JPH05341340A - Wavelength converting element - Google Patents

Wavelength converting element

Info

Publication number
JPH05341340A
JPH05341340A JP15198192A JP15198192A JPH05341340A JP H05341340 A JPH05341340 A JP H05341340A JP 15198192 A JP15198192 A JP 15198192A JP 15198192 A JP15198192 A JP 15198192A JP H05341340 A JPH05341340 A JP H05341340A
Authority
JP
Japan
Prior art keywords
waveguide
phase matching
matching condition
temp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15198192A
Other languages
Japanese (ja)
Inventor
Kiyobumi Chikuma
清文 竹間
Kiyoshi Takei
清 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP15198192A priority Critical patent/JPH05341340A/en
Publication of JPH05341340A publication Critical patent/JPH05341340A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a wavelength converting element having the structure with relaxed phase matching condition by providing a temp. controlling means imparting a temp. gradient in the waveguide direction of a waveguide. CONSTITUTION:A optical waveguide 3 is formed so as to intersect respective polarization inversion layers formed on the main surface 2 of an element substrate 1. An insulated buffer layer 4 is formed of silicon dioxide on the main surface 2 while covering the upper part of the waveguide 3. Thin film heaters 5 as a temp. controlling means are formed in a pair by, for example, vapor- depositing titanium respectively at the upper part in the vicinity of an incident end face 3a and at the upper part in the vicinity of the emitting end face 3b of the waveguide 3 via the buffer layer 4. Since the refractive indexes to an incident wave and to a second higher harmonic are respectively changed along the waveguide direction corresponding to the temp. gradient along the waveguide direction of the waveguide 3, the phase matching condition is satisfied in at least one region of the waveguide 3 even when the wavelength of the incident wave in fluctuated. Consequently, the phase matching condition is relaxed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、擬似位相整合(QP
M:Quasi Phase Matching)により入射波の第2高調波
(Second Harmonic Generation)を発生する波長変換素子
に関する。
BACKGROUND OF THE INVENTION The present invention relates to quasi phase matching (QP).
Second harmonic of incident wave due to M: Quasi Phase Matching)
The present invention relates to a wavelength conversion element that generates (Second Harmonic Generation).

【0002】[0002]

【従来の技術】波長変換素子に入射した光(波長:
λ0、周波数:ω)に励起されてその第2高調波(波
長:λ0/2、周波数:2ω)が発生するためには、波
長変換素子に位相整合条件が成立していることが必要と
なる。そこで、擬似位相整合(QPM:Quasi Phase Ma
tching)により位相整合条件を波長変換素子に成立させ
ることが広く行われている。このQPM素子では、導波
路の導波方向に沿って分極方向を例えばコヒーレンス長
ごとに周期的に反転させた分極反転層を形成して分極反
転構造を採ることにより、位相整合条件を成立させてい
る。
2. Description of the Related Art Light incident on a wavelength conversion element (wavelength:
lambda 0, Frequency: is excited in omega) its second harmonic (wavelength: lambda 0/2, Frequency: To 2 [omega) occurs, must be phase-matching condition is satisfied in the wavelength conversion element Becomes Therefore, quasi phase matching (QPM: Quasi Phase Ma)
It is widely practiced to establish a phase matching condition in a wavelength conversion element by tching). In this QPM element, the phase inversion condition is established by forming a polarization inversion layer in which the polarization direction is periodically inverted for each coherence length along the waveguide direction of the waveguide to form a polarization inversion structure. There is.

【0003】このコヒーレンス長lc は、結晶内部での
入射波及びその第2高調波の屈折率をそれぞれn
(ω),n(2ω)とすると、次式で表される。
The coherence length lc is the refractive index of the incident wave inside the crystal and the refractive index of its second harmonic, n.
Assuming that (ω) and n (2ω), it is expressed by the following equation.

【0004】[0004]

【数1】lc =λ0/4(n(2ω)−n(ω)) しかし、数1から判るように、QPM素子の温度が変化
して内部の屈折率n(ω),n(2ω)が変化したり入
射波の波長λ0が変化すると、コヒーレンス長lc が変
化して位相整合条件が成立しない。さらに、一般にQP
M素子の温度と波長とに対する許容度は小さく、例えば
入射波の波長変動許容幅は0.2nm程度と非常に小さ
い。故に、分極反転層の加工精度にも同様のオーダーが
必要とされる。
[Number 1] lc = λ 0/4 (n (2ω) -n (ω)) However, as can be seen from Equation 1, the interior of the refractive index temperature QPM element is changed n (ω), n (2ω ) Or the wavelength λ 0 of the incident wave changes, the coherence length lc changes and the phase matching condition is not satisfied. In addition, generally QP
The tolerance for the temperature and wavelength of the M element is small, and for example, the wavelength fluctuation allowable width of the incident wave is as small as 0.2 nm. Therefore, the same order is required for the processing accuracy of the domain inversion layer.

【0005】この構造では、例えば導波路の入射端部近
傍と出射端部近傍との反転周期の差が0.05μm程度
になるように反転周期を徐々に変えた導波路を形成する
と、波長変動許容幅は4nm程度に広がり、位相整合条件
は緩和される。しかし、入射端部近傍と出射端部近傍と
の反転周期の差が0.05μm程度となるように徐々に
反転周期を変えた分極反転構造を素子に作製すること
は、加工に高精度が要求されて非常に困難である。
With this structure, for example, when a waveguide is formed in which the inversion period is gradually changed so that the difference in inversion period between the vicinity of the entrance end and the vicinity of the exit end of the waveguide is about 0.05 μm, the wavelength fluctuation occurs. The allowable width is expanded to about 4 nm, and the phase matching condition is relaxed. However, fabrication of a polarization inversion structure in which the inversion period is gradually changed so that the difference in inversion period between the vicinity of the incident end and the vicinity of the emission end is about 0.05 μm requires high precision in processing. Being very difficult.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
問題点に鑑みなされたもので、位相整合条件が緩和され
た構造の波長変換素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a wavelength conversion element having a structure in which the phase matching condition is relaxed, in view of the above problems.

【0007】[0007]

【課題を解決するための手段】本発明の波長変換素子
は、非線形光学結晶からなる素子基板に導波路を有し、
入射波の第2高調波を出力する波長変換素子であって、
前記導波路の導波方向において温度勾配を与える温度制
御手段を有するものである。
A wavelength conversion element of the present invention has a waveguide on an element substrate made of a nonlinear optical crystal,
A wavelength conversion element that outputs the second harmonic of an incident wave,
It has a temperature control means for providing a temperature gradient in the waveguide direction of the waveguide.

【0008】[0008]

【作用】本発明によれば、導波路の導波方向に沿う温度
勾配に応じて入射波及び第2高調波に対する屈折率が導
波方向に沿ってそれぞれ変化しているので、入射波の波
長が変動しても、少なくとも導波路のいずれかの領域で
位相整合条件が成立する。
According to the present invention, since the refractive index for the incident wave and the second harmonic changes according to the temperature gradient along the waveguide direction of the waveguide, respectively, the wavelength of the incident wave changes. Even if f varies, the phase matching condition is satisfied at least in any region of the waveguide.

【0009】[0009]

【実施例】本発明を適用した波長変換素子の第1の実施
例を図1乃至図2に基づいて説明する。図1において、
1は非線形光学結晶からなる素子基板で、この素子基板
1はニオブ酸リチウム(Li Nb O3)にて結晶のc面
が主面2に、かつ結晶のc軸方向を素子基板1の厚み方
向になるように、主面の長さl、幅wに切断形成されて
いる。そして、素子基板1の自発分極の方向がc軸方向
に揃えられている。この主面には、周期的に自発分極が
反転された分極反転層が形成されて周期的分極反転構造
を採っている。この分極反転構造の反転周期は数1のコ
ヒーレンス長lcに基づいて決められ、本実施例におい
ては例えば一定周期で反転している。そして、各分極反
転層と交差するように光の導波路3が例えばプロトン交
換法により形成されて、この導波路3の一端面は光の入
射端面3aになり、他端面は出射端面3bになってい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a wavelength conversion device to which the present invention is applied will be described with reference to FIGS. In FIG.
Reference numeral 1 is an element substrate made of a nonlinear optical crystal. This element substrate 1 is made of lithium niobate (Li Nb O 3 ) and has a c-plane of the crystal as a main surface 2 and a c-axis direction of the crystal as a thickness direction of the element substrate 1. The main surface is cut and formed to have a length l and a width w. The spontaneous polarization of the element substrate 1 is aligned with the c-axis direction. A polarization inversion layer in which the spontaneous polarization is periodically inverted is formed on this main surface to form a periodic polarization inversion structure. The inversion period of this polarization inversion structure is determined based on the coherence length lc of the equation 1, and in this embodiment, it is inverted at a constant period, for example. An optical waveguide 3 is formed so as to intersect with each polarization inversion layer by, for example, a proton exchange method, and one end face of this waveguide 3 becomes an incident end face 3a of light and the other end face becomes an emission end face 3b. ing.

【0010】さらに、導波路3の上部を被覆しながら主
面に絶縁性のバッファー層4が2酸化シリコン(Si O
2)にて形成されている。そして、このバッファー層4
を介して導波路3の入射端面3a近傍上部及び出射端面
3b近傍上部にそれぞれ温度制御手段としての薄膜ヒー
タ5が、例えばチタン(Ti)の蒸着により対をなして
形成されている。
Further, an insulating buffer layer 4 is formed on the main surface while covering the upper portion of the waveguide 3 with silicon dioxide (SiO 2).
2 ). And this buffer layer 4
The thin film heaters 5 serving as temperature control means are formed in pairs above and below the entrance end face 3a and the exit end face 3b of the waveguide 3 via, for example, by vapor deposition of titanium (Ti).

【0011】次に本実施例の作用について説明する。薄
膜ヒータ5により例えば導波路3の入射端側を温度Tin
に、出射端側を温度To(Tin>To)にそれぞれ制御す
る。素子基板1と周囲との温度差に大差なく、素子基板
1から周囲への熱放射が殆ど無視できるものとすれば、
図2に示すように、導波路の導波方向において温度勾配
が生じて、例えば導波路3が導波方向に無限小に区画さ
れた長さdxの各領域の温度は、導波方向に沿って変化
する。このような導波路3に沿って温度勾配を持つ波長
変換素子に、例えば半導体レーザ(図示せず)から出射
された光(波長:λ0、周波数:ω)が入射波として導
波路3の入射端面3aに入射すると、位相整合条件が成
立するいずれかの導波領域において第2高調波を励起し
てこの第2高調波が出射端面3bより出力される。
Next, the operation of this embodiment will be described. With the thin film heater 5, for example, the temperature of the incident end side of the waveguide 3 at the temperature T in
Then, the emission end side is controlled to the temperature T o (T in > T o ), respectively. If there is no great difference in temperature between the element substrate 1 and the surroundings and heat radiation from the element substrate 1 to the surroundings can be almost ignored,
As shown in FIG. 2, a temperature gradient is generated in the waveguide direction of the waveguide, and for example, the temperature of each region of the length dx in which the waveguide 3 is divided into infinitesimal small portions in the waveguide direction is measured along the waveguide direction. Change. Light (wavelength: λ 0 , frequency: ω) emitted from, for example, a semiconductor laser (not shown) is incident on the wavelength conversion element having a temperature gradient along the waveguide 3 as an incident wave on the waveguide 3. When incident on the end face 3a, the second harmonic is excited in any of the waveguide regions where the phase matching condition is satisfied, and the second harmonic is output from the emitting end face 3b.

【0012】故に、位相整合条件を成立させるために、
予め導波路3の導波方向に温度勾配を持たせて導波路の
温度を導波方向に変化させ、導波路3の導波方向に無限
小に区画された各領域dxごとの各屈折率n(ω),n
(2ω)をその温度に応じて変化させておけば、入射波
の波長が変動しても、少なくとも導波路3のいずれかの
領域で位相整合条件が成立することができる。
Therefore, in order to satisfy the phase matching condition,
A temperature gradient is given in advance to the waveguide direction of the waveguide 3 to change the temperature of the waveguide in the waveguide direction, and each refractive index n for each region dx partitioned infinitely small in the waveguide direction of the waveguide 3. (Ω), n
If (2ω) is changed according to the temperature, the phase matching condition can be satisfied at least in any region of the waveguide 3 even if the wavelength of the incident wave changes.

【0013】従って、位相整合条件を緩和することがで
き、入射波の波長変動に対しても第2高調波を出力させ
ることができる。なお、導波路3の導波方向の温度変化
は、上記実施例とは逆に入射端側の温度Tinを出射端側
の温度Toよりも低温に制御して温度勾配を逆にしても
(Tin<To)、同様の効果を有する。
Therefore, the phase matching condition can be relaxed and the second harmonic can be output even when the wavelength of the incident wave changes. The temperature change in the guiding direction of the waveguide 3, even if the temperature gradient is controlled to a temperature lower than the temperature T o of the exit end temperature T in the incident end side to the opposite contrary to the above embodiment (T in <T o ), which has a similar effect.

【0014】次に、第2の実施例を図3に基づいて説明
する。図3において、前記第1の実施例と同様に、素子
基板1に、周期的分極反転構造、導波路3、及びバッフ
ァー層4が形成されている。そして、このバッファー層
4を介して導波路3に温度勾配を与える温度制御手段と
して薄膜ヒータ5が形成されている。この薄膜ヒータ5
は、Ti にて蒸着形成され、導波路3の温度を導波方向
に沿って変化させるために、例えば導波方向の単位長さ
当りの薄膜ヒータ5の密度が入射端側では最も高く、導
波方向に沿って徐々に薄膜ヒータ5の密度が低下して出
射端側では最も低くなるように形成されている。
Next, a second embodiment will be described with reference to FIG. In FIG. 3, similarly to the first embodiment, the element substrate 1 is provided with the periodically poled structure, the waveguide 3, and the buffer layer 4. Then, a thin film heater 5 is formed as a temperature control means for giving a temperature gradient to the waveguide 3 via the buffer layer 4. This thin film heater 5
Is formed by vapor deposition at Ti and changes the temperature of the waveguide 3 along the waveguide direction. For example, the density of the thin film heaters 5 per unit length in the waveguide direction is the highest on the incident end side. The thin film heater 5 is formed so that the density of the thin film heater 5 gradually decreases along the wave direction and becomes the lowest on the emission end side.

【0015】本実施例においても、前記第1の実施例と
同様に、導波路3の導波方向に温度勾配を有し導波方向
の各領域dxごとに温度が異なりそのに温度に応じて屈
折率n(ω),n(2ω)がそれぞれ変化しているの
で、位相整合条件を緩和することができ、入射波の波長
変動に対しても第2高調波を出力させることができる。
さらに、導波路3の導波方向の温度制御手段としては、
上記実施例に限らず、導波方向に沿って適宜に区画され
た導波路の各領域ごとに薄膜ヒータ5をバッファー層4
を介して形成し、各領域の温度をそれぞれ制御しても、
上記各実施例と同様の効果を有することができる。
Also in this embodiment, as in the case of the first embodiment, there is a temperature gradient in the waveguide direction of the waveguide 3 and the temperature is different for each region dx in the waveguide direction. Since the refractive indices n (ω) and n (2ω) are changed, respectively, the phase matching condition can be relaxed and the second harmonic can be output even when the wavelength of the incident wave changes.
Further, as the temperature control means in the waveguide direction of the waveguide 3,
Not limited to the above-mentioned embodiment, the thin film heater 5 and the buffer layer 4 are provided for each region of the waveguide appropriately partitioned along the waveguide direction.
Formed through, and controlling the temperature of each region,
It is possible to obtain the same effect as that of each of the above embodiments.

【0016】また、上記実施例においては、温度制御手
段として加熱手段を用いたが、冷却手段により導波路に
温度勾配を与えても同様の効果を有する。なお、素子基
板1はLi Nb O3に限らずタンタル酸リチウム(Li
Ta O3)などQPMにより第2高調波を発生する適宜
の非線形光学結晶にて作製でき、同様の効果を有する。
In the above embodiment, the heating means is used as the temperature control means, but the same effect can be obtained even if a temperature gradient is given to the waveguide by the cooling means. The element substrate 1 is not limited to Li Nb O 3 , but lithium tantalate (Li
It can be made of an appropriate nonlinear optical crystal that generates the second harmonic by QPM such as Ta O 3 ) and has the same effect.

【0017】また、本実施例では分極反転構造の反転周
期を一定としたが、この反転周期を入射端面3aから出
射端面3bに向けて徐々に変化させても同様の効果を有
することができる。
In this embodiment, the inversion period of the domain inversion structure is constant, but the same effect can be obtained by gradually changing the inversion period from the incident end face 3a to the emitting end face 3b.

【0018】[0018]

【発明の効果】本発明によれば、温度制御手段により導
波路の導波方向に温度勾配を与えて導波路の導波方向の
各領域においてそこの温度に応じて入射波及び第2高調
波の屈折率がそれぞれ変化しているために、入射波の波
長変動が生じても、少なくとも導波路のいずれかの領域
で位相整合条件が成立するので、位相整合条件を緩和す
ることができる。
According to the present invention, the temperature control means gives a temperature gradient in the waveguide direction of the waveguide so that the incident wave and the second harmonic wave are generated in each region of the waveguide in the waveguide direction in accordance with the temperature thereof. Since the refractive index of each of the waveguides changes, the phase matching condition is satisfied at least in any region of the waveguide even if the wavelength of the incident wave fluctuates, so that the phase matching condition can be relaxed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す波長変換素子の斜
視図である。
FIG. 1 is a perspective view of a wavelength conversion element showing a first embodiment of the present invention.

【図2】同上導波路の導波方向の温度分布を示すグラフ
である。
FIG. 2 is a graph showing the temperature distribution in the waveguide direction of the above waveguide.

【図3】本発明の第2の実施例を示す波長変換素子の斜
視図である。
FIG. 3 is a perspective view of a wavelength conversion element showing a second embodiment of the present invention.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 素子基板 3 導波路 5 温度制御手段としての薄膜ヒータ 1 element substrate 3 waveguide 5 thin film heater as temperature control means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学結晶からなる素子基板に導波
路を有し、入射波の第2高調波を出力する波長変換素子
であって、 前記導波路の導波方向において温度勾配を与える温度制
御手段を有することを特徴とする波長変換素子。
1. A wavelength conversion element having a waveguide on an element substrate made of a non-linear optical crystal and outputting a second harmonic of an incident wave, the temperature control providing a temperature gradient in the waveguide direction of the waveguide. A wavelength conversion element comprising means.
JP15198192A 1992-06-11 1992-06-11 Wavelength converting element Pending JPH05341340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15198192A JPH05341340A (en) 1992-06-11 1992-06-11 Wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15198192A JPH05341340A (en) 1992-06-11 1992-06-11 Wavelength converting element

Publications (1)

Publication Number Publication Date
JPH05341340A true JPH05341340A (en) 1993-12-24

Family

ID=15530457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15198192A Pending JPH05341340A (en) 1992-06-11 1992-06-11 Wavelength converting element

Country Status (1)

Country Link
JP (1) JPH05341340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515713A (en) * 2008-03-25 2011-05-19 イェダ リサーチ アンド デベロップメント カンパニー リミテッド Crystal for light conversion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515713A (en) * 2008-03-25 2011-05-19 イェダ リサーチ アンド デベロップメント カンパニー リミテッド Crystal for light conversion

Similar Documents

Publication Publication Date Title
US5036220A (en) Nonlinear optical radiation generator and method of controlling regions of ferroelectric polarization domains in solid state bodies
US5253259A (en) Frequency doubler and visible laser source having a heater
US5249191A (en) Waveguide type second-harmonic generation element and method of producing the same
JP3392931B2 (en) Optical wavelength converter
JPH05273623A (en) Optical wavelength conversion element and laser beam source using the same
EP0962809B1 (en) A second harmonic wave-generation device
JP3424973B2 (en) Short wavelength light source module
US7515804B2 (en) Optical waveguide device
JP2822778B2 (en) Wavelength conversion element
JPH05341340A (en) Wavelength converting element
US5205904A (en) Method to fabricate frequency doubler devices
US4907850A (en) Apparatus for periodically generating second harmonic
JPH05249518A (en) Wavelength conversion element
JP2001183713A (en) Second higher harmonic generator
JP2643735B2 (en) Wavelength conversion element
JPH06265951A (en) Optical wavelength converter
Chen et al. Ultra-efficient and highly tunable frequency conversion in Z-cut periodically poled lithium niobate nanowaveguides
JPH05323401A (en) Wavelength conversion element
JPH05333391A (en) Wavelength conversion element
JP2833392B2 (en) Wavelength conversion element
JP2000047277A (en) Second harmonic generating element
JPH043127A (en) Waveguide type second harmonic wave generating element
JPH04276725A (en) Wavelength conversion element
JPH07281227A (en) Laser beam generator
JPH04296830A (en) Optical second harmonic generator