JPH05323401A - Wavelength conversion element - Google Patents

Wavelength conversion element

Info

Publication number
JPH05323401A
JPH05323401A JP13095992A JP13095992A JPH05323401A JP H05323401 A JPH05323401 A JP H05323401A JP 13095992 A JP13095992 A JP 13095992A JP 13095992 A JP13095992 A JP 13095992A JP H05323401 A JPH05323401 A JP H05323401A
Authority
JP
Japan
Prior art keywords
waveguide
wavelength conversion
polarization
inversion
element substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13095992A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takei
清 武井
Satoshi Miyaguchi
敏 宮口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP13095992A priority Critical patent/JPH05323401A/en
Publication of JPH05323401A publication Critical patent/JPH05323401A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the production of the wavelength conversion element which can relieve phase matching conditions add has the effect similar to the effect of an element which is gradually changed in inversion period. CONSTITUTION:Plural polarization inversion layer 3 which are periodically inverted in polarization are formed on the main surface of an element substrate 1 consisting of LiNbO3 to constitute the main surface as a periodic polarization inversion structure. A waveguide 4 extending in intersection with the polarization inversion layers 3 is formed. The waveguide direction of the waveguide 4 is curved at a displacement angle theta in the longitudinal direction of the element substrate 1. The theta satisfies equation costheta=(1+rz)/(1-0.5L.r) (where r is a constant).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、準位相整合(QPM:
Quasi Phase Matching)により入射波の第2高調波(Sec
ond Harmonic Generation)を発生する波長変換素子に関
する。
BACKGROUND OF THE INVENTION The present invention relates to quasi phase matching (QPM:
The second harmonic of the incident wave (Sec
The present invention relates to a wavelength conversion element that generates ond Harmonic Generation).

【0002】[0002]

【従来の技術】波長変換素子に入射した光(波長:λ
0 、周波数:ω)に励起されてその第2高調波(波長:
λ0 /2、周波数:2ω)が発生するためには、波長変
換素子が位相整合条件を満たしていることが必要とな
る。そこで、準位相整合(QPM:Quasi Phase Matchi
ng)により位相整合条件を波長変換素子に成立させるこ
とが広く行われている。このQPM素子では、導波路の
導波方向に沿って分極方向が例えばコヒーレンス長ごと
に周期的に反転する分極反転層を形成して分極反転構造
を採ることにより、位相整合条件を成立させている。
2. Description of the Related Art Light incident on a wavelength conversion element (wavelength: λ
0 , frequency: ω) and its second harmonic (wavelength: ω)
lambda 0/2, Frequency: To 2 [omega) occurs, it is necessary to wavelength conversion element meets phase matching conditions. Therefore, Quasi Phase Matchi (QPM)
It is widely practiced to satisfy the phase matching condition in the wavelength conversion element by using ng). In this QPM element, the phase matching condition is satisfied by forming a polarization inversion layer in which the polarization direction is periodically inverted for each coherence length along the waveguide direction of the waveguide to adopt a polarization inversion structure. .

【0003】このコヒーレンス長lc は、結晶内部での
入射波及びその第2高調波の屈折率をそれぞれn(ω),
n (2ω)とすると、次式で表される。
This coherence length lc is the refractive index of the incident wave and its second harmonic inside the crystal, n (ω),
If n (2ω), it is expressed by the following equation.

【0004】[0004]

【数1】lc =λ0 /4(n(2ω)−n(ω)) しかし、数1から判るように、QPM素子の温度が変化
して内部の屈折率n(ω),n(2ω)が変化したり入射波
の波長λ0 が変化するとコヒーレンス長lc が変化して
位相整合条件が成立しない。故に、一般にQPM素子の
温度と波長とに対する許容度は小さく、例えば入射波の
波長変動許容幅は0.2nmと非常に小さい。また、分極
反転層の加工精度にも同様のオーダーが必要とされる。
[Number 1] lc = λ 0/4 (n (2ω) -n (ω)) However, as can be seen from Equation 1, the interior of the refractive index temperature QPM element is changed n (ω), n (2ω ) Or the wavelength λ 0 of the incident wave changes, the coherence length lc changes and the phase matching condition is not satisfied. Therefore, in general, the tolerance of the QPM element with respect to temperature and wavelength is small, and for example, the wavelength fluctuation tolerance of the incident wave is as small as 0.2 nm. Further, the same order is required for the processing accuracy of the domain inversion layer.

【0005】そこで、例えば波長変動許容幅を広くする
ために、図1に示すように、分極反転構造の反転周期を
導波路の導波方向に沿って徐々に変えた構造が提案され
ている。この構造では、例えば導波路の入射端部近傍と
出射端部近傍との反転周期の差が0.05μm程度にな
るように導波路を形成すると、波長変動許容幅は4nm
程度に広がり、位相整合条件は緩和される。しかし、入
射端部近傍と出射端部近傍との反転周期の差が0.05
μm程度となるように徐々に反転周期を変えた分極反転
構造を素子に作製することは、加工に高精度が要求され
て非常に困難である。
Therefore, for example, in order to widen the wavelength fluctuation allowable width, a structure has been proposed in which the inversion period of the polarization inversion structure is gradually changed along the waveguide direction of the waveguide, as shown in FIG. In this structure, for example, when the waveguide is formed so that the difference in inversion period between the vicinity of the entrance end and the vicinity of the exit end of the waveguide is about 0.05 μm, the allowable wavelength variation width is 4 nm.
And the phase matching condition is relaxed. However, the difference between the inversion periods near the entrance end and the exit end is 0.05
It is very difficult to manufacture a domain-inverted structure in which the inversion period is gradually changed so as to be about μm, because high precision is required for processing.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
問題点に鑑みなされたもので、位相整合条件を緩和しな
がらも製造の容易な構造の波長変換素子を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a wavelength conversion element having a structure which is easy to manufacture while relaxing the phase matching condition, in view of the above problems.

【0007】[0007]

【課題を解決するための手段】本発明の波長変換素子
は、非線形光学結晶からなる素子基板の主面に、周期的
に分極方向が反転している複数の分極反転層からなる周
期的分極反転構造と、前記分極反転層と交差する方向に
伸長する導波路と、を有する波長変換素子であって、前
記導波路はその導波方向が湾曲しているものである。
A wavelength conversion element of the present invention comprises a periodic polarization inversion composed of a plurality of polarization inversion layers whose polarization directions are periodically inverted on the main surface of an element substrate made of a nonlinear optical crystal. A wavelength conversion element having a structure and a waveguide extending in a direction intersecting with the polarization inversion layer, wherein the waveguide has a curved waveguide direction.

【0008】[0008]

【作用】本発明の波長変換素子は、導波路に入射した光
は、導波路の湾曲した導波方向に沿って曲がりながら進
むので、各分極反転層内での光路長は光の導波に伴い徐
々に変化する。故に、導波路の少なくとも1カ所で位相
整合条件が成立して第2高調波が出力される。
In the wavelength conversion element of the present invention, the light incident on the waveguide travels while curving along the curved waveguide direction of the waveguide, so that the optical path length in each polarization inversion layer is equal to the waveguide of light. It changes gradually with it. Therefore, the phase matching condition is satisfied at at least one place in the waveguide, and the second harmonic is output.

【0009】[0009]

【実施例】本発明を適用した波長変換素子の一実施例を
添付図面に基づいて説明する。図2において、1は非線
形光学結晶であるニオブ酸リチウム(Li Nb O3 )か
らなる素子基板で、長手方向の長さがL、結晶のc面が
主面2に形成され、結晶の自発分極はc軸方向、すなわ
ち素子基板1の厚み方向に揃えられている。この主面2
には、自発分極を所定の周期で交互に反転させるため
に、自発分極を反転させた分極反転層3が素子基板1の
長手方向に一定の間隔を介して複数形成されて周期的分
極反転構造が採られている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the wavelength conversion element to which the present invention is applied will be described with reference to the accompanying drawings. In FIG. 2, reference numeral 1 denotes an element substrate made of lithium niobate (Li Nb O 3 ) which is a non-linear optical crystal having a length L in the longitudinal direction and a c-plane of the crystal formed on the main surface 2 and spontaneous polarization of the crystal. Are aligned in the c-axis direction, that is, in the thickness direction of the element substrate 1. This main surface 2
In order to alternately invert the spontaneous polarization in a predetermined cycle, a plurality of polarization inversion layers 3 in which the spontaneous polarization is inverted are formed at regular intervals in the longitudinal direction of the element substrate 1 to form a periodic polarization inversion structure. Has been taken.

【0010】そして、光の導波路4が例えばプロトン交
換法により各分極反転層3と交差する方向に伸長すると
ともにその導波方向が素子基板1の長手方向に対して湾
曲するように形成され、この導波路4の一端面は光の入
射端面4aになり、他端面は出射端面4bになってい
る。この導波路4の湾曲の度合は、以下のようにして決
められる。
The optical waveguide 4 is formed, for example, by a proton exchange method so as to extend in a direction intersecting with each polarization inversion layer 3 and the waveguide direction is curved with respect to the longitudinal direction of the element substrate 1. One end face of the waveguide 4 is a light incident end face 4a, and the other end face is an emitting end face 4b. The degree of bending of the waveguide 4 is determined as follows.

【0011】例えば、図2に示すように、位相整合条件
を緩和するために、導波路4の導波方向が直線的に形成
されるとともに周期的分極反転構造の反転周期が導波路
4の入射端面4aから出射端面4bに向けて徐々に広げ
て形成された素子基板1の場合、光の導波方向をz軸方
向に採って、図示の如く素子基板1の座標を設定する
と、分極の反転周期Λは、
For example, as shown in FIG. 2, in order to relax the phase matching condition, the waveguide direction of the waveguide 4 is formed linearly and the inversion period of the periodic domain inversion structure is incident on the waveguide 4. In the case of the element substrate 1 formed by gradually widening from the end surface 4a toward the emission end surface 4b, when the light guiding direction is set to the z-axis direction and the coordinates of the element substrate 1 are set as shown in the figure, the polarization is inverted. The period Λ is

【0012】[0012]

【数2】Λ(z)=Λ0 /(1+rz) Λ0 :z=0での反転周期 r<0:反転周期の変化の割合 と表せる。## EQU00002 ## Λ (z) = Λ 0 / (1 + rz) Λ 0 : Inversion cycle at z = 0 r <0: Change rate of inversion cycle.

【0013】一方、導波路4の導波方向を素子基板1の
長手方向から曲げた場合、図3に示すように、素子基板
1の長手方向に対する導波路4の導波方向の変位角をθ
とすれば、光の導波に対する実際の反転周期は等価的
に、
On the other hand, when the waveguide direction of the waveguide 4 is bent from the longitudinal direction of the element substrate 1, the displacement angle of the waveguide 4 in the waveguide direction with respect to the longitudinal direction of the element substrate 1 is θ, as shown in FIG.
Then, the actual inversion period for the guided wave of light is equivalently

【0014】[0014]

【数3】Λ / cos θ となる。## EQU3 ## Λ / cos θ.

【0015】よって、図1の波長変換素子において、数
2及び数3から図2と等価になる各分極反転層3での光
の光路長は、
Therefore, in the wavelength conversion element of FIG. 1, the optical path length of the light in each polarization inversion layer 3 which is equivalent to FIG.

【0016】[0016]

【数4】 Λ(−L/2)/cosθ=Λ0 /(1+rz) となる。故に、導波路4の変位角θは、## EQU00004 ## Λ (-L / 2) / cos θ = Λ 0 / (1 + rz). Therefore, the displacement angle θ of the waveguide 4 is

【0017】[0017]

【数5】 cosθ=(1+rz)/(1−0.5L・r) を満足する角度になり、zの関数になる。すなわち、導
波路4の変位角θは、入射端面では素子基板1の長手方
向を向き、光の導波に伴い変位角θは大きくなって素子
基板1の長手方向より徐々にずれていく。例えば、反転
周期が3.5μmで素子基板1の幅方向に±0.5μm
のずれを生じさせる場合、変位角θは9.6°になる。
## EQU00005 ## The angle satisfies cos .theta. = (1 + rz) / (1-0.5L.r), which is a function of z. That is, the displacement angle θ of the waveguide 4 faces the longitudinal direction of the element substrate 1 on the incident end face, and the displacement angle θ increases with the light guide and gradually deviates from the longitudinal direction of the element substrate 1. For example, the inversion cycle is 3.5 μm and the width direction of the element substrate 1 is ± 0.5 μm.
In the case of causing the deviation of, the displacement angle θ becomes 9.6 °.

【0018】次に上記実施例の作用について説明する。
例えば半導体レーザ(図示せず)を出射した光(波長:
λ0 、周波数:ω)が入射波として導波路4の入射端面
4aに入射すると、この光は導波路4を導波するにつれ
て第2高調波が励起されてこの第2高調波が出射端面4
bより出力される。
Next, the operation of the above embodiment will be described.
For example, light emitted from a semiconductor laser (not shown) (wavelength:
λ 0 , frequency: ω) is incident on the incident end face 4a of the waveguide 4 as an incident wave, the second harmonic is excited as this light is guided through the waveguide 4, and the second harmonic is emitted from the emitting end face 4
It is output from b.

【0019】そして、入射光が導波される導波路4が素
子基板1の長手方向に対して湾曲しその変位角θは徐々
に大きくなるので、光が導波する光路上の分極の実際の
反転周期は、入射端面4aから出射端面4bに向けて徐
々に長くなっている。すなわち、入射光の波長変動や素
子基板1の屈折率の変動などのゆらぎを吸収して導波路
4上の少なくとも一カ所において必ず位相整合条件を成
立さることで、第2高調波を安定して出力させることが
できる。
Since the waveguide 4 for guiding the incident light is curved with respect to the longitudinal direction of the element substrate 1 and its displacement angle θ gradually increases, the actual polarization of the light on the optical path is guided. The inversion period gradually becomes longer from the incident end face 4a toward the emitting end face 4b. That is, by absorbing fluctuations such as wavelength fluctuations of incident light and fluctuations of the refractive index of the element substrate 1 and always satisfying the phase matching condition at least at one place on the waveguide 4, the second harmonic wave is stabilized. Can be output.

【0020】また、周期的分極反転構造の反転周期を一
定に形成するので分極反転層3の加工精度を緩和でき、
反転周期を徐々に変化させた素子に比較すると、本実施
例の波長変換素子は簡単に製造することができる。な
お、素子基板1はLi Nb O3 に限らずタンタル酸リチ
ウム(Li Ta O3)などQPMにより第2高調波を発
生する適宜の非線形光学結晶にて作製でき、同様の効果
を有する。
Further, since the inversion period of the periodic domain inversion structure is formed to be constant, the processing accuracy of the domain inversion layer 3 can be relaxed,
The wavelength conversion element of this embodiment can be easily manufactured as compared with the element in which the inversion period is gradually changed. The element substrate 1 is not limited to Li Nb O 3 and can be made of an appropriate nonlinear optical crystal that generates the second harmonic by QPM such as lithium tantalate (Li Ta O 3 ) and has the same effect.

【0021】[0021]

【発明の効果】本発明によれば、導波路の導波方向が湾
曲して形成されて、導波路における実際の反転周期が光
の導波方向に沿って徐々に変化するために、入射波の波
長や屈折率の変動などのゆらぎを吸収できるので位相整
合条件を緩和できる。
According to the present invention, since the waveguide direction of the waveguide is curved and the actual inversion period in the waveguide gradually changes along the light guide direction, the incident wave Since it is possible to absorb fluctuations such as fluctuations in wavelength and refractive index, the phase matching condition can be relaxed.

【図面の簡単な説明】[Brief description of drawings]

【図1】周期的分極反転構造の反転周期を徐々に変化さ
せた従来の波長変換素子の上面図である。
FIG. 1 is a top view of a conventional wavelength conversion element in which the inversion period of a periodic polarization inversion structure is gradually changed.

【図2】本発明の一実施例を示す波長変換素子の斜視図
である。
FIG. 2 is a perspective view of a wavelength conversion element showing an embodiment of the present invention.

【図3】同上上面図である。FIG. 3 is a top view of the same.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 素子基板 2 主面 3 分極反転層 4 導波路 1 element substrate 2 principal surface 3 polarization inversion layer 4 waveguide

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学結晶からなる素子基板の主面
に、周期的に分極方向が反転している複数の分極反転層
からなる周期的分極反転構造と、前記分極反転層と交差
する方向に伸長する導波路と、を有する波長変換素子で
あって、 前記導波路はその導波方向が湾曲していることを特徴と
する波長変換素子。
1. A periodic domain-inverted structure composed of a plurality of domain-inverted layers whose polarization directions are periodically inverted on a main surface of an element substrate made of a non-linear optical crystal, and in a direction intersecting the domain-inverted layer. A wavelength conversion element having an extending waveguide, wherein the waveguide has a curved waveguide direction.
JP13095992A 1992-05-22 1992-05-22 Wavelength conversion element Pending JPH05323401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13095992A JPH05323401A (en) 1992-05-22 1992-05-22 Wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13095992A JPH05323401A (en) 1992-05-22 1992-05-22 Wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH05323401A true JPH05323401A (en) 1993-12-07

Family

ID=15046636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13095992A Pending JPH05323401A (en) 1992-05-22 1992-05-22 Wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH05323401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350915A (en) * 2001-05-30 2002-12-04 Ngk Insulators Ltd Wavelength transformation element, optical waveguide device for wavelength transformation, harmonic component generating device and method for manufacturing wavelength transformation element
US6785457B2 (en) 2001-08-01 2004-08-31 Matsushita Electric Industrial Co., Ltd. Optical waveguide device and coherent light source and optical apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350915A (en) * 2001-05-30 2002-12-04 Ngk Insulators Ltd Wavelength transformation element, optical waveguide device for wavelength transformation, harmonic component generating device and method for manufacturing wavelength transformation element
US6785457B2 (en) 2001-08-01 2004-08-31 Matsushita Electric Industrial Co., Ltd. Optical waveguide device and coherent light source and optical apparatus using the same

Similar Documents

Publication Publication Date Title
EP0485159B1 (en) Method of producing a waveguide type second-harmonic generation element
EP0562636B1 (en) Frequency doubler and laser source
JP2685969B2 (en) Second harmonic generator
US20220221770A1 (en) Wavelength Conversion Element
EP0962809B1 (en) A second harmonic wave-generation device
JPH05323401A (en) Wavelength conversion element
CN115032746B (en) Runway-type micro-ring cavity capable of realizing self-accurate phase matching frequency conversion
JPH05249518A (en) Wavelength conversion element
JPH05341344A (en) Wavelength conversion element
JP4849024B2 (en) Waveguide element and wavelength conversion element
JPH04158340A (en) Light wavelength conversion element and manufacture thereof
WO2024100865A1 (en) Optical waveguide element and method for manufacturing same
WO2002103450A1 (en) Device for wavelength conversion and optical computing
JPH0566440A (en) Laser light source
JP2643735B2 (en) Wavelength conversion element
JPH05333391A (en) Wavelength conversion element
WO2024084707A1 (en) Method for manufacturing wavelength conversion element
US20220229345A1 (en) Optical waveguide structure
JP2002350915A (en) Wavelength transformation element, optical waveguide device for wavelength transformation, harmonic component generating device and method for manufacturing wavelength transformation element
JPH05341340A (en) Wavelength converting element
US20140169726A1 (en) Waveguide lens with modulating electrode and ground electrodes
JPH07281227A (en) Laser beam generator
JP2006208452A (en) Wavelength conversion element
CN113612108A (en) Frequency converter based on obliquely-cut nonlinear crystal ridge waveguide and preparation method thereof
JPH05249519A (en) Optical waveguide type wavelength conversion element