に示すように容量も大きく温度依存性が小さいセラミ
ック積層コンデンサとなる。
As described above, according to the present invention, as shown in FIG. 4, a ceramic laminated capacitor having a large capacitance and a small temperature dependency is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】マグネシウムニオブ酸鉛とチタン酸鉛の複合ペ
ロブスカイトを使用して作製した本実施例のセラミック
積層コンデンサの模式図である。
FIG. 1 is a schematic view of a ceramic multilayer capacitor of the present example manufactured using a composite perovskite of lead magnesium niobate and lead titanate.

【図2】図1に示すセラミック積層コンデンサの容量温
度依存性測定結果である。
FIG. 2 is a measurement result of capacitance-temperature dependence of the ceramic multilayer capacitor shown in FIG.

【図3】図1に示すセラミック積層コンデンサを作製す
るにあたって、試作したセラミック積層コンデンサの模
式図である。
FIG. 3 is a schematic diagram of a prototype ceramic multilayer capacitor for manufacturing the ceramic multilayer capacitor shown in FIG.

【図4】50層の誘電体層のすべてをマグネシウムニオ
ブ酸鉛を成分とする層とした図3に示すセラミック積層
コンデンサの容量温度依存性測定結果である。
FIG. 4 is a measurement result of the capacitance temperature dependency of the ceramic multilayer capacitor shown in FIG. 3 in which all 50 dielectric layers are layers containing lead magnesium niobate as a component.

【図5】50層の誘電体層のすべてをマグネシウムニオ
ブ酸鉛にチタン酸鉛が6モル分率含有した複合ペロブス
カイトを成分とする層とした図3に示すセラミック積層
コンデンサの容量温度依存性測定結果である。
FIG. 5: Measurement of the capacitance-temperature dependence of the ceramic multilayer capacitor shown in FIG. 3 in which all 50 dielectric layers were layers containing a composite perovskite containing lead magnesium titanate and lead titanate in a 6 mole fraction The result.

【図6】50層の誘電体層のすべてをマグネシウムニオ
ブ酸鉛にチタン酸鉛が17モル分率含有した複合ペロブ
スカイトを成分とする層とした図3に示すセラミック積
層コンデンサの容量温度依存性測定結果である。
FIG. 6 is a measurement of the capacitance-temperature dependence of the ceramic multilayer capacitor shown in FIG. 3, in which all 50 dielectric layers are layers containing a composite perovskite containing lead magnesium titanate and lead titanate in a mole fraction of 17 The result.

【図7】従来のセラミック積層コンデンサの模式図であ
る。
FIG. 7 is a schematic view of a conventional ceramic multilayer capacitor.

【図8】マグネシウムニオブ酸鉛の複合ペロブスカイト
の誘電率温度特性である。
FIG. 8 is a dielectric constant temperature characteristic of a composite perovskite of lead magnesium niobate.

【符号の説明】[Explanation of symbols]

1 セラミック誘電体 2 内部電極層 3 外部電極 1 Ceramic dielectric 2 Internal electrode layer 3 external electrodes

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 各層で互いに異なる構成成分を有するセ
ラミック誘電体層を積層したことを特徴とするセラミッ
ク積層コンデンサ。
1. A ceramic multilayer capacitor in which ceramic dielectric layers having constituent components different from each other are laminated in each layer.
【請求項2】 各層で最高誘電率となる温度が互いに異
なるセラミック誘電体層を積層した請求項1記載のセラ
ミック積層コンデンサ。
2. The ceramic multilayer capacitor according to claim 1, wherein ceramic dielectric layers having different maximum dielectric constant temperatures are laminated in each layer.
【請求項3】 最高誘電率となる温度が、コンデンサ使
用温度範囲内で均等になるように何種類かの材料を選
び、更に各材料の積層数を最高誘電率となる温度での誘
電率の逆数に比例した数にした請求項2記載のセラミッ
ク積層コンデンサ。
3. Several kinds of materials are selected so that the temperature at which the maximum permittivity is constant becomes uniform within the temperature range of use of the capacitor, and the number of laminated layers of each material is defined as the maximum permittivity. The ceramic multilayer capacitor according to claim 2, wherein the number is proportional to the reciprocal number.
【請求項4】 各層で互いに異なる構成成分を有するセ
ラミック誘電体層を積層したことを特徴とする請求項1
記載のセラミック積層コンデンサにおいて、各セラミッ
ク誘電体層で互いにチタン酸鉛含有量が異なるマグネシ
ウムニオブ酸鉛とチタン酸鉛の複合ペロブスカイトを積
層したことを特徴とするセラミック積層コンデンサ。
4. A ceramic dielectric layer having different constituents from each other is laminated in each layer.
2. The ceramic multilayer capacitor according to claim 1, wherein composite perovskites of lead magnesium niobate and lead titanate having different lead titanate contents are laminated in each ceramic dielectric layer.
【請求項5】 各セラミック誘電体層のチタン酸鉛の含
有量が0から20モル分率である請求項4記載のセラミ
ック積層コンデンサ。
5. The ceramic multilayer capacitor according to claim 4, wherein the content of lead titanate in each ceramic dielectric layer is 0 to 20 mole fraction.
JP21427191A 1991-07-31 1991-07-31 Ceramic multilayer capacitor Withdrawn JPH0536562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21427191A JPH0536562A (en) 1991-07-31 1991-07-31 Ceramic multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21427191A JPH0536562A (en) 1991-07-31 1991-07-31 Ceramic multilayer capacitor

Publications (1)

Publication Number Publication Date
JPH0536562A true JPH0536562A (en) 1993-02-12

Family

ID=16652970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21427191A Withdrawn JPH0536562A (en) 1991-07-31 1991-07-31 Ceramic multilayer capacitor

Country Status (1)

Country Link
JP (1) JPH0536562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664548A3 (en) * 1994-01-22 1996-01-31 Oxley Dev Co Ltd Fabrication of capacitors and electrostrictive devices.
EP0841671A2 (en) * 1996-11-09 1998-05-13 Oxley Developments Company Limited Electronic components incorporating capacitors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664548A3 (en) * 1994-01-22 1996-01-31 Oxley Dev Co Ltd Fabrication of capacitors and electrostrictive devices.
EP0841671A2 (en) * 1996-11-09 1998-05-13 Oxley Developments Company Limited Electronic components incorporating capacitors
EP0841671A3 (en) * 1996-11-09 2005-08-10 Oxley Developments Company Limited Electronic components incorporating capacitors

Similar Documents

Publication Publication Date Title
JP2010258482A (en) Electrical device with negative temperature coefficient
US5592134A (en) EMI filter with a ceramic material having a chemical reaction inhibiting component
US4931901A (en) Method for adjusting capacitor at manufacture and product
KR100339306B1 (en) Laminated Ceramic Capacitor And Method For Manufacturing The Same
JPH0536562A (en) Ceramic multilayer capacitor
US4628404A (en) Dielectric composition and laminated capacitor
EP0841671A2 (en) Electronic components incorporating capacitors
JPH0244609A (en) Dielectric porcelain composition
US20040246656A1 (en) Electroceramic component, multi-layer capacitor and method for production of the multi-layer capacitor
KR20030083009A (en) Ceramic capacitor and method of manufacturing the same
JPH06333781A (en) Cr composite component
JPS6366412B2 (en)
US4873612A (en) Temperature stable multilayer capacitor
JPS6341205B2 (en)
JP2004508704A (en) Capacitor with silver niobium tantalate dielectric ceramic layer
KR20000070662A (en) Dielectric ceramic composition
US20220158587A1 (en) System and Method for Mixing Radiofrequency Signals
KR200330077Y1 (en) Multilayer Ceramic Chip components
JP2002037667A (en) Dielectric ceramic composition
JPS6234707B2 (en)
JPH07297071A (en) Multilayered grain boundary insulated semiconductor ceramic capacitor
KR900004567B1 (en) Dielectric composition of ceramic capacitor
JP3078378B2 (en) Porcelain capacitors
EP0664548A2 (en) Fabrication of capacitors and electrostrictive devices
JPS5968915A (en) Laminated condenser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008