JPH05333391A - Wavelength conversion element - Google Patents

Wavelength conversion element

Info

Publication number
JPH05333391A
JPH05333391A JP14163792A JP14163792A JPH05333391A JP H05333391 A JPH05333391 A JP H05333391A JP 14163792 A JP14163792 A JP 14163792A JP 14163792 A JP14163792 A JP 14163792A JP H05333391 A JPH05333391 A JP H05333391A
Authority
JP
Japan
Prior art keywords
waveguide
wavelength
face
phase matching
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14163792A
Other languages
Japanese (ja)
Inventor
Souta Okamoto
総太 岡本
Kiyobumi Chikuma
清文 竹間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP14163792A priority Critical patent/JPH05333391A/en
Publication of JPH05333391A publication Critical patent/JPH05333391A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To relieve phase matching conditions by forming an additive layer of the film thickness changing in a waveguide direction on a waveguide and changing the waveguide parameter of the waveguide in a waveguide direction. CONSTITUTION:The waveguide 3 for light is formed across a main surface 2 on an element substrate 1 consisting of a nonlinear optical material. Polarization inversion layers 4 in which spontaneous polarization is inverted along the waveguide direction are formed on the waveguide 3. The additive layer is formed in the upper part of the waveguide 3. The additive layer is formed to the thickness which is smallest at the incident end face 3a of the waveguide 3, increases along the waveguide 3 and is largest at the exit end face 3b. Then, the effective refractive index of the waveguide 3 changes toward the exit end face 3b along the waveguide direction from the incident end face 3a. Namely, the wavelength permissible width at which the second harmonic wave is excited is set wider than the conventional permissible width of the wavelength and, therefore, the phase matching conditions by pseudo transfer matching are satisfied in any region within the waveguide 3 even if the wavelength of the input waves fluctuates more than heretofore.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、擬似位相整合(QP
M:Quasi Phase Matching)により第2高調波(Second
Harmonic Generation)を発生する波長変換素子に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to quasi phase matching (QP).
M: Quasi Phase Matching)
The present invention relates to a wavelength conversion element that generates Harmonic Generation).

【0002】[0002]

【従来の技術】波長変換素子に入射したレーザ光(波
長:λ0、周波数:ω)に励起されて第2高調波が発生
するためには、波長変換素子が位相整合条件を満たして
いることが必要となる。そこで、擬似移送整合(QP
M:Quasi Phase Matching)により位相整合条件を波長
変換素子に成立させることが広く行われている。このQ
PM素子では、導波路の導波方向に沿って分極が例えば
コヒーレンス長ごとに反転する分極反転層が形成されて
位相整合条件が成立している。
2. Description of the Related Art In order to generate a second harmonic by being excited by laser light (wavelength: λ 0 , frequency: ω) incident on a wavelength conversion element, the wavelength conversion element must satisfy a phase matching condition. Is required. Therefore, pseudo transfer matching (QP
It is widely practiced to establish a phase matching condition in a wavelength conversion element by M (Quasi Phase Matching). This Q
In the PM element, a polarization inversion layer in which polarization is inverted for each coherence length is formed along the waveguide direction of the waveguide, and the phase matching condition is satisfied.

【0003】コヒーレンス長lc は、結晶内部での入射
波及びその第2高調波の屈折率、伝搬定数をそれぞれn
(ω),n(2ω)とすると、次式で表される。 lc=λ0/4(n(2ω)−n(ω))……………(1) しかし、式(1)から判るように、QPM素子の温度が
変化して内部の屈折率n(ω),n(2ω)が変化したり入
射波の波長λ0が変化するとコヒーレンス長lcが変化し
て素子との位相整合が取れなくなるので、一般にQPM
素子の温度と波長とに対する許容度は小さい。例えば、
このコヒーレンス長lc はμmオーダーであり、さらに
(n(2ω)−n(ω))は10-2オーダーであるから、入
射波の波長変動許容幅は0.2nmと非常に小さい。ま
た、分極反転層の加工精度にも同様のオーダーが必要と
される。
The coherence length lc is the refractive index and the propagation constant of the incident wave and its second harmonic wave inside the crystal, respectively.
If (ω) and n (2ω) are given, they are expressed by the following equation. lc = λ 0/4 (n (2ω) -n (ω)) ............... (1) However, as can be seen from equation (1), the refractive index inside of the temperature changes in the QPM element n ( When ω), n (2ω) changes or the wavelength λ 0 of the incident wave changes, the coherence length lc changes and phase matching with the element cannot be achieved.
The tolerance for temperature and wavelength of the device is small. For example,
Since this coherence length lc is in the order of μm and (n (2ω) −n (ω)) is in the order of 10 −2 , the wavelength fluctuation allowable width of the incident wave is as small as 0.2 nm. Further, the same order is required for the processing accuracy of the domain inversion layer.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
問題点に鑑みなされたもので、位相整合条件が緩和され
た構造の波長変換素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a wavelength conversion element having a structure in which the phase matching condition is relaxed, in view of the above problems.

【0005】[0005]

【課題を解決するための手段】本発明の波長変換素子
は、非線形光学材料からなる素子基板に、分極が導波方
向に沿って周期的に反転する分極反転構造を採る導波路
を有する波長変換素子であって、前記導波方向において
膜厚が変化する付加層を前記導波路に形成して前記導波
路の導波パラメータを前記導波方向に変化させたもので
ある。
A wavelength conversion element of the present invention is a wavelength conversion element having a waveguide having a polarization inversion structure in which polarization is periodically inverted in the waveguide direction on an element substrate made of a non-linear optical material. In the device, an additional layer whose film thickness changes in the waveguide direction is formed in the waveguide, and a waveguide parameter of the waveguide is changed in the waveguide direction.

【0006】[0006]

【作用】本発明の波長変換素子は、導波路の実効屈折率
が導波方向に沿って徐々に変化しているので、入射波の
波長が変動しても導波路のいずれかの領域で位相整合が
成立する。
In the wavelength conversion element of the present invention, since the effective refractive index of the waveguide gradually changes along the waveguide direction, even if the wavelength of the incident wave fluctuates, the phase is changed in any region of the waveguide. Matching is established.

【0007】[0007]

【実施例】本発明を適用した波長変換素子の一実施例を
添付図面に基づいて説明する。図1において、1は非線
形光学結晶であるニオブ酸リチウム(LiNbO3)から
なる素子基板で、結晶のc面が主面2に形成されて、結
晶の自発分極がc軸方向、すなわち素子基板1の厚み方
向に揃えられている。主面2には、例えばプロトン交換
法により光の導波路3が主面2を横断して形成され、こ
の導波路3の一端面は光の入射端面3aになり、他端面
は出射端面3bになっている。この導波路3には光の導
波方向に沿って周期的に自発分極が反転する分極反転層
4が形成されて、分極反転構造が採られている。この分
極反転構造の分極周期は(1)式のコヒーレンス長lc
を基づいて決められ、本実施例においては例えば一定に
なっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the wavelength conversion element to which the present invention is applied will be described with reference to the accompanying drawings. In FIG. 1, reference numeral 1 denotes an element substrate made of lithium niobate (LiNbO 3 ) which is a nonlinear optical crystal, in which the c-plane of the crystal is formed on the main surface 2, and the spontaneous polarization of the crystal is in the c-axis direction, that is, the element substrate 1 Are aligned in the thickness direction. A light waveguide 3 is formed on the main surface 2 by, for example, a proton exchange method so as to cross the main surface 2. One end surface of this waveguide 3 becomes a light incident end surface 3a, and the other end surface becomes an output end surface 3b. Is becoming A polarization inversion layer 4 in which the spontaneous polarization is periodically inverted in the waveguide direction of light is formed in the waveguide 3, and a polarization inversion structure is adopted. The polarization period of this domain-inverted structure is the coherence length lc of equation (1).
And is constant in the present embodiment, for example.

【0008】さらに、図2に示すように、導波路3の上
部に接するように例えば硫化亜鉛(ZnS)からなる付
加層5が形成されている。この付加層5は、膜厚が導波
路3の入射端面3aでは最も薄く、導波方向に沿って膜
厚が増加して出射端面3bでは最も厚く形成されてい
る。また、この付加層5は、素子基板1に分極反転構造
を有する導波路3が形成された後、ZnSの主面2への
蒸着により形成される。そして、蒸着時には、例えば遮
蔽板を用いて膜厚が導波方向に対して変化するように形
成される。
Further, as shown in FIG. 2, an additional layer 5 made of, for example, zinc sulfide (ZnS) is formed in contact with the upper portion of the waveguide 3. The additional layer 5 has the thinnest film thickness on the incident end face 3a of the waveguide 3 and the thinnest film on the outgoing end face 3b as the film thickness increases along the waveguide direction. The additional layer 5 is formed by vapor deposition of ZnS on the main surface 2 after the waveguide 3 having the domain-inverted structure is formed on the element substrate 1. Then, at the time of vapor deposition, for example, a shielding plate is used so that the film thickness is changed in the waveguide direction.

【0009】次に上記実施例の作用について説明する。
例えば半導体レーザ(図示せず)から出射された光(波
長:λ0、周波数:ω)が入射波として導波路3の入射
端面3aに入射すると、この光は導波路3を導波するに
つれて第2高調波を励起してこの第2高調波を出射端面
3bより出力させる。
Next, the operation of the above embodiment will be described.
For example, when light (wavelength: λ 0 , frequency: ω) emitted from a semiconductor laser (not shown) is incident on the incident end face 3a of the waveguide 3 as an incident wave, this light is guided by the waveguide 3 as The second harmonic is excited and the second harmonic is output from the emission end face 3b.

【0010】また、この導波路3には、入射端面3aか
ら導波方向に沿って出射端面3bに向けて膜厚が徐々に
厚くなる付加層5が導波路3の上部に形成されているの
で、この導波路3の実効屈折率neffは、入射端面3a
から導波方向に沿って出射端面3bに向けて変化する。
これは次のように説明することができる。例えば、素子
基板1を図3に示すモデルにたとえた場合、素子基板1
の厚み方向、光の導波方向をそれぞれx軸、z軸にと
る。導波路3、付加層5の厚みをそれぞれt、h(z)
とし、空気層、付加層、導波路、及び基板の各屈折率を
a,no,ng,nsとする。導波路3に導波される光
(波長:λ,波数k=2π/λ)の時間及び導波方向z
に対する項を exp[i(β・z−ωt)]……………………(2) とした場合、導波方向の伝搬定数βは、以下に示すモー
ド方程式(3)の根として求められる。
In the waveguide 3, an additional layer 5 is formed on the waveguide 3 so that the film thickness gradually increases from the incident end face 3a toward the emitting end face 3b along the waveguide direction. , The effective refractive index n eff of this waveguide 3 is determined by the incident end face 3a.
Changes toward the emission end surface 3b along the waveguide direction.
This can be explained as follows. For example, when the element substrate 1 is compared to the model shown in FIG.
The x-axis and the z-axis are the thickness direction and the light guiding direction of the light. The thicknesses of the waveguide 3 and the additional layer 5 are t and h (z), respectively.
And the refractive indices of the air layer, the additional layer, the waveguide, and the substrate are n a , n o , ng , and n s . Time of light (wavelength: λ, wave number k = 2π / λ) guided in the waveguide 3 and the waveguide direction z
, The propagation constant β in the waveguiding direction is determined as the root of the following mode equation (3), where exp [i (β · z−ωt)] …………………… (2) Be done.

【0011】[0011]

【数1】 [Equation 1]

【0012】ただし、However,

【0013】[0013]

【数2】 [Equation 2]

【0014】また、実効屈折率neffは、上記伝搬定数か
ら、次に示す(14)式に基づいて neff=β/k…………………………………(14) 求められる。従って、上記(3)式乃至(14)式に基
づいて、付加層の屈折率n0が導波路の屈折率ngよりも
大きい場合(no>ng)、上記実効屈折率neffは、付
加層5の厚みの増加に伴って図4に示すように増大する
ことが判る。すなわち、上記導波路3は光の導波方向に
沿って実効屈折率neffは増大している。故に、導波路
3における基本波及び第2高調波の屈折率n(ω),n(2
ω)は、それぞれ同様に導波方向に沿って増大している
ことが判る。
Further, the effective refractive index n eff is calculated from the above propagation constant by the following equation (14): n eff = β / k ……………………………… (14) Be done. Therefore, based on the above equations (3) to (14), when the refractive index n 0 of the additional layer is larger than the refractive index ng of the waveguide (n o > n g ), the effective refractive index n eff is It can be seen that as the thickness of the additional layer 5 increases, it increases as shown in FIG. That is, in the waveguide 3, the effective refractive index n eff increases along the light guiding direction. Therefore, the refractive indices n (ω) and n (2
It can be seen that ω) similarly increases along the waveguide direction.

【0015】このように、素子基板1の温度変化により
入射波及び第2高調波の屈折率や基本波の波長などの変
動を考慮して、あらかじめ導波路3の伝搬定数を導波方
向に沿って徐々に変化させている。従って、本実施例の
波長変換素子は、第2高調波が励起される波長許容幅が
従来の波長変動許容幅よりも広く設定されているので、
従来の波長変動許容幅を越えた入射波の波長変動が生じ
ても、導波路3内のいずれかの領域でQPMによる位相
整合条件を満足することができる。すなわち、位相整合
条件を緩和することができる。
In this way, the propagation constant of the waveguide 3 is set in advance along the waveguide direction in consideration of variations in the refractive index of the incident wave and the second harmonic and the wavelength of the fundamental wave due to the temperature change of the element substrate 1. Are gradually changing. Therefore, in the wavelength conversion element of the present embodiment, the allowable wavelength range for exciting the second harmonic is set wider than the conventional allowable wavelength fluctuation range.
Even if the wavelength variation of the incident wave exceeds the conventional wavelength variation allowable range, the phase matching condition by QPM can be satisfied in any region in the waveguide 3. That is, the phase matching condition can be relaxed.

【0016】なお、素子基板1はLiNbO3に限らずタ
ンタル酸リチウム(LiTaO3)などQPMにより第2
高調波を発生する適宜の非線形光学結晶にて作製でき、
同様の効果を有する。また、上記実施例では分極反転構
造の反転周期を一定としたが、この反転周期は入射端面
3aから出射端面3bに向けて徐々に変化していても同
様の効果を有することができる。
The element substrate 1 is not limited to LiNbO 3 but may be formed of a second QPM such as lithium tantalate (LiTaO 3 ).
Can be made with an appropriate nonlinear optical crystal that generates harmonics,
It has the same effect. Further, in the above embodiment, the inversion period of the domain-inverted structure is constant, but the same effect can be obtained even if the inversion period gradually changes from the incident end face 3a to the emitting end face 3b.

【0017】さらに、付加層の膜厚は、上記実施例に限
らず、入射端面よりも出射端面の方が薄く形成されてい
たり、導波方向に沿う膜厚が周期的に変化しているなど
導波方向に適宜に変化していれば、上記実施例と同様の
効果を期待できる。
Further, the film thickness of the additional layer is not limited to that in the above-mentioned embodiment, and the output end face is formed thinner than the incident end face, or the film thickness along the waveguiding direction changes periodically. If it is appropriately changed in the waveguiding direction, the same effect as that of the above embodiment can be expected.

【0018】[0018]

【発明の効果】本発明によれば、光の導波方向に対して
膜厚が変化する付加層を導波路に形成して導波路の導波
パラメータを導波方向に変化させているので、第2高調
波が励起される波長許容幅が従来の波長変動許容幅より
も広く設定されているので、従来の波長変動許容幅を越
えた波長変動が生じても、導波路内のいずれかの領域で
QPMによる位相整合条件を満足することができ、位相
整合条件を緩和することができる。
According to the present invention, since an additional layer whose film thickness changes in the waveguide direction of light is formed in the waveguide to change the waveguide parameter of the waveguide in the waveguide direction, Since the allowable wavelength range for exciting the second harmonic is set wider than the conventional allowable wavelength fluctuation range, even if a wavelength fluctuation exceeding the conventional allowable wavelength fluctuation range occurs, it will be The phase matching condition by QPM can be satisfied in the region, and the phase matching condition can be relaxed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の波長変換素子の一実施例を示す斜視図
である。
FIG. 1 is a perspective view showing an embodiment of a wavelength conversion element of the present invention.

【図2】同上導波方向に沿って切断した縦断面図であ
る。
FIG. 2 is a vertical cross-sectional view taken along the same waveguide direction as above.

【図3】同上導波路の断面のモデル図である。FIG. 3 is a model diagram of a cross section of the same waveguide.

【図4】付加層の厚みと導波路の実効屈折率との関係を
説明するグラフである。
FIG. 4 is a graph illustrating the relationship between the thickness of the additional layer and the effective refractive index of the waveguide.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 素子基板 3 導波路 4 極反転層 5 付加層 1 element substrate 3 waveguide 4 pole inversion layer 5 additional layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学材料からなる素子基板に、分
極が導波方向に沿って周期的に反転する分極反転構造を
採る導波路を有する波長変換素子であって、 前記導波方向において膜厚が変化する付加層を前記導波
路に形成して前記導波路の導波パラメータを前記導波方
向に変化させたことを特徴とする波長変換素子。
1. A wavelength conversion element having, on an element substrate made of a non-linear optical material, a waveguide having a polarization inversion structure in which polarization is periodically inverted along the waveguide direction. A wavelength conversion element, characterized in that an additional layer of which the wavelength changes is formed in the waveguide to change the waveguide parameter of the waveguide in the waveguide direction.
JP14163792A 1992-06-02 1992-06-02 Wavelength conversion element Pending JPH05333391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14163792A JPH05333391A (en) 1992-06-02 1992-06-02 Wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14163792A JPH05333391A (en) 1992-06-02 1992-06-02 Wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH05333391A true JPH05333391A (en) 1993-12-17

Family

ID=15296679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14163792A Pending JPH05333391A (en) 1992-06-02 1992-06-02 Wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH05333391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728697A1 (en) * 1994-12-23 1996-06-28 Thomson Csf HIGH FREQUENCY CONVERTER WITH HIGH EFFICIENCY, GUIDED OPTICS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728697A1 (en) * 1994-12-23 1996-06-28 Thomson Csf HIGH FREQUENCY CONVERTER WITH HIGH EFFICIENCY, GUIDED OPTICS
WO1996020426A1 (en) * 1994-12-23 1996-07-04 Thomson-Csf Ultra high efficiency frequency converter for use in guided optics
US5748362A (en) * 1994-12-23 1998-05-05 Thomson-Csf Frequency converter, with very high efficiency, in guided optics

Similar Documents

Publication Publication Date Title
EP0485159B1 (en) Method of producing a waveguide type second-harmonic generation element
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JPH0296121A (en) Wavelength converting element
JPH0419719A (en) Domain control method for nonlinear ferrodielectric optical material
US5285508A (en) Optical wavelength converter
EP0558801B1 (en) Wavelength converting element
JP2822778B2 (en) Wavelength conversion element
JPH05333391A (en) Wavelength conversion element
US5205904A (en) Method to fabricate frequency doubler devices
Ito et al. Phase-matched guided, optical second-harmonic generation in nonlinear ZnS thin-film waveguide deposited on nonlinear LiNbO3 substrate
US5339190A (en) Optical waveguide second harmonic generating element and method of making the same
JPH0566440A (en) Laser light source
JP2016173429A (en) Wavelength conversion element
JP2643735B2 (en) Wavelength conversion element
WO2002103450A1 (en) Device for wavelength conversion and optical computing
JPH05346602A (en) Wavelength conversion element
JPH06273816A (en) Optical waveguide type second higher harmonic generating element
JP3004850B2 (en) Optical second harmonic generator
WO2024100865A1 (en) Optical waveguide element and method for manufacturing same
JP2973963B2 (en) Short wavelength light source
JPH03213832A (en) Second higher harmonics generating element and production thereof
JPH05323401A (en) Wavelength conversion element
JPH0593931A (en) Wavelength conversion element and short wavelength laser beam source
JPH0667235A (en) Wavelength conversion device
JPH04276725A (en) Wavelength conversion element