JPH053638U - Oil-impregnated bearing - Google Patents

Oil-impregnated bearing

Info

Publication number
JPH053638U
JPH053638U JP5124191U JP5124191U JPH053638U JP H053638 U JPH053638 U JP H053638U JP 5124191 U JP5124191 U JP 5124191U JP 5124191 U JP5124191 U JP 5124191U JP H053638 U JPH053638 U JP H053638U
Authority
JP
Japan
Prior art keywords
oil
bearing
load
rotating shaft
impregnated bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5124191U
Other languages
Japanese (ja)
Other versions
JP2514042Y2 (en
Inventor
猛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP1991051241U priority Critical patent/JP2514042Y2/en
Publication of JPH053638U publication Critical patent/JPH053638U/en
Application granted granted Critical
Publication of JP2514042Y2 publication Critical patent/JP2514042Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • General Details Of Gearings (AREA)

Abstract

(57)【要約】 【目的】 偏荷重を受ける回転軸用の含油軸受におい
て、偏って接触される軸受面に配置する非多孔質部の位
置決めを簡単に行えるようにする。 【構成】 回転軸に偏荷重を与える駆動あるいは伝動手
段の設計条件より回転軸の荷重作用方向を算出し、求め
られた回転軸の荷重作用方向と対向する上記含油軸受の
軸受面に非多孔質部を位置決めして配置する。例えば、
含油軸受がウォーム減速機により偏荷重を受ける回転軸
を支承するものである時、ウォームギヤの歯直角圧力α
n、進み角λ0、 ウォームギヤとウォームホィールとの摩
擦係数μgより、下式により上記回転軸の偏荷重作用方
向θを算出する。 θ=tan-1〔(cosαn sinλ0+μg cosλ0)/sinαn
(57) [Abstract] [Purpose] In an oil-impregnated bearing for a rotating shaft subjected to an unbalanced load, a non-porous portion arranged on a bearing surface that is unevenly contacted can be easily positioned. [Structure] The load acting direction of the rotary shaft is calculated from the design condition of the drive or transmission means for applying an unbalanced load to the rotary shaft, and the bearing surface of the oil-impregnated bearing facing the calculated load acting direction of the rotary shaft is non-porous. Position and position the parts. For example,
When the oil-impregnated bearing supports the rotating shaft that receives an eccentric load from the worm reducer, the worm gear tooth normal pressure α
From the n, the lead angle λ 0 , and the friction coefficient μg between the worm gear and the worm wheel, the offset load acting direction θ of the rotary shaft is calculated by the following formula. θ = tan -1 [(cosαn sinλ 0 + μg cosλ 0 ) / sinαn
]

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、非多孔質部を備えた含油軸受(オイレスメタル)に関し、 軸受への給 油が困難である自動車用小型モータ等において、 特に、 回転軸と軸受との接触位 置が特定方向に偏る状態で使用されるモータに好適に使用されるもので、 上記特 定の接触位置に配置する非多孔質部の位置設定を容易とするものである。   The present invention relates to an oil-impregnated bearing (OILES metal) having a non-porous portion, In small motors for automobiles where oil is difficult, especially the contact position between the rotating shaft and the bearing It is suitable for use in motors where the device is biased in a specific direction. This makes it easy to set the position of the non-porous portion arranged at a fixed contact position.

【0002】[0002]

【従来の技術】[Prior art]

従来、ワイパーモータ等の自動車用小型モータで、モータ出力軸にウォームギ ヤを一体に形成し或は連結し、ウォームホィールと噛み合わせて回転力を伝達し ている場合、一体としてモータ出力軸あるいはウォームギヤ軸の荷重方向が特定 方向に偏り、 これら軸と軸受との間の接触位置が特定方向に偏る状態で使用され る。このような、モータにおいて、高い出力が要求される時、軸受荷重が高くな るため、一般に耐軸受荷重が高いボールベアリングが使用されている。   Conventionally, small motors for automobiles such as wiper motors have a worm gear on the motor output shaft. The ears are integrally formed or connected to each other and mesh with the worm wheel to transmit the rotational force. , The load direction of the motor output shaft or worm gear shaft is specified as a unit. Is used in a state in which the contact position between these shafts and bearings is biased in a specific direction. It When a high output is required in such a motor, the bearing load becomes high. Therefore, a ball bearing having a high bearing load is generally used.

【0003】 しかしながら、ボールベアリングはコスト面、騒音面等で問題があるため、や むを得ず、含油軸受からなる滑り軸受を使用していることが多いが、偏って回転 軸が圧接される接触面の摩耗が著しく、寿命が短く、耐久性の点で問題があった 。[0003]   However, ball bearings have problems in terms of cost, noise, etc. It is unavoidable that we often use sliding bearings made up of oil-impregnated bearings, but they rotate unevenly. The contact surface against which the shaft is pressed is significantly worn, has a short life, and has a problem in terms of durability. .

【0004】 上記摩耗に対する対策として、多孔率の大きいセグメント状の軸受部材を包む ようにして多孔率の小さい軸受部材を配置した構造により摩耗量を低減して寿命 を延ばす提案(特公昭35−13253号参照)がなされている。しかしながら、 この提案の軸受は形状が複雑であり、コスト面で問題があり、実用的でない欠点 を有する。[0004]   As a measure against the above wear, wrap a segment-shaped bearing member with high porosity By arranging bearing members with low porosity in this way, wear is reduced and life is reduced. Has been proposed (see Japanese Examined Patent Publication No. 35-13253). However, The proposed bearing has a complicated shape, is costly, and is not practical. Have.

【0005】 上記した従来の欠点を解決するものとして、本出願人は先に特願平2−173 816号で軸との接触が偏る特定の摺動接触面に非多孔質部を配置する含油軸受 けを提案している。この非多孔質部を備えた含油軸受では、軸が回転している時 、非多孔質部の配置領域では、潤滑油が軸と軸受の間で密封保持され、高圧とな り、高い軸受荷重を受けることができ、よって、摩耗量の減少および良好な潤滑 が保持できる利点がある。[0005]   As a solution to the above-mentioned conventional drawbacks, the present applicant has previously filed Japanese Patent Application No. 2-173. No. 816 oil-impregnated bearing in which a non-porous portion is arranged on a specific sliding contact surface with uneven contact with the shaft I am proposing With oil-impregnated bearings equipped with this non-porous part, when the shaft is rotating, In the area where the non-porous portion is arranged, the lubricating oil is hermetically held between the shaft and the bearing, and the high pressure is maintained. Bearing, it can withstand high bearing loads, thus reducing wear and providing good lubrication. Has the advantage that

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

本出願人の出願に係わる非多孔質部を備えた含油軸受は上記利点があるが、 多 孔質部を回転軸のどの位置に配置し、 軸受を取り付ける際に、 回転軸が偏って接 触する位置が丁度多孔質部に当たるように位置させることは、 実際上は困難な問 題である。 即ち、軸は回転しているので、軸受と回転軸との接点は一定とはならず、この 接点から非多孔質の配置位置を求めることは困難である。   Although the oil-impregnated bearing provided with the non-porous portion according to the applicant's application has the above advantages, When arranging the porous part on the rotating shaft and mounting the bearing, In practice, it is difficult to position the touching part so that it touches the porous part. Is the subject.   That is, since the shaft is rotating, the contact point between the bearing and the rotating shaft is not constant, It is difficult to determine the non-porous arrangement position from the contact.

【0007】 本考案は、上記した問題に鑑みてなされたもので、非多孔質部の設置位置を極 めて簡単に求められるようにし、使用時に偏荷重が負荷される位置に正確に非多 孔質部を配置し、上記した潤滑性能等の向上を図ることを目的としている。[0007]   The present invention has been made in view of the above problems, and the installation position of the non-porous portion is extremely Therefore, it is not necessary to accurately determine the position where an eccentric load is applied during use. The purpose is to arrange a porous portion to improve the above-mentioned lubrication performance and the like.

【0008】 即ち、本考案は、偏荷重を受ける回転軸を支承する含油軸受において、回転軸 に偏荷重を与える駆動あるいは伝動手段の設計条件より回転軸の荷重方向を算出 し、求められた回転軸の荷重方向と対向する上記含油軸受の軸受面に非多孔質部 を位置決めして配置しているとを特徴とする含油軸受を提供するものである。[0008]   That is, the present invention relates to an oil-impregnated bearing that supports a rotating shaft that receives an unbalanced load. Calculate the load direction of the rotating shaft from the design conditions of the drive or transmission means that apply an unbalanced load to the Then, the non-porous portion is formed on the bearing surface of the oil-impregnated bearing facing the determined load direction of the rotating shaft. The invention provides an oil-impregnated bearing characterized by locating and arranging.

【0009】 即ち、回転軸の偏荷重の作用方向を、回転軸の回転速度、負荷条件等の使用条 件および軸受の設置位置等の使用条件によって変わるものに影響されずに、回転 軸と一体に回転して回転軸に偏荷重を与える伝動手段あるいは駆動手段の設計条 件からなる定格条件より算出するようにしている。さらに、好ましくは、潤滑条 件を加えて求めるようにしている。[0009]   That is, the action direction of the unbalanced load on the rotating shaft is determined by the usage conditions such as the rotating speed of the rotating shaft and the load condition. Rotation without being affected by conditions and bearing conditions such as bearing installation position Design rules for transmission means or drive means that rotate integrally with the shaft and apply an unbalanced load to the rotating shaft It is calculated from the rated conditions that consist of cases. Further, preferably, a lubricating strip I'm trying to add more cases.

【0010】 具体的には、上記含油軸受が、ウォームホイールと噛み合わせるウォームギヤ と一体に回転する軸を支承する場合、ウォームギヤの歯直角圧力αn、進み角λ0、 ウォームギヤとウォームホィールとの摩擦係数μgより、下式により上記ウォ ーム軸の荷重方向θを算出している。 θ= tan-1〔(cosαn sinλ0+μg cosλ0)/sinαn 〕Specifically, when the oil-impregnated bearing supports a shaft that rotates integrally with a worm gear that meshes with a worm wheel, the tooth orthogonal pressure αn of the worm gear, the lead angle λ 0 , and the friction coefficient between the worm gear and the worm wheel. The load direction θ of the worm shaft is calculated from μg by the following formula. θ = tan -1 [(cosαn sinλ 0 + μg cosλ 0 ) / sinαn]

【0011】[0011]

【作用】[Action]

本考案では、上記のように、回転軸に偏荷重を与える伝動手段あるいは駆動手 段の設計条件より偏荷重の作用方向を算出しているため、正確に非多孔質部を偏 荷重を受ける軸受面に位置決めすることが出来る。よって、非多孔質部を設置し た事による潤滑性能の向上を確実に図ることが出来る。   According to the present invention, as described above, the transmission means or the driving means for imparting an eccentric load to the rotating shaft is used. Since the action direction of the eccentric load is calculated from the stage design conditions, the non-porous part can be accurately It can be positioned on the bearing surface that receives the load. Therefore, install a non-porous part It is possible to surely improve the lubrication performance due to

【0012】[0012]

【実施例】【Example】

以下、本考案を図面に示す実施例により詳細に説明する。 図1は本考案に係わる含油軸受1を自動車のワイパーモータ2のモータ出力軸 3を支承するために設置した実施例を示している。 上記モータ出力軸3はウォームギヤ4のシャフトと一体に形成されており、ウ ォームギヤ4がウォームホィール5と噛み合うことから、ウォームホィール5か らの荷重により矢印Z方向に押圧され、よって、含油軸受1では図中下部の摺動 接触面に偏荷重を受ける。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings.   FIG. 1 shows an oil-impregnated bearing 1 according to the present invention as a motor output shaft of a wiper motor 2 of an automobile. 3 shows an embodiment installed to support the No. 3 bearing.   The motor output shaft 3 is formed integrally with the shaft of the worm gear 4, and Since the home gear 4 meshes with the worm wheel 5, the worm wheel 5 The load is pressed in the direction of arrow Z, so that the oil-impregnated bearing 1 slides in the lower part of the figure. Unbalanced load is applied to the contact surface.

【0013】 上記含油軸受1は図2に示すように、内径調心型で、偏荷重を受ける摺動接触 面を除いて、Cu系等の焼結材からなる多孔質部6により形成し、この多孔質部 6の孔に潤滑油を浸透保持させて、含油軸受としている。 上記摺動接触面には非多孔質部7を設けている。この非多孔質部7は通常の多 孔質材を軸受加工工程の一つのサイジング時に押し当て工具を使用して目つぶし によって、多孔質材の表面より所要の厚さで成形している。尚、上記非多孔質部 7は前記した本出願人の先行出願において開示したように、ホワイトメタル等に より形成し、軸受製造時に成形金型内にこの非多孔質部を配置した後、多孔質部 用の焼結材の粉体を流し込んで成形しても良い。[0013]   As shown in FIG. 2, the oil-impregnated bearing 1 is an inner diameter aligned type, and is in sliding contact with an unbalanced load. Except for the surface, the porous portion 6 is made of a sintered material such as Cu-based material. Lubricating oil is permeated and retained in the hole 6 to form an oil-impregnated bearing.   A non-porous portion 7 is provided on the sliding contact surface. This non-porous portion 7 is usually The porous material is crushed using a pressing tool when sizing one of the bearing processing steps. In this way, the porous material is molded to a required thickness from the surface. The above non-porous portion 7 is a white metal or the like as disclosed in the above-mentioned prior application of the applicant. And then place this non-porous part in the molding die when manufacturing the bearing Alternatively, a powder of a sintered material for use may be poured and molded.

【0014】 本考案の特徴は、上記非多孔質部7の配置位置を特定することにあり、この非 多孔質部6の位置決めを、上記図1を概略的に示した図3を参照して説明する。 図3において、1A,1Bはウォームギヤ軸と一体のモータ出力軸、即ち、回 転軸3(軸線のみ図示している)の両側を支持する軸受であり、回転軸3にはアー マチャ10が固定されている。回転軸3の先端には前記したようにウォームギヤ 4が固定され、ウォームギヤ4をウォームホィール5と噛み合わせている。[0014]   The feature of the present invention resides in that the arrangement position of the non-porous portion 7 is specified. Positioning of the porous portion 6 will be described with reference to FIG. 3 which is a schematic view of FIG.   In FIG. 3, 1A and 1B are motor output shafts integrated with the worm gear shaft, that is, rotations. It is a bearing that supports both sides of the rolling shaft 3 (only the axis is shown). The maca 10 is fixed. As described above, the worm gear is attached to the tip of the rotary shaft 3. 4 is fixed, and the worm gear 4 is meshed with the worm wheel 5.

【0015】 上記回転軸3が図中矢印Xで示すように右方向へ回転した場合、ウォームホィ ール5によりウォームギヤ4はPtおよびPgの反力を受ける。 この時、 軸受1A は上記PtとPgとよりFt及びFgの力を受け、 その結果、 合力はFxとなる。 よ って、 図4に示すように、軸受A1が回転軸3より受ける荷重の作用方向はFg から角度θ右方向に回転した位置に求められる。[0015]   When the rotary shaft 3 rotates to the right as shown by the arrow X in the figure, the worm wheel The worm gear 4 receives the reaction force of Pt and Pg by the roll 5. At this time, bearing 1A Receives the force of Ft and Fg from the above Pt and Pg, and as a result, the total force becomes Fx. Yo Therefore, as shown in FIG. 4, the acting direction of the load that the bearing A1 receives from the rotating shaft 3 is Fg. From the angle θ to the right.

【0016】 上記角度θは、各寸法を与える以下の式より算出できる。 即ち、軸受1Aと1Bの間の距離 ・・・Lo、 軸受1Bとウォームギヤ4の距離・・・L1 回転軸3の回転力 ・・・T ウォームギヤ4のピッチ半径 ・・・r ウォームギヤ4の歯直角圧力 ・・・αn ウォームギヤ4の進み角 ・・・λ0 ウォームギヤ4とウォームホィール5との摩擦係数・・・μg ウォームギヤ4の歯直角方向に加わる法線方向の反力・・・Pn とすると、 Ft=Pt×L0/L1=T/r×L0/L1 (1)式 Fg=Pg×L0/L1 (2)式 Pg=Pn sinαn (3)式 Pn=Pt/(cosαn sinλ0+μg cosλ0) (4)式 上記(3)式に(4)式を代入すると、 Pg=Pt sinαn/(cosαn sinλ0+μg cosλ0) (5)式 が得られる。 上記(5)式を(2)式に代入すると、 Fg=Pt sinα×(L0/L1)/(cosαn sinλ0+μg cosλ0) (6)式 が得られる。 さらに、 上記荷重作用方向の角度θは、 tanθ=Ft/Fg (7)式 であるため、 θ=tan-1(Fr/Fg) (8)式 で算出できる。 上記(8)式に(1)式と(6)式とを代入して整理すると、 θ=tan-1〔(cosαn sinλ0+μg cosλ0/sinαn)〕 (9)式 が得られる。[0016]   The angle θ can be calculated by the following equations that give each dimension.   That is, the distance between the bearings 1A and 1B ... Lo,         Distance between bearing 1B and worm gear 4 ... L1         Rotational force of rotating shaft 3 ... T         Worm gear 4 pitch radius ・ ・ ・ r         Orthogonal pressure of worm gear 4 ・ ・ ・ αn         Lead angle of worm gear 4 ... λ0         Friction coefficient between worm gear 4 and worm wheel 5 μg         Reaction force in the normal direction applied in the direction perpendicular to the teeth of the worm gear 4 ... Pn Then,   Ft = Pt × L0/ L1= T / r × L0/ L1                        (1 set   Fg = Pg × L0/ L1                                         Equation (2)   Pg = Pn sin αn Equation (3)   Pn = Pt / (cosαn sinλ0+ μg cos λ0) Equation (4)   Substituting equation (4) into equation (3) above,   Pg = Pt sinαn / (cosαn sinλ0+ μg cos λ0) Equation (5) Is obtained. Substituting equation (5) into equation (2),   Fg = Pt sin α × (L0/ L1) / (Cosαn sinλ0+ μg cos λ0) Equation (6) Is obtained.   Furthermore, the angle θ of the load acting direction is   tan θ = Ft / Fg Equation (7) Because   θ = tan-1(Fr / Fg) Equation (8) Can be calculated by Substituting equations (1) and (6) into equation (8) above and rearranging,   θ = tan-1((Cos α n sin λ0+ μg cos λ0/ Sinαn)] Equation (9) Is obtained.

【0017】 上記のように、ウォームギヤ4の設計条件である歯直角圧力αn、進み角λoお よびウォームギヤ4とウォームホィール5との摩擦係数μgが与えられると、荷 重作用方向θを算出することが出来る。即ち、ウォームギヤ4とウォームホィー ル5との設計条件より算出して一義的に求めることができる。言い替えると、回 転軸3の使用条件、例えば、回転速度、負荷の大きさに影響されることがなく、 また、軸受1Aと1Bの間の距離や軸受とウォームギヤとの間の距離等の軸受位 置にも影響されない。[0017]   As described above, the tooth orthogonal pressure αn, the lead angle λo, and the lead angle λo, which are the design conditions of the worm gear 4, are set. And the friction coefficient μg between the worm gear 4 and the worm wheel 5 is given, The heavy action direction θ can be calculated. That is, worm gear 4 and worm wheel It can be uniquely obtained by calculating it from the design condition with the rule 5. In other words, times Without being affected by the usage conditions of the rolling shaft 3, for example, the rotation speed and the magnitude of the load, In addition, the bearing position such as the distance between the bearings 1A and 1B and the distance between the bearings and the worm gear. It is not affected by the location.

【0018】 上記のようにウォームギヤ4およびウォームホィール5の設計条件から荷重作 用方向θを求めた後、この作用方向θに対向する位置の軸受の摺動接触面に非多 孔質部7の中心位置を配置するようにしている。[0018]   From the design conditions of the worm gear 4 and worm wheel 5 as described above, After determining the application direction θ, the sliding contact surface of the bearing at the position opposite to this acting direction θ The central position of the porous portion 7 is arranged.

【0019】 例えば、上記(9)式に具体的寸法の一例を入れて計算すると、θ=32°が得 られた。この角度に基づいて図5に示すように、右回りであるため、上記32° の近傍より右回転方向に所要の領域で非多孔質部7を軸受1Aの摺動接触面に配 置した。[0019]   For example, if we put an example of concrete dimensions in the above equation (9) and calculate, θ = 32 ° is obtained. Was given. Based on this angle, as shown in FIG. 5, since it is clockwise, the above 32 ° The non-porous portion 7 is arranged on the sliding contact surface of the bearing 1A in the required region in the right rotation direction from the vicinity of I put it.

【0020】 上記構成の軸受1を図1に示す装置に使用し、この時の摩擦係数を測定した。 その結果は図6に示す通りであり、図示のように摩擦係数は30°で最も低くな り、(9)式で算出したθを予測位置として採用することが出来ることが確認され た。[0020]   The bearing 1 having the above structure was used in the apparatus shown in FIG. 1 and the friction coefficient at this time was measured. The result is shown in Fig. 6, and the friction coefficient is the lowest at 30 ° as shown. It was confirmed that θ calculated by equation (9) can be used as the predicted position. It was

【0021】 上記したように、荷重作用方向に摺動接触面に非多孔質部7を配置した軸受1 を使用した場合、前記した先行出願に開示した作動的特徴を得ることが出来る。 即ち、回転軸3が荷重により非多孔質部7に圧接して摺動すると、非多孔質部 7の温度が上昇し、ついで、非多孔質部7の周辺の多孔質部6の温度が上昇する 。この加熱により多孔質部6の内部に浸透している潤滑油がにじみ出て、非多孔 質部7の摺動接触面にポンプ作用により流入する。この非多孔質部7の表面の潤 滑油は軸と回転軸3との間で保持され、高圧となり、軸受荷重を受けることが出 来、理想的な流体潤滑が実現出来る。[0021]   As described above, the bearing 1 in which the non-porous portion 7 is arranged on the sliding contact surface in the load acting direction Is used, the operational characteristics disclosed in the above-mentioned prior application can be obtained.   That is, when the rotating shaft 3 is pressed against the non-porous portion 7 by the load and slides, the non-porous portion 7 7, the temperature of the porous portion 6 around the non-porous portion 7 rises. . This heating causes the lubricating oil that has permeated the inside of the porous portion 6 to ooze out and It flows into the sliding contact surface of the quality part 7 by the pump action. Wetting of the surface of this non-porous portion 7 The lubricating oil is retained between the shaft and the rotating shaft 3, becomes high pressure, and bears the bearing load. Now, ideal fluid lubrication can be realized.

【0022】 尚、上記図3および図4の説明においては、回転軸3が右方向に回転する場合 を説明したが、回転軸3が左方向に回転する場合についても、ウォームギヤとウ ォームホィールの設計条件から荷重作用方向を求めることが出来ることは言うま でもない。 また、回転軸3に対して偏って荷重を与える手段は上記ウォーム減速機に限定 されず、各種の駆動手段あるいは伝動手段がふくまれる。これら駆動手段あるい は伝動手段により回転軸に偏荷重を与えている場合には、上記駆動手段あるいは 伝動手段の設計条件より荷重作用方向を求められ、求めれらた荷重方向と対応す る軸受の摺動接触面に非多孔質部が配置される。[0022]   In the description of FIGS. 3 and 4, when the rotary shaft 3 rotates to the right. However, even when the rotating shaft 3 rotates to the left, It goes without saying that the load acting direction can be obtained from the design conditions of the home wheel. not.   Further, the means for applying the load to the rotating shaft 3 in a biased manner is limited to the worm speed reducer. However, various driving means or transmission means are included. These drive means If the transmission means applies an eccentric load to the rotary shaft, The load acting direction can be obtained from the design conditions of the transmission means, and it corresponds to the obtained load direction. The non-porous portion is arranged on the sliding contact surface of the bearing.

【0023】[0023]

【考案の効果】[Effect of device]

以上の説明より明らかなように、本考案では、回転軸が偏って圧接する摺動接 触面に非多孔質部を配置するようにした含油軸受において、その非多孔質部の位 置を、回転軸に荷重を与えるウォーム減速機等の伝動手段あるいは駆動手段の設 計条件のみより算出して設定しているため、非多孔質部の設置位置を正確かつ容 易に位置決めすることが出来る。   As is clear from the above description, in the present invention, the sliding contact in which the rotating shaft is biased in pressure contact In oil-impregnated bearings in which the non-porous portion is arranged on the contact surface, the position of the non-porous portion Device, such as a worm reducer that applies a load to the rotating shaft, Since it is calculated and set only from the measurement conditions, the installation position of the non-porous part can be accurately and accurately set. It can be easily positioned.

【0024】 また、上記のように、回転軸が圧接する位置に非多孔質部を正確に配置できる と、非多孔質部を配置することによる潤滑性能の向上および耐久性の向上等を図 ることが出来る利点を有する。[0024]   Further, as described above, the non-porous portion can be accurately arranged at the position where the rotating shaft is in pressure contact. And by arranging the non-porous part, it is possible to improve lubrication performance and durability. It has the advantage that

【図面の簡単な説明】[Brief description of drawings]

【図1】 本考案の軸受を使用したウォーム減速機付き
のモータの断面図である。
FIG. 1 is a sectional view of a motor with a worm reducer using the bearing of the present invention.

【図2】 図1に示す軸受の拡大断面図である。FIG. 2 is an enlarged sectional view of the bearing shown in FIG.

【図3】 本考案に係わる非多孔質面の設置位置を求め
るための計算方法を説明するための概略図である。
FIG. 3 is a schematic diagram for explaining a calculation method for obtaining an installation position of a non-porous surface according to the present invention.

【図4】 図3における軸受に作用する荷重の作用方向
を示す概略図である。
FIG. 4 is a schematic view showing an action direction of a load acting on the bearing in FIG.

【図5】 図3により算出した非多孔質部の配置位置を
示す説明図である。
FIG. 5 is an explanatory diagram showing the arrangement position of the non-porous portion calculated in FIG.

【図6】 本考案に係わる軸受の摩耗係数を測定した実
験結果を示す線図である。
FIG. 6 is a diagram showing an experimental result of measuring a wear coefficient of a bearing according to the present invention.

【符号の説明】[Explanation of symbols]

1(1A,1B) 含油軸受 3 回転軸 4 ウォームギヤ 5 ウォームホィール 6 多孔質部 7 非多孔質部 1 (1A, 1B) oil-impregnated bearing 3 rotation axes 4 Worm gear 5 warm wheels 6 Porous part 7 Non-porous part

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 偏荷重を受ける回転軸を支承する含油軸
受であって、上記回転軸に偏荷重を与える駆動あるいは
伝動手段の設計条件より回転軸の荷重作用方向を算出
し、求められた回転軸の荷重作用方向と対向する上記含
油軸受の軸受面に非多孔質部の中心位置を位置決めして
配置していることを特徴とする含油軸受。
1. An oil-impregnated bearing that supports a rotating shaft that receives an unbalanced load, wherein the load acting direction of the rotating shaft is calculated from the design condition of the drive or transmission means that applies the unbalanced load to the rotating shaft, and the obtained rotation is obtained. An oil-impregnated bearing characterized in that the center position of the non-porous portion is positioned and arranged on the bearing surface of the oil-impregnated bearing facing the load acting direction of the shaft.
【請求項2】 上記含油軸受は、ウォームギヤのシャフ
トを支承するもので、 ウォームギヤの歯直角圧力αn、進み角λ0、 ウォームギ
ヤとウォームホィールとの摩擦係数μgより、下式によ
り上記回転軸の偏荷重作用方向θを算出していることを
特徴とする請求項1記載の含油軸受。 θ=tan-1〔(cosαn sinλ0+μg cosλ0)/sinαn
Wherein said oil-impregnated bearing is intended for supporting the shaft of the worm gear, the tooth perpendicular pressure αn of the worm gear, lead angle lambda 0, than the friction coefficient μg of the worm gear and the worm wheel, the polarization of the rotating shaft by the following formula The oil-impregnated bearing according to claim 1, wherein a load acting direction θ is calculated. θ = tan -1 [(cosαn sinλ 0 + μg cosλ 0 ) / sinαn
]
JP1991051241U 1991-07-03 1991-07-03 Oil-impregnated bearing Expired - Lifetime JP2514042Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991051241U JP2514042Y2 (en) 1991-07-03 1991-07-03 Oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991051241U JP2514042Y2 (en) 1991-07-03 1991-07-03 Oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JPH053638U true JPH053638U (en) 1993-01-19
JP2514042Y2 JP2514042Y2 (en) 1996-10-16

Family

ID=12881454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991051241U Expired - Lifetime JP2514042Y2 (en) 1991-07-03 1991-07-03 Oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP2514042Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122142A (en) * 2000-08-09 2002-04-26 Mitsubishi Materials Corp Oil-impregnated sintered bearing, manufacturing method thereof, and motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122142A (en) * 2000-08-09 2002-04-26 Mitsubishi Materials Corp Oil-impregnated sintered bearing, manufacturing method thereof, and motor
JP4522619B2 (en) * 2000-08-09 2010-08-11 株式会社ダイヤメット Sintered oil-impregnated bearing, manufacturing method thereof and motor

Also Published As

Publication number Publication date
JP2514042Y2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
US6177742B1 (en) Electric drive unit with a bush having different diameters
WO2012173133A1 (en) Method for producing wheel bearing device
JP2000170774A (en) Conical roller bearing and gear shaft support device for vehicle
JPH053638U (en) Oil-impregnated bearing
JP2007530878A (en) Rolling bearing with eccentric outer race
JPH0996352A (en) Pinion shaft supporting tapered roller bearing for differential gear
EP1367275A1 (en) Tapered roller bearing
JP5361578B2 (en) Bearing device for rotating electric machine for railway vehicle
EP3913245B1 (en) Method for diagnosing rolling device
US20170131161A1 (en) Drive unit, method and device for determining a torque
JP2001280347A (en) Ball bearing
JP4067751B2 (en) Clamping method of wheel bearing device
JP4082000B2 (en) Manufacturing method and manufacturing apparatus for rolling bearing unit for supporting wheel
JP2003314542A (en) Tapered roller bearing
JP2685333B2 (en) Oil-impregnated bearing
JP2966040B2 (en) Centrifugal load bearing tester
JP2001116052A (en) Synthetic resin gear
JP2021095965A (en) Planetary roller type friction transmission gear
JP3646941B2 (en) Bearing device and generator including the same
CN218235991U (en) Precision worm gear speed reducer for die casting equipment
JPH0635666U (en) Bearing with sensor
JPH01232236A (en) Bearing run testing machine
JP2005003105A (en) Ball bearing and motor
JPH0148190B2 (en)
JPH054747U (en) Bearing box structure of rotary electric machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514