JPH0536016A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH0536016A
JPH0536016A JP18736791A JP18736791A JPH0536016A JP H0536016 A JPH0536016 A JP H0536016A JP 18736791 A JP18736791 A JP 18736791A JP 18736791 A JP18736791 A JP 18736791A JP H0536016 A JPH0536016 A JP H0536016A
Authority
JP
Japan
Prior art keywords
magnetic
film
gap
magnetic head
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18736791A
Other languages
Japanese (ja)
Inventor
Osamu Watanabe
修 渡辺
Kiyohiro Uemura
清広 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18736791A priority Critical patent/JPH0536016A/en
Publication of JPH0536016A publication Critical patent/JPH0536016A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a pseudo gap and to enhance the joint strength of a gap of the magnetic head of a metal-in type formed with magnetic metallic films of a high saturation magnetic flux density on the opposite surfaces of a pair of magnetic cores used for a magnetic recording and reproducing device. CONSTITUTION:A nitride film 4 consisting of aluminum nitride or silicon nitride, etc., is formed on the magnetic metallic film 3s formed on the opposite surfaces of a pair of the magnetic cores 1, 2. The nitride film 4 acts as an antireaction film in common use as a magnetic gap and can prevent the interreaction and diffusion of the magnetic metallic films 3 and adhering glass 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録再生装置に用
いる一対の磁気コアの突き合わせ面に飽和磁束密度の高
い金属磁性膜を形成したメタルインギャップ(Meta
l in Gap,以下MIGという)型の磁気ヘッド
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal in-gap (Meta) in which a magnetic metal film having a high saturation magnetic flux density is formed on the abutting surfaces of a pair of magnetic cores used in a magnetic recording / reproducing apparatus.
l in Gap (hereinafter referred to as MIG) type magnetic head.

【0002】[0002]

【従来の技術】近年磁気記憶装置の高密度化にともな
い、高保磁力を有する薄膜媒体の実用化が進められてい
る。このため従来のフェライトヘッドでは対応が困難に
なり、ギャップ対向面に飽和磁束密度の高いFe−Al
−Si合金等の金属磁性膜を設けたMIG型の磁気ヘッ
ドの実用化が進んでいる。
2. Description of the Related Art In recent years, with the increasing density of magnetic storage devices, the practical use of thin film media having high coercive force has been advanced. For this reason, it is difficult for the conventional ferrite head to deal with it, and Fe-Al having a high saturation magnetic flux density is formed on the gap facing surface.
Practical application of MIG type magnetic heads provided with a metal magnetic film such as -Si alloy is progressing.

【0003】以下に従来のMIG型の磁気ヘッドについ
て説明する。図12および図13に示すようにスライダ
ーを主とする磁気コア1と巻線部を主とする磁気コア2
がSiO2等の非金属酸化物製の磁気ギャップ7を挟ん
で磁気回路を構成している。磁気コア1に対向する磁気
コア2の面にFe−Al−Si系合金などの金属磁性膜
3が配設され、磁気コア1と磁気コア2は接着ガラス6
で接合されている。
A conventional MIG type magnetic head will be described below. As shown in FIGS. 12 and 13, a magnetic core 1 mainly composed of a slider and a magnetic core 2 mainly composed of a winding portion.
Form a magnetic circuit with a magnetic gap 7 made of non-metal oxide such as SiO 2 sandwiched therebetween. On the surface of the magnetic core 2 facing the magnetic core 1, a metallic magnetic film 3 of Fe—Al—Si alloy or the like is provided, and the magnetic core 1 and the magnetic core 2 are bonded to each other by an adhesive glass 6
Are joined together.

【0004】上記の構成では、磁気コア2と金属磁性膜
3の界面に軟磁気特性の劣化した層が形成され、疑似ギ
ャップの原因となり、高密度化の際の大きな障壁となっ
ている。この疑似ギャップを回避する方法として種々の
方法が提案されているが、基本的には金属磁性膜3と磁
気コア2の材料の拡散を防止し、金属磁性膜3と磁気コ
ア2の界面の軟磁気特性を劣化させない対策がとられて
いる。
In the above structure, a layer having deteriorated soft magnetic characteristics is formed at the interface between the magnetic core 2 and the metal magnetic film 3, which causes a pseudo gap and is a large barrier in increasing the density. Various methods have been proposed as a method for avoiding this pseudo gap. However, basically, the material of the metal magnetic film 3 and the magnetic core 2 is prevented from diffusing, and the interface between the metal magnetic film 3 and the magnetic core 2 is softened. Measures are taken to prevent deterioration of magnetic characteristics.

【0005】MIG型の磁気ヘッドでは、日本応用磁気
学会誌、13,89−94(1989)に述べられてい
るように金属磁性膜と磁気コアの界面に拡散防止層を設
けたり、ギャップの形成温度を下げる等の検討が行われ
ている。現在のギャップ形成の主流となっているガラス
融着法でギャップ形成を行う場合、ギャップ形成温度の
低下にともない接着ガラス6にはPbO系の低融点ガラ
スが用いられる。
In the MIG type magnetic head, a diffusion prevention layer is provided at the interface between the metal magnetic film and the magnetic core, or a gap is formed, as described in Journal of Applied Magnetics, 13, 89-94 (1989). Studies are underway to lower the temperature. When the gap is formed by the glass fusing method which is the current mainstream of gap formation, PbO-based low melting point glass is used as the adhesive glass 6 as the gap forming temperature is lowered.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では接着ガラス6の低融点化にともないガラス
自体が脆くなり、加工工程での割れやクラックが多発
し、十分なギャップ接合強度が得られず信頼性が低くな
るという問題点、また磁気コア1と磁気コア2を接合す
る際に磁気ギャップ材であるSiO2薄膜7がPbO系
の接着ガラス6と反応して侵食されるとともに、金属磁
性膜3と接着ガラス6が反応して接着ガラス6に侵食が
生じてガラス自体の強度が低下し、磁気コア1と磁気コ
ア2の接合強度が弱くなるという問題点を有していた。
However, in the above-mentioned conventional structure, the glass itself becomes brittle as the melting point of the adhesive glass 6 is lowered, and many cracks and cracks occur in the working process, so that sufficient gap bonding strength can be obtained. The reliability of the magnetic core 1 and the magnetic core 2 is reduced, and the SiO 2 thin film 7 as a magnetic gap material reacts with the PbO-based adhesive glass 6 and is corroded when the magnetic core 1 and the magnetic core 2 are joined. There is a problem that the film 3 and the adhesive glass 6 react with each other to cause erosion of the adhesive glass 6 to reduce the strength of the glass itself and weaken the bonding strength between the magnetic core 1 and the magnetic core 2.

【0007】本発明は、上記従来の問題点を解決するも
ので、高飽和磁束密度の金属磁性膜を用いたMIG型の
磁気ヘッドにおいて、疑似ギャップが生じなくギャップ
接合強度の強い磁気ヘッドを提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems, and provides a magnetic head having a strong gap junction strength in a MIG type magnetic head using a metal magnetic film having a high saturation magnetic flux density without generating a pseudo gap. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の磁気ヘッドは、一対の磁気コアのギャップ対
向面に飽和磁束密度の高い金属磁性膜を形成したMIG
型の磁気ヘッドにおいて、金属磁性膜の上に窒化膜を形
成し、さらにその上に鉛系のガラス薄膜を形成した構成
としたものである。
In order to achieve this object, the magnetic head of the present invention is a MIG in which a metal magnetic film having a high saturation magnetic flux density is formed on the gap facing surfaces of a pair of magnetic cores.
In this type of magnetic head, a nitride film is formed on a metal magnetic film, and a lead-based glass thin film is further formed on the nitride film.

【0009】[0009]

【作用】この構成によって、金属磁性膜と磁気コアの接
合用の接着ガラスが直接接触しないこととなり、金属磁
性膜と接着ガラスが反応しないこととなる。
With this configuration, the metal magnetic film and the adhesive glass for joining the magnetic core do not come into direct contact with each other, and the metal magnetic film and the adhesive glass do not react.

【0010】[0010]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】本発明の一実施例を示す図1および図2で
は、従来例と同一部品に同一番号を付して説明は省略す
る。
In FIGS. 1 and 2 showing an embodiment of the present invention, the same parts as those of the conventional example are designated by the same reference numerals and the description thereof will be omitted.

【0012】図1および図2に示すように磁気コア1と
磁気コア2の対向面に磁気ギャップ材である窒化膜4お
よびガラス薄膜5を挟んで磁気回路を構成した磁気ヘッ
ドについて以下その製造方法を説明する。
As shown in FIGS. 1 and 2, a magnetic head in which a magnetic circuit is constructed by sandwiching a nitride film 4 and a glass thin film 5 which are magnetic gap materials on the opposing surfaces of the magnetic core 1 and the magnetic core 2 will be described below. Will be explained.

【0013】Mn−Znフェライト等の高透磁率フェラ
イト製の磁気コア2の磁気コア1に対向する面上にスパ
ッタリング法によって、Fe−Al−Si系合金の金属
磁性膜3を1〜4μmの厚みで形成する。(なお、本実
施例で示したスパッタ条件は一例であり、各種の装置や
ターゲットに適した条件を設定する必要がある。)次
に、金属磁性膜3の上に、磁気ギャップとなるAlN,
SiN,SiNO等の窒化膜4をスパッタリング法によ
り(表1)に示すスパッタ条件で、0.1〜0.2μmの
厚みになるように形成する。
A metal magnetic film 3 of Fe--Al--Si alloy having a thickness of 1 to 4 .mu.m is formed on the surface of the magnetic core 2 made of high-permeability ferrite such as Mn--Zn ferrite facing the magnetic core 1 by the sputtering method. To form. (It should be noted that the sputtering conditions shown in the present embodiment are examples, and it is necessary to set conditions suitable for various devices and targets.) Next, on the metal magnetic film 3, AlN, which will become a magnetic gap,
A nitride film 4 of SiN, SiNO or the like is formed by a sputtering method under the sputtering conditions shown in (Table 1) so as to have a thickness of 0.1 to 0.2 μm.

【0014】[0014]

【表1】 [Table 1]

【0015】さらにその上に、PbO−SiO2−B2
3等の組成の鉛系ガラスのターゲットを使用し、Ar圧
力4×10-2Torr,RF投入電力200W、基板温
度100℃の条件でスパッタリング法により、0.05
〜0.1μmの厚みになるようにガラス薄膜5を形成す
る。
On top of that, PbO-SiO 2 -B 2 O
Using a lead-based glass target having a composition such as 3 and an Ar pressure of 4 × 10 −2 Torr, an RF input power of 200 W, and a substrate temperature of 100 ° C., a sputtering method was performed to obtain 0.05.
The glass thin film 5 is formed to have a thickness of 0.1 μm.

【0016】次に、スライダーを主とする磁気コア1と
金属磁性膜3の上に磁気ギャップとなる窒化膜4および
ガラス薄膜5を形成した磁気コア2を対向させ、磁気コ
ア1と磁気コア2にわたってPbO系の低融点の接着ガ
ラス6を付着させ磁気コア1と磁気コア2を接合する。
最後に磁気コア2に巻線を施して磁気ヘッドを完成させ
る。
Next, the magnetic core 1 mainly composed of the slider and the magnetic core 2 having the nitride film 4 and the glass thin film 5 forming the magnetic gap on the metal magnetic film 3 are opposed to each other, and the magnetic core 1 and the magnetic core 2 are opposed to each other. A PbO-based low-melting-point adhesive glass 6 is adhered over this to join the magnetic core 1 and the magnetic core 2.
Finally, the magnetic core 2 is wound to complete the magnetic head.

【0017】本実施例では、磁気ギャップとなる窒化膜
4およびガラス薄膜5は、金属磁性膜3のある磁気コア
2のみに形成する構成としたが、スライダーを主とする
磁気コア1と金属磁性膜3のある磁気コア2のギャップ
形成面上に必要とする厚みの半分ずつの厚みにわけて形
成しても良い。
In the present embodiment, the nitride film 4 and the glass thin film 5 forming the magnetic gap are formed only on the magnetic core 2 having the metal magnetic film 3. However, the magnetic core 1 mainly consisting of the slider and the metal magnetic film. It may be formed on the gap forming surface of the magnetic core 2 having the film 3 so as to be divided into each half of the required thickness.

【0018】本実施例の磁気ギャップに窒化膜4を形成
した磁気ヘッドと従来例の磁気ギャップにSiO2薄膜
7を形成した磁気ヘッドについて、金属磁性膜と磁気ギ
ャップ材との界面の各構成原子の拡散状況をサンプルに
ついて、X線光電子分光分析したデータをもとに説明す
る。
With respect to the magnetic head in which the nitride film 4 is formed in the magnetic gap of this embodiment and the magnetic head in which the SiO 2 thin film 7 is formed in the magnetic gap of the conventional example, each constituent atom at the interface between the metal magnetic film and the magnetic gap material. The diffusion state of the sample will be described based on data obtained by X-ray photoelectron spectroscopy analysis of the sample.

【0019】従来例の磁気ギャップの組み合わせサンプ
ルとして、Mn−Znフェライト基板上にFe−Al−
Si系合金をスパッタリング法により厚み3.5μmに
形成し、その上にSiO2を厚み0.1μm形成したもの
を第1のサンプルとし、この第1のサンプルについて5
50℃の熱処理を行ったものを第2のサンプルとした。
本発明の実施例の磁気ギャップの組合せサンプルとし
て、Mn−Znフェライト基板上に、Fe−Al−Si
系合金をスパッタリング法により厚み3.5μm形成し、
その上にSiNを厚み0.1μm形成したものを第3の
サンプルとし、この第3のサンプルについて550℃の
熱処理を行ったものを第4のサンプルとした。第1〜第
4のサンプルをSiO2またはSiN膜表面からX線光
電子分光分析により、拡散、反応状態を観察し測定し
た。第1サンプルおよび第2のサンプルの測定結果を、
それぞれ図3および図4に、第3のサンプルおよび第4
のサンプルの測定結果をそれぞれ図5および図6に示
す。縦軸は各原子の強度、横軸はエッチング時間(分)
でこれは膜表面からの深さを示している。図3および図
4から明らかなように、550℃の熱処理を施すとSi
2とFe−Al−Si系合金膜界面でAlがSiO2
へシフトしてきている様子が判る。
As a combined magnetic gap sample of the conventional example, Fe-Al-on a Mn-Zn ferrite substrate.
A Si-based alloy having a thickness of 3.5 μm formed by a sputtering method and SiO 2 having a thickness of 0.1 μm formed thereon was used as a first sample.
The second sample was subjected to heat treatment at 50 ° C.
As a combination sample of the magnetic gap of the embodiment of the present invention, Fe—Al—Si was formed on a Mn—Zn ferrite substrate.
Form a 3.5μm thick alloy by sputtering,
A third sample was formed by forming SiN on it to a thickness of 0.1 μm, and the third sample was heat-treated at 550 ° C. to obtain a fourth sample. The diffusion and reaction states of the first to fourth samples were observed and measured from the surface of the SiO 2 or SiN film by X-ray photoelectron spectroscopy. The measurement results of the first sample and the second sample are
The third sample and the fourth sample are shown in FIGS. 3 and 4, respectively.
The measurement results of the sample are shown in FIGS. 5 and 6, respectively. The vertical axis represents the intensity of each atom, and the horizontal axis represents the etching time (minutes).
This indicates the depth from the film surface. As is clear from FIGS. 3 and 4, when heat treatment at 550 ° C. is performed, Si
It can be seen that Al is shifting to the SiO 2 side at the interface between O 2 and the Fe-Al-Si alloy film.

【0020】図5および図6から明らかなように、Si
NとFe−Al−Si系合金膜界面では550℃の熱処
理を施してもAlのシフトはなく、SiNとFe−Al
−Si系合金膜は反応・拡散していないことが判る。次
に接着ガラス6と磁気ギャップ材との反応・拡散状態に
ついて説明する。従来例のサンプルとしてMn−Znフ
ェライト基板上にFe−Al−Si系合金をスパッタリ
ング法により厚み3.5μm形成し、その上にSiO2
厚み0.1μm、ガラス薄膜5を厚み0.05μm形成
し、さらにその上に接着ガラス6と同一成分のターゲッ
トを用いて接着ガラス6を厚み0.1μm形成し、55
0℃の熱処理を施して第5のサンプルを作成した。一
方、本発明の実施例のサンプルとして第5のサンプルの
SiO2をAlNに変更して他は同条件で第6のサンプ
ルを作成した。第5のサンプルおよび第6のサンプルの
X線光電子分光分析の測定結果をそれぞれ図7、および
図8に示す。図7から明らかなようにギャップ材にSi
2を用いた場合には、接着ガラス6とギャップ材は反
応・拡散して混合してしまうことが判る。一方、ギャッ
プ材にAlNを用いた場合には図8から明らかなよう
に、接着ガラス6とギャップ材は反応・拡散していない
ことが判る。以上のようにギャップ材にAlN等の窒化
膜4を用いることで金属磁性膜3とギャップ材の室化膜
4または接着ガラス6の界面近傍での拡散・反応は防止
できる。
As is clear from FIG. 5 and FIG.
At the interface between N and the Fe-Al-Si alloy film, there is no shift of Al even if the heat treatment at 550 ° C is performed, and SiN and Fe-Al
It can be seen that the -Si alloy film does not react or diffuse. Next, the reaction / diffusion state between the adhesive glass 6 and the magnetic gap material will be described. As a sample of a conventional example, an Fe-Al-Si alloy was formed on a Mn-Zn ferrite substrate to a thickness of 3.5 μm by a sputtering method, SiO 2 was formed to a thickness of 0.1 μm, and a glass thin film 5 was formed to a thickness of 0.05 μm. Then, an adhesive glass 6 having a thickness of 0.1 μm is formed thereon by using a target having the same component as that of the adhesive glass 6.
A heat treatment was performed at 0 ° C. to prepare a fifth sample. On the other hand, as a sample of the example of the present invention, a sixth sample was prepared under the same conditions except that SiO 2 of the fifth sample was changed to AlN. The measurement results of the X-ray photoelectron spectroscopy analysis of the fifth sample and the sixth sample are shown in FIGS. 7 and 8, respectively. As is clear from FIG. 7, the gap material is made of Si.
It can be seen that when O 2 is used, the adhesive glass 6 and the gap material react and diffuse and mix. On the other hand, when AlN is used as the gap material, it is clear from FIG. 8 that the adhesive glass 6 and the gap material do not react and diffuse. As described above, by using the nitride film 4 of AlN or the like as the gap material, it is possible to prevent the diffusion and reaction near the interface between the metal magnetic film 3 and the chamber material film 4 of the gap material or the adhesive glass 6.

【0021】これらのことにより、ギャップ材として用
いた室化膜4は金属磁性膜3と接着ガラス6の反応防止
膜として働き、金属磁性膜3による接着ガラス6の還元
作用が防止され、ガラスの劣化がなく加工時に磁気コア
2のマイクロクラックの発生もない接合強度の強い磁気
ヘッドが得られる。
As a result, the chambering film 4 used as the gap material acts as a reaction preventing film between the metal magnetic film 3 and the adhesive glass 6, and the reducing action of the adhesive glass 6 by the metal magnetic film 3 is prevented, so that the glass It is possible to obtain a magnetic head having a high bonding strength, which is free from deterioration and causes no microcracks in the magnetic core 2 during processing.

【0022】本実施例の磁気ヘッド試料No4〜6の接
着強度と従来例の磁気ヘッド試料No1〜3 の接着強
度およびコイルはずれ不良率を(表2)に比較して示し
ている。
The adhesive strength of the magnetic head samples No. 4 to 6 of the present embodiment, the adhesive strength of the magnetic head samples No. 1 to 3 of the conventional example, and the coil misalignment defect rate are shown in comparison with each other (Table 2).

【0023】[0023]

【表2】 [Table 2]

【0024】接着強度は、図9に示したように幅寸法l
を300μmにスライスしたダミーヘッド8を作成し、
引張試験機9により測定した値で、(表2)のNは試料
数、Xは平均値(単位g)σN-1は標準偏差値である。
The adhesive strength is the width dimension l as shown in FIG.
A dummy head 8 sliced to 300 μm,
In Table 2, N is the number of samples, X is the average value (unit: g) σ N-1, and the standard deviation value.

【0025】この(表2)から明らかなように、実施例
による磁気ヘッドは、磁気コア1,2の接合温度が50
0℃の低温でも強固な接着強度を示し、接着強度と同様
にコイルはずれの不良率の著しく良化して優れた効果が
得られることが判る。
As is clear from this (Table 2), in the magnetic head according to the embodiment, the joining temperature of the magnetic cores 1 and 2 is 50.
It can be seen that even at a low temperature of 0 ° C., a strong adhesive strength is exhibited, and similarly to the adhesive strength, the defective rate of coil dislocation is significantly improved and an excellent effect is obtained.

【0026】次に本実施例の試料No4の磁気ヘッドと
従来例の試料No1の磁気ヘッドの接着ガラス6を側面
から偏光顕微鏡で観察した結果を図10と図11に示
す。図10の従来例の磁気ヘッドでは金属磁性膜3の近
傍に気泡10が多く発生しているのに対し、図11の本
実施例の磁気ヘッドでは気泡10の発生すなわちガラス
の劣化が少ないことが判る。
10 and 11 show the results of observing the adhesive glass 6 of the magnetic head of Sample No. 4 of the present embodiment and the magnetic head of Sample No. 1 of the conventional example from the side with a polarizing microscope. In the conventional magnetic head of FIG. 10, many bubbles 10 are generated near the metal magnetic film 3, whereas in the magnetic head of the present embodiment of FIG. 11, the generation of the bubbles 10, that is, the deterioration of the glass is small. I understand.

【0027】以上のように本実施例によれば、AlNま
たはSiNの窒化膜4をギャップ材として設けることに
より、金属磁性膜3と接着ガラス6の相互拡散を防止で
き、磁気コア1,2の接合温度が550℃以下の低温形
成でも十分なギャップ接合強度が得られる。従って磁気
コア1,2の接合温度の低温化が図れ、ギャップ接合強
度が強く、磁気特性の優れた高性能磁気ヘッドを高歩留
りで容易に得ることができる。
As described above, according to this embodiment, by providing the nitride film 4 of AlN or SiN as the gap material, mutual diffusion of the metal magnetic film 3 and the adhesive glass 6 can be prevented, and the magnetic cores 1 and 2 can be prevented. Sufficient gap bonding strength can be obtained even at a low bonding temperature of 550 ° C. or lower. Therefore, the junction temperature of the magnetic cores 1 and 2 can be lowered, and a high-performance magnetic head having a strong gap junction strength and excellent magnetic characteristics can be easily obtained with a high yield.

【0028】なお、本実施例では、片方の磁気コア2に
金属磁性膜3が形成された磁気ヘッドについて説明した
が、両方の磁気コア1および2に金属磁性膜3が形成さ
れた磁気ヘッドにも応用でき、この場合はよりいっそう
優れた効果を得ることができる。
Although the magnetic head in which the metal magnetic film 3 is formed on one of the magnetic cores 2 has been described in the present embodiment, a magnetic head in which the metal magnetic film 3 is formed on both of the magnetic cores 1 and 2 has been described. Can also be applied, and in this case an even better effect can be obtained.

【0029】[0029]

【発明の効果】以上の実施例の説明からも明らかなよう
に本発明は、一対の磁気コアの対向面に飽和磁気密度の
高い金属磁性膜を形成したMIG型の磁気ヘッドにおい
て、金属磁性膜の上に窒化膜を形成し、さらにその上に
鉛系のガラス薄膜を形成した構成により、疑似ギャップ
をなくすることができ、ギャップ接合強度の強い優れた
磁気ヘッドを実現できるものである。
As is apparent from the above description of the embodiments, the present invention provides a metal magnetic film in a MIG type magnetic head in which a metal magnetic film having a high saturation magnetic density is formed on the opposing surfaces of a pair of magnetic cores. With a structure in which a nitride film is formed on and a lead-based glass thin film is further formed thereon, the pseudo gap can be eliminated, and an excellent magnetic head having a strong gap junction strength can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の磁気ヘッドの要部斜視図FIG. 1 is a perspective view of a main part of a magnetic head according to an embodiment of the present invention.

【図2】図1のA−A断面図FIG. 2 is a sectional view taken along line AA of FIG.

【図3】SiO2とFeAlSi系合金の界面の反応・
拡散状態を示したX線光電子分光分析のグラフ
[Fig. 3] Reaction at the interface between SiO 2 and FeAlSi alloy
Graph of X-ray photoelectron spectroscopy analysis showing the diffusion state

【図4】550℃で熱処理したSiO2とFeAlSi
系合金の界面の反応・拡散状態を示したX線光電子分光
分析のグラフ
FIG. 4 SiO 2 and FeAlSi heat treated at 550 ° C.
Graph of X-ray photoelectron spectroscopy analysis showing the reaction / diffusion state at the interface of a Ni-based alloy

【図5】SiNとFeAlSi系合金の界面の反応・拡
散状態を示したX線光電子分光分析のグラフ
FIG. 5 is a graph of X-ray photoelectron spectroscopy analysis showing the reaction / diffusion state at the interface between SiN and FeAlSi-based alloy.

【図6】550℃で熱処理したSiNとFeAlSi系
合金の界面の反応・拡散状態を示したX線光電子分光分
析のグラフ
FIG. 6 is a graph of X-ray photoelectron spectroscopy analysis showing the reaction / diffusion state at the interface between SiN and FeAlSi-based alloy heat-treated at 550 ° C.

【図7】接着ガラスとSiO2の界面の反応・拡散状態
を示したX線光電子分光分析のグラフ
FIG. 7 is a graph of X-ray photoelectron spectroscopy analysis showing the reaction / diffusion state at the interface between the adhesive glass and SiO 2.

【図8】接着ガラスとAlNの界面の反応・拡散状態を
示したX線光電子分光分析のグラフ
FIG. 8 is a graph of X-ray photoelectron spectroscopy analysis showing the reaction / diffusion state at the interface between the adhesive glass and AlN.

【図9】磁気ヘッドの接着強度の試験方法の概念を示し
た斜視図
FIG. 9 is a perspective view showing the concept of a method of testing the adhesive strength of a magnetic head.

【図10】従来の磁気ヘッドの接着ガラスの気泡の発生
状態を偏光顕微鏡による観察結果で示した要部断面図
FIG. 10 is a cross-sectional view of an essential part showing the state of bubbles generated in an adhesive glass of a conventional magnetic head, as an observation result with a polarization microscope.

【図11】本発明の一実施例の磁気ヘッドの接着ガラス
の気泡の発生状態を偏光顕微鏡による観察結果で示した
要部断面図
FIG. 11 is a cross-sectional view of essential parts showing the state of bubbles generated in the adhesive glass of the magnetic head of one embodiment of the present invention as observed by a polarization microscope.

【図12】従来の磁気ヘッドの要部斜視図FIG. 12 is a perspective view of a main part of a conventional magnetic head.

【図13】図12のB−B断面図13 is a sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1,2 磁気コア 4 窒化膜 5 ガラス膜 1,2 magnetic core 4 Nitride film 5 glass film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一対の磁気コアで形成したギャップの対
向面に飽和磁束密度の高い金属磁性膜とギャップ材を配
設して接合した磁気ヘッドであって、前記金属磁性膜の
上にAlNまたはSiNのいずれかの窒化膜を形成し、
かつ前記室化膜の上にガラス薄膜を形成して、前記窒化
膜と前記ガラス薄膜でギャップ長を規定した磁気ヘッ
ド。
1. A magnetic head in which a metal magnetic film having a high saturation magnetic flux density and a gap material are arranged and bonded to the opposing surfaces of a gap formed by a pair of magnetic cores, and AlN or AlN is formed on the metal magnetic film. Forming a nitride film of SiN,
A magnetic head in which a glass thin film is formed on the chamber film and a gap length is defined by the nitride film and the glass thin film.
【請求項2】 金属磁性膜はFe−Al−Si系合金で
ある請求項1記載の磁気ヘッド。
2. The magnetic head according to claim 1, wherein the metal magnetic film is an Fe—Al—Si alloy.
JP18736791A 1991-07-26 1991-07-26 Magnetic head Pending JPH0536016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18736791A JPH0536016A (en) 1991-07-26 1991-07-26 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18736791A JPH0536016A (en) 1991-07-26 1991-07-26 Magnetic head

Publications (1)

Publication Number Publication Date
JPH0536016A true JPH0536016A (en) 1993-02-12

Family

ID=16204761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18736791A Pending JPH0536016A (en) 1991-07-26 1991-07-26 Magnetic head

Country Status (1)

Country Link
JP (1) JPH0536016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037735B2 (en) 1991-04-02 2006-05-02 Hitachi, Ltd. Apparatus and method for testing defects

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037735B2 (en) 1991-04-02 2006-05-02 Hitachi, Ltd. Apparatus and method for testing defects
US7098055B2 (en) 1991-04-02 2006-08-29 Hitachi, Ltd. Apparatus and method for testing defects
US7443496B2 (en) 1991-04-02 2008-10-28 Hitachi, Ltd. Apparatus and method for testing defects
US7639350B2 (en) 1991-04-02 2009-12-29 Hitachi, Ltd Apparatus and method for testing defects
US7692779B2 (en) 1991-04-02 2010-04-06 Hitachi, Ltd. Apparatus and method for testing defects
US7940383B2 (en) 1991-04-02 2011-05-10 Hitachi, Ltd. Method of detecting defects on an object

Similar Documents

Publication Publication Date Title
JP2781849B2 (en) Magnetic head and method of manufacturing the same
US5675460A (en) Magnetic head and method of producing the same
JPH0536016A (en) Magnetic head
JPS6180512A (en) Magnetic head
JP2882927B2 (en) Magnetic head and method of manufacturing magnetic head
KR0158687B1 (en) Magnetic head
JP3098129B2 (en) Magnetic head and method of manufacturing the same
JP3211295B2 (en) Stacked magnetic head
JP3147434B2 (en) Magnetic head
JPS62125506A (en) Magnetic head
JPH0254405A (en) Magnetic head
JPH0628622A (en) Magnetic head
JPH0395706A (en) Magnetic head and production thereof
JPH09198611A (en) Magnetic head
JPH0738247B2 (en) Method of manufacturing magnetic head
JPH05135320A (en) Magnetic head
JPH0765316A (en) Magnetic head
JPH07121819A (en) Magnetic head
JPH0448416A (en) Magnetic head
JPH03189908A (en) Magnetic head and its manufacture
JPH0529141A (en) Metal magnetic thin film and magnetic head utilizing same
JPH0944813A (en) Magnetic head and its production
JPH0582645B2 (en)
JPH0722237A (en) Soft magnetic film and magnetic head employing it
JPH04289507A (en) Magnetic head