JPH05346602A - Wavelength conversion element - Google Patents

Wavelength conversion element

Info

Publication number
JPH05346602A
JPH05346602A JP4156932A JP15693292A JPH05346602A JP H05346602 A JPH05346602 A JP H05346602A JP 4156932 A JP4156932 A JP 4156932A JP 15693292 A JP15693292 A JP 15693292A JP H05346602 A JPH05346602 A JP H05346602A
Authority
JP
Japan
Prior art keywords
substrate
waveguide
face
along
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4156932A
Other languages
Japanese (ja)
Inventor
Satoshi Miyaguchi
敏 宮口
Kiyoshi Takei
清 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP4156932A priority Critical patent/JPH05346602A/en
Publication of JPH05346602A publication Critical patent/JPH05346602A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To modulate a refractive index along a wavelength direction and to relieve a phase matching condition by changing the doping quantity of a dopant, such as Mg, along the waveguiding direction of a waveguide. CONSTITUTION:An additive layer 5 consisting of magnesium oxide gradually increased in film thickness along the Z-axis direction is formed by a sputtering method on the +C surface of an LiNbO3 substrate 1. The substrate 1 is then heated and is subjected to a heat treatment to thermally diffuse the MgO into the LiNbO3 substrate. The LiNbO3 substrate having the region 6 doped with the MgO on the +C face is produced. Consequently, the concn. of the MgO increases and the refractive index of the region 6 near the +C face of the substrate decreases gradually with an increase in the distance from the incident end face of the substrate to the Z direction. The region of plural polarization inversion domains 4 is then formed on the +C face of the substrate by the diffusion of Ti and a heat treatment near the Curie point. Three-dimensional waveguide 3 are then formed by a proton exchange method on the +C face of the substrate, by which the wavelength conversion element is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導波路を有し該導波路
に基本波を注入し準位相整合(quasi-phasematching:QP
M)により第2高調波を生ぜしめる波長変換素子(以下、
QPM素子ともいう)に関する。
The present invention relates to a quasi-phase matching (QP) having a waveguide and injecting a fundamental wave into the waveguide.
A wavelength conversion element (hereinafter,
QPM element).

【0002】[0002]

【従来の技術】第2高調波発生(Second Harmonic Gener
ation)を用いた波長変換素子として準位相整合を利用し
たQPM素子が知られている。QPM素子は、導波路の
分極が導波路の伸長方向に沿って周期的に反転する複数
の分極反転ドメインからなる分極反転構造を有する。
2. Description of the Related Art Second Harmonic Gener
is known as a wavelength conversion element using quasi-phase matching. The QPM element has a polarization inversion structure composed of a plurality of polarization inversion domains in which the polarization of the waveguide is periodically inverted along the extension direction of the waveguide.

【0003】準位相整合は、基本波を注入された導波路
からの第2高調波出力がその伝播に伴ってコヒーレンス
長lc毎に極大極小を周期的に繰返すことを利用して、
コヒーレンス長毎に発生する分極波の符号を交互に反転
させて、第2高調波の出力の加算により出力を増大させ
る整合方法である。分極波の符号を周期的に反転させる
には、導波路における非線型係数の符号を反転させれば
よく、強誘電体ではドメインの反転特性を利用できる。
例えばLiNbO3結晶の表面では不純物や歪応力、熱
や電界等の外部要因によって分極反転ドメインを生じや
すいので、該結晶がQPM素子の基板に用いられる。L
iNbO3結晶の基板主面上において、導波路並びにそ
の伸長方向に周期的な分極反転ドメインを形成すること
により、QPM素子が得られる。分極反転ドメイン構造
形成方法には、キューリー点近傍の熱処理、くし型電極
による高電圧処理、電子ビーム描画処理等がある。
Quasi-phase matching utilizes the fact that the second harmonic output from the waveguide into which the fundamental wave is injected cyclically repeats the maximum and minimum for each coherence length lc as it propagates.
This is a matching method in which the sign of the polarization wave generated for each coherence length is alternately inverted and the output is increased by adding the outputs of the second harmonics. In order to periodically invert the sign of the polarization wave, the sign of the nonlinear coefficient in the waveguide may be inverted, and the inversion characteristic of the domain can be used in the ferroelectric substance.
For example, on the surface of a LiNbO 3 crystal, a domain-inverted domain is likely to be generated due to external factors such as impurities, strain stress, heat and electric field, so that the crystal is used as a substrate of a QPM element. L
A QPM element is obtained by forming a waveguide and a domain-inverted domain which is periodic in the extension direction on the main surface of the substrate of the iNbO 3 crystal. The domain inversion domain structure formation method includes heat treatment near the Curie point, high voltage treatment with a comb-shaped electrode, electron beam drawing treatment, and the like.

【0004】分極反転ドメインの半周期Λは、コヒーレ
ンス長lcの奇数倍であれば良く次式で表される。
The half period Λ of the domain inversion domain may be represented by the following equation as long as it is an odd multiple of the coherence length lc.

【0005】[0005]

【数1】 Λ=(2m+1)lc=(2m+1)λ0/4(|n(2ω)
−n(ω)|) ここで、mが整数、λ0が基本波の波長、n(2ω)が周波
数2ωの第2高調波に対する導波路の屈折率、n(ω)が
周波数ωの基本波に対する導波路の屈折率を示す。
[Number 1] Λ = (2m + 1) lc = (2m + 1) λ 0/4 (| n (2ω)
−n (ω) |) where m is an integer, λ 0 is the wavelength of the fundamental wave, n (2ω) is the refractive index of the waveguide for the second harmonic of frequency 2ω, and n (ω) is the fundamental wave of frequency ω The refractive index of the waveguide for waves is shown.

【0006】したがって、変換効率の高いQPM素子を
得るためには、安定なレーザや正確な分極反転ドメイン
構造が必要である。
Therefore, in order to obtain a QPM device with high conversion efficiency, a stable laser and an accurate domain inversion domain structure are required.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記式
から明らかなように、QPM素子自体の温度が変化して
屈折率n(ω),n(2ω)が変化したり、レーザから入射
される基本波の波長λ0が変動したりすると、コヒーレ
ンス長lcが変化して準位相整合が達成されなくなる。
QPM素子の温度と波長とに対する許容度は小さく、例
えば、コヒーレンス長lcはμmオーダーであり、さら
に屈折率差|n(2ω)−n(ω)|は10-2オーダーであ
る。よって、基本波の波長変動許容幅は0.2nmと非常
に小さく、QPM素子の位相整合条件が厳しく、また、
分極反転ドメインの加工精度にも同様のオーダーが必要
とされ、その素子製造において高細密性を要求されると
いう問題点があった。
However, as is clear from the above equation, the temperature of the QPM element itself changes to change the refractive indices n (ω) and n (2ω), and the basic incident light from the laser is changed. If the wavelength λ 0 of the wave fluctuates, the coherence length lc changes and quasi-phase matching cannot be achieved.
The QPM element has small tolerance to temperature and wavelength, for example, the coherence length lc is on the order of μm, and the refractive index difference | n (2ω) −n (ω) | is on the order of 10 −2 . Therefore, the allowable wavelength fluctuation range of the fundamental wave is as small as 0.2 nm, the phase matching condition of the QPM element is strict, and
The same order is required for the processing accuracy of the domain-inverted domain, and there is a problem that high fineness is required in manufacturing the device.

【0008】よって、本発明の目的は、準位相整合条件
が緩和された構造を有する波長変換素子を提供すること
にある。
Therefore, an object of the present invention is to provide a wavelength conversion element having a structure in which the quasi-phase matching condition is relaxed.

【0009】[0009]

【課題を解決するための手段】本発明の波長変換素子
は、非線形光学材料からなる導波路を有する波長変換素
子であって、前記導波路は前記導波路の伸長方向に沿っ
て漸次増加又は減少する屈折率分布を有し、かつ前記導
波路の分極が前記導波路の伸長方向に沿って周期的に反
転する複数の分極反転ドメインを有することを特徴とす
る。
The wavelength conversion element of the present invention is a wavelength conversion element having a waveguide made of a non-linear optical material, and the waveguide is gradually increased or decreased along the extension direction of the waveguide. And a plurality of domain-inverted domains in which the polarization of the waveguide is periodically inverted along the extension direction of the waveguide.

【0010】[0010]

【作用】本発明の波長変換素子は、その導波路の屈折率
が導波方向に沿って徐々に変化しているので、基本波の
波長が変動しても導波路の伸長方向におけるいずれかの
領域で準位相整合が達成される。すなわち、導波路の導
波方向に沿ってMg等のドーパントのドープ量を変化さ
せることにより、導波方向に沿って屈折率が変調される
ことになり、位相整合条件の緩和が図れる。
In the wavelength conversion element of the present invention, since the refractive index of the waveguide is gradually changed along the waveguide direction, even if the wavelength of the fundamental wave is changed, either of the wavelengths in the extending direction of the waveguide can be changed. Quasi-phase matching is achieved in the region. That is, by changing the doping amount of the dopant such as Mg along the waveguide direction of the waveguide, the refractive index is modulated along the waveguide direction, and the phase matching condition can be relaxed.

【0011】[0011]

【実施例】本発明による実施例の波長変換素子を添付図
面に基づいて説明する。図1に本実施例の波長変換素子
を示す。図示するように、基板1はニオブ酸リチウム
(LiNbO3)結晶からなる。基板1において、結晶
の自発分極がc軸方向、すなわち基板1の厚み方向に揃
えられている(図の上向矢印方向)。基板1の+c面2
(主面)上において、導波路3が例えばプロトン交換法
により主面2を横断して形成されている。この導波路3
の一端面は基本波の入射端面3aになり、他端面は第2
高調波の出射端面3bになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A wavelength conversion element according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows the wavelength conversion element of this embodiment. As shown, the substrate 1 is made of lithium niobate (LiNbO 3 ) crystal. In the substrate 1, the spontaneous polarization of crystals is aligned in the c-axis direction, that is, in the thickness direction of the substrate 1 (the upward arrow direction in the drawing). + C side 2 of substrate 1
On the (main surface), a waveguide 3 is formed across the main surface 2 by, for example, a proton exchange method. This waveguide 3
Has one end face as the incident end face 3a of the fundamental wave, and the other end face is the second end face.
It is the emitting end face 3b of the harmonic.

【0012】導波路3はその伸長方向(基本波の導波方
向)に沿って漸次増加(又は減少)する屈折率分布を有
している。例えば図示するように導波路3の点の多い部
位が屈折率が低い。さらに導波路3には基本波の導波方
向に沿って周期的に自発分極が反転する複数の分極反転
ドメイン4(図の下向矢印方向)が例えばTi拡散法に
より形成されている。この分極反転構造の分極周期はコ
ヒーレンス長lc及び基本波の波長に基づいて決めら
れ、本実施例においては例えば一定になっている。
The waveguide 3 has a refractive index distribution that gradually increases (or decreases) along the extension direction (the guiding direction of the fundamental wave). For example, as shown in the drawing, the portion of the waveguide 3 having many points has a low refractive index. Further, in the waveguide 3, a plurality of domain-inverted domains 4 (in the direction of the downward arrow in the figure) in which the spontaneous polarization is periodically inverted along the waveguide direction of the fundamental wave are formed by, for example, the Ti diffusion method. The polarization period of this polarization inversion structure is determined based on the coherence length lc and the wavelength of the fundamental wave, and is constant in this embodiment.

【0013】さらに、かかる波長変換素子の製造方法を
説明する。先ず、図2(a)に示すように、LiNbO
3基板1の+C面上に、そのZ軸方向に沿って暫時膜厚
が増大する酸化マグネシウム(MgO)からなる付加層
5をスパッタ法により成膜する。この付加層5は、膜厚
が導波路3の入射端面3aでは最も薄く、導波方向に沿
って膜厚が増加して出射端面3bでは最も厚く形成され
ている。なお、付加層5は、例えばスパッタ蒸着時に出
射端面3b近傍上部だけ開口となる遮蔽板を用い上部か
らドーパントを堆積させることにより、膜厚が導波方向
に対して変化するように形成される。
Further, a method of manufacturing such a wavelength conversion element will be described. First, as shown in FIG. 2 (a), LiNbO
3 On the + C surface of the substrate 1, the additional layer 5 made of magnesium oxide (MgO) whose film thickness temporarily increases along the Z-axis direction is formed by the sputtering method. The additional layer 5 has the thinnest film thickness on the incident end face 3a of the waveguide 3 and the thinnest film on the outgoing end face 3b as the film thickness increases along the waveguide direction. The additional layer 5 is formed so that the film thickness changes with respect to the waveguide direction by depositing a dopant from above using a shielding plate that has an opening only near the emission end face 3b during sputtering deposition.

【0014】次に、図2(b)に示すように、該基板1を
炉に入れ加熱しLiNbO3基板中にMgOを熱拡散さ
せる熱処理を行い、MgOがドープされた領域6を+C
面近傍に有するLiNbO3基板を作製する。この時、
この基板における+C面近傍のMgO濃度と基板屈折率
とは基板Z方向距離に対して図2(b)に示す分布とな
る。すなわち、基板の射端面3aからZ方向へ距離が増
加するにつれて、MgO濃度が増加するとともに、基板
の+C面近傍領域6の屈折率が漸次減少する分布とな
る。
Next, as shown in FIG. 2 (b), the substrate 1 is placed in a furnace and heated to perform a heat treatment for thermally diffusing MgO in the LiNbO 3 substrate, and the region 6 doped with MgO is + C.
A LiNbO 3 substrate is prepared near the plane. At this time,
The MgO concentration and the substrate refractive index in the vicinity of the + C plane of this substrate have the distribution shown in FIG. 2 (b) with respect to the distance in the substrate Z direction. That is, as the distance from the shooting end face 3a of the substrate in the Z direction increases, the MgO concentration increases and the refractive index of the region 6 near the + C plane of the substrate gradually decreases.

【0015】次に、図2(c)に示すように、該基板の+
C面2上において、コヒーレンス長lc及び基本波の波
長に基づいて決められた一定の分極周期にて、複数の分
極反転ドメイン4の領域を例えばTi拡散及びキュリー
点近傍熱処理によって形成する。次に、図2(d)に示す
ように、該基板の+C面2上に3次元導波路3を例えば
プロトン交換法によって形成し、本実施例の素子を得
る。
Next, as shown in FIG. 2 (c), the +
On the C-plane 2, regions of a plurality of domain inversion domains 4 are formed by, for example, Ti diffusion and heat treatment near the Curie point at a constant polarization period determined based on the coherence length lc and the wavelength of the fundamental wave. Next, as shown in FIG. 2D, a three-dimensional waveguide 3 is formed on the + C plane 2 of the substrate by, for example, the proton exchange method to obtain the device of this example.

【0016】第2の実施例として、図2(b)に示す伸長
方向においてMgO濃度が漸次増加する基板1を作成す
る。まず、図3(a)に示すように、LiNbO3結晶の種
を付した回転引上げロッドを備えた溶融炉装置におい
て、溶融炉10からLiNbO3結晶ロッド11の引き
上げ動作中に、MgOなどのドーパント物質を炉中の溶
融LiNbO3に混入して、MgO-LiNbO3バルク
結晶を成長させる。
As a second embodiment, a substrate 1 whose MgO concentration gradually increases in the extending direction shown in FIG. 2 (b) is prepared. First, as shown in FIG. 3 (a), in the melting furnace apparatus with a rotating pulling rod denoted by the species of LiNbO 3 crystal, during the pulling operation of the LiNbO 3 crystal rod 11 from the melting furnace 10, a dopant such as MgO The material is mixed with molten LiNbO 3 in a furnace to grow MgO-LiNbO 3 bulk crystals.

【0017】得られた結晶ロッド11の長さ方向に対す
るMgO濃度の特性は図3(b)の如くになる。次に、得
られた結晶ロッド11を昇温して電場を印加してC軸方
向をMgO濃度勾配方向と垂直にし、図3(c)に示すよ
うに結晶ロッド11の長さ方向が導波路の伸長方向とな
るように、該結晶ロッドから基板を切り出し、その+C
面上に上記第1実施例同様の分極反転ドメイン並びに3
次元導波路を形成し、素子を形成する。
The characteristics of the MgO concentration in the length direction of the obtained crystal rod 11 are as shown in FIG. 3 (b). Next, the obtained crystal rod 11 is heated to apply an electric field to make the C-axis direction perpendicular to the MgO concentration gradient direction, and as shown in FIG. 3 (c), the length direction of the crystal rod 11 is the waveguide. The substrate is cut out from the crystal rod so that the + C
The same domain inversion domain and 3
A three-dimensional waveguide is formed and an element is formed.

【0018】作成された波長変換素子に対して、例えば
半導体レーザ(図示せず)から出射された基本波を導波
路3の入射端面3aに入射すると、この基本波は導波路
3を導波するにつれて第2高調波を励起してこの第2高
調波を出射端面3bより出力する。このとき、導波路3
の屈折率は入射端面3aから導波方向に沿って出射端面
3bに向けて減少し、導波路3における基本波及び第2
高調波の屈折率n(ω),n(2ω)もそれぞれ同様に導波
方向に沿って減少しているので、基板1の温度変化によ
り基本波及び第2高調波の屈折率や基本波の波長などの
変動を考慮して、あらかじめ導波路3の伝搬定数を導波
方向に沿って徐々に変化させていることができる。従っ
て、本実施例の波長変換素子は、第2高調波が励起され
る波長許容幅が従来の波長変動許容幅よりも広く設定さ
れているので、従来の波長変動許容幅を越えた基本波の
波長変動が生じても、導波路3内のいずれかの領域で準
位相整合条件を満足することができる。
When a fundamental wave emitted from, for example, a semiconductor laser (not shown) is incident on the incident end face 3a of the waveguide 3 with respect to the produced wavelength conversion element, the fundamental wave is guided through the waveguide 3. Along with this, the second harmonic is excited and this second harmonic is output from the emission end face 3b. At this time, the waveguide 3
Of the fundamental wave and the second wave in the waveguide 3 decrease from the incident end face 3a toward the emitting end face 3b along the waveguide direction.
Since the refractive indices n (ω) and n (2ω) of the harmonics are similarly decreased along the waveguide direction, the refractive index of the fundamental wave and the second harmonic and the fundamental wave are changed by the temperature change of the substrate 1. The propagation constant of the waveguide 3 can be gradually changed in advance along the waveguide direction in consideration of variations in wavelength and the like. Therefore, in the wavelength conversion element of the present embodiment, the allowable wavelength range for exciting the second harmonic is set to be wider than the conventional allowable wavelength fluctuation range. Even if the wavelength variation occurs, the quasi-phase matching condition can be satisfied in any region in the waveguide 3.

【0019】なお、基板1はLiNbO3に限らずタン
タル酸リチウム(LiTaO3)など準位相整合により第
2高調波を発生する適宜の非線形光学結晶にて作製で
き、同様の効果を有する。また、上記実施例では分極反
転構造の反転周期を一定としたが、この反転周期を入射
端面3aから出射端面3bに向けて徐々に変化させれ
ば、準位相整合条件をより緩和する相乗効果が得られ
る。
The substrate 1 is not limited to LiNbO 3 and can be made of an appropriate nonlinear optical crystal that generates a second harmonic by quasi-phase matching such as lithium tantalate (LiTaO 3 ) and has the same effect. Further, although the inversion period of the polarization inversion structure is constant in the above-mentioned embodiment, if the inversion period is gradually changed from the incident end face 3a to the emission end face 3b, a synergistic effect of further relaxing the quasi-phase matching condition is obtained. can get.

【0020】さらに、付加層の膜厚は、上記実施例に限
らず、入射端面よりも出射端面の方が薄く形成されてい
たり、導波方向に沿う膜厚が周期的に変化しているなど
導波方向に適宜に変化していれば、上記実施例と同様の
効果を得る。
Further, the film thickness of the additional layer is not limited to that in the above-mentioned embodiment, and the light emitting end face is formed thinner than the light incident end face, or the film thickness along the waveguiding direction changes periodically. If it is appropriately changed in the waveguiding direction, the same effect as that of the above embodiment can be obtained.

【0021】[0021]

【発明の効果】本発明によれば、基本波の導波方向に沿
って屈折率が変化させ導波路の導波パラメータを導波方
向に変化させているので、第2高調波が励起される波長
許容幅が従来の波長変動許容幅よりも広く設定し得る。
よって、従来の波長変動許容幅を越えた波長変動が生じ
ても、導波路内のいずれかの領域で準位相整合による位
相整合条件を満足することができ、位相整合条件を緩和
することができる。
According to the present invention, since the refractive index is changed along the waveguide direction of the fundamental wave and the waveguide parameter of the waveguide is changed in the waveguide direction, the second harmonic is excited. The wavelength tolerance can be set wider than the conventional wavelength variation tolerance.
Therefore, even if the wavelength variation exceeds the conventional wavelength variation allowable range, the phase matching condition by the quasi phase matching can be satisfied in any region in the waveguide, and the phase matching condition can be relaxed. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例における波長変換素子の導
波路伸長方向に沿って切断した縦断面図である。
FIG. 1 is a vertical cross-sectional view of a wavelength conversion element according to an embodiment of the present invention, taken along the waveguide extension direction.

【図2】図1に示す波長変換素子の製造工程における構
成部材の断面図である。
2 is a cross-sectional view of constituent members in a manufacturing process of the wavelength conversion element shown in FIG.

【図3】他の実施例における波長変換素子の製造工程に
用いる結晶ロッドの概略側面図である。
FIG. 3 is a schematic side view of a crystal rod used in a manufacturing process of a wavelength conversion element according to another embodiment.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 基板 3 導波路 4 分極反転ドメイン 5 付加層 1 substrate 3 waveguide 4 polarization inversion domain 5 additional layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学材料からなる導波路を有する
波長変換素子であって、前記導波路は前記導波路の伸長
方向に沿って漸次増加又は減少する屈折率分布を有し、
かつ前記導波路の分極が前記導波路の伸長方向に沿って
周期的に反転する複数の分極反転ドメインを有すること
を特徴とする波長変換素子。
1. A wavelength conversion element having a waveguide made of a non-linear optical material, wherein the waveguide has a refractive index distribution that gradually increases or decreases along an extension direction of the waveguide,
A wavelength conversion element having a plurality of domain-inverted domains in which the polarization of the waveguide is periodically inverted along the extension direction of the waveguide.
JP4156932A 1992-06-16 1992-06-16 Wavelength conversion element Pending JPH05346602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4156932A JPH05346602A (en) 1992-06-16 1992-06-16 Wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4156932A JPH05346602A (en) 1992-06-16 1992-06-16 Wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH05346602A true JPH05346602A (en) 1993-12-27

Family

ID=15638508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4156932A Pending JPH05346602A (en) 1992-06-16 1992-06-16 Wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH05346602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261928A (en) * 2015-11-06 2016-01-20 中国工程物理研究院激光聚变研究中心 Pulse laser beam combiner based on domain inversion electro-optic crystal, and method thereof
CN105514787A (en) * 2015-11-10 2016-04-20 南京邮电大学 Double-wavelength any scale wavelength converter for gradual change nested optical superlattice structure
CN109564308A (en) * 2016-08-05 2019-04-02 日本电气硝子株式会社 Wavelength conversion member and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261928A (en) * 2015-11-06 2016-01-20 中国工程物理研究院激光聚变研究中心 Pulse laser beam combiner based on domain inversion electro-optic crystal, and method thereof
CN105514787A (en) * 2015-11-10 2016-04-20 南京邮电大学 Double-wavelength any scale wavelength converter for gradual change nested optical superlattice structure
CN109564308A (en) * 2016-08-05 2019-04-02 日本电气硝子株式会社 Wavelength conversion member and its manufacturing method

Similar Documents

Publication Publication Date Title
Cheng et al. KTP and isomorphs‐recent progress in device and material development
US5986798A (en) Method and arrangement for poling of optical crystals
US20100208757A1 (en) Method of ferroelectronic domain inversion and its applications
Minor et al. Mirrorless optical parametric oscillation in bulk PPLN and PPLT: a feasibility study
Bermúdez et al. Growth and second harmonic generation characterization of Er 3+ doped bulk periodically poled LiNbO 3
US6952307B2 (en) Electric field poling of ferroelectric materials
JPH09127567A (en) Optical device
CN101802704B (en) Wavelength conversion element and wavelength conversion laser device
JP5420810B1 (en) Wavelength conversion element
JPH05346602A (en) Wavelength conversion element
EP0676060B1 (en) Doped ktp and its isomorphs with increased birefringence for type ii phase matching
JP2822778B2 (en) Wavelength conversion element
Pliska et al. Linear and nonlinear optical properties of KNbO 3 ridge waveguides
Ito et al. Phase-matched guided, optical second-harmonic generation in nonlinear ZnS thin-film waveguide deposited on nonlinear LiNbO3 substrate
US5744073A (en) Fabrication of ferroelectric domain reversals
JP3987933B2 (en) Polarization reversal method and optical wavelength conversion element by defect density control
JP2643735B2 (en) Wavelength conversion element
CN113612108B (en) Frequency converter based on chamfer nonlinear crystal ridge waveguide and preparation method thereof
JP2010078639A (en) Wavelength conversion element and manufacturing method thereof
JPH043128A (en) Formation of partial polarization inversion region
JP3199842B2 (en) Wavelength conversion element
JP2822807B2 (en) Wavelength conversion element
JP2982366B2 (en) Waveguide type wavelength conversion element
JPH05333391A (en) Wavelength conversion element
JPH05341341A (en) Optical waveguide type second higher harmonic generating element