JPH04296830A - Optical second harmonic generator - Google Patents

Optical second harmonic generator

Info

Publication number
JPH04296830A
JPH04296830A JP3063472A JP6347291A JPH04296830A JP H04296830 A JPH04296830 A JP H04296830A JP 3063472 A JP3063472 A JP 3063472A JP 6347291 A JP6347291 A JP 6347291A JP H04296830 A JPH04296830 A JP H04296830A
Authority
JP
Japan
Prior art keywords
wavelength
semiconductor laser
temperature
optical
temperature characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3063472A
Other languages
Japanese (ja)
Other versions
JP3010766B2 (en
Inventor
Naoji Nada
直司 名田
Ayumi Taguchi
歩 田口
Kouichirou Kijima
公一朗 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3063472A priority Critical patent/JP3010766B2/en
Publication of JPH04296830A publication Critical patent/JPH04296830A/en
Application granted granted Critical
Publication of JP3010766B2 publication Critical patent/JP3010766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Abstract

PURPOSE:To ensure phase adjustment by matching temperature characteristic of phase adjusting wavelength and temperature characteristic of the wavelength of semiconductor laser with each other. CONSTITUTION:An optical second harmonic generating device, or SHG device 2 having a phase adjustment means 1, i.e., a refractive factor cyclic pattern or a domain reversal cyclic pattern, and a semiconductor laser 3 of its basic wave light source are provided. The temperature characteristic of the phase adjustment wavelength of the SHG device 2 and the temperature characteristic of the oscillating wavelength of the semiconductor laser 3 are almost identical in that the same temperature characteristic is obtained in a predetermined operating temperature region. By diffusing Ti and so on preferentially on a primary surface 4a of a non-linear optical crystal 4 comprising Z-plate of LN of mono-region, as indicated by an arrow (a), a phase adjustment means 1 by means of cyclic polarization reversal is formed. Otherwise, by forming a local electric field and whereby reversing the electrode, a phase adjustment means 1 by means of polarization reversal cyclic pattern is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、基本波光源としての半
導体レーザと、これよりの光を短波長化する光第2高調
波素子(SHG素子という)を有する光第2高調波発生
装置(SHG装置という)に係わる。
[Industrial Application Field] The present invention relates to an optical second harmonic generator (hereinafter referred to as an "SHG element") having a semiconductor laser as a fundamental wave light source and an optical second harmonic element (referred to as an SHG element) that shortens the wavelength of the light emitted from the semiconductor laser. (referred to as SHG equipment).

【0002】0002

【従来の技術】光ディスク、光磁気ディスク等の高密度
記録、高解像度再生等の目的から短波長光の必要性が高
まっている。
2. Description of the Related Art The need for short wavelength light is increasing for purposes such as high-density recording and high-resolution reproduction of optical discs, magneto-optical discs, etc.

【0003】この短波長光を取出すことのできる光デバ
イスとして非線形光学結晶を用いたSHG素子に対して
波長λ0 例えば840nm程度の半導体レーザ光を基
本波光として導入してこの基本波光の第2高調波による
例えば波長420nmの緑色光に変換するSHG装置が
注目されている。このSHG装置は、例えば図1に示す
ように非線形光学結晶4の一主面4a側に光導波路5を
例えばストライプ状に例えば選択的にプロトン交換を行
って高屈折率の領域を形成することによって構成してい
る。
[0003] Semiconductor laser light with a wavelength λ0, for example, about 840 nm, is introduced as fundamental wave light into an SHG element using a nonlinear optical crystal as an optical device capable of extracting this short wavelength light, and the second harmonic of this fundamental wave light is generated. For example, an SHG device that converts green light with a wavelength of 420 nm is attracting attention. This SHG device, for example, as shown in FIG. 1, forms a high refractive index region by selectively exchanging protons with an optical waveguide 5 in the form of a stripe on one main surface 4a side of a nonlinear optical crystal 4. It consists of

【0004】そして、この光導波路5の一端部5aから
半導体レーザ3からの波長λ0 のレーザ光を入射し、
他方の端部5bから2次高調波のλ0 /2を有する短
波長光を例えば基本波光と共に取出し、この出力光をフ
ィルター(図示せず)を通ずることによって短波長光の
みを取出すという構成が採られる。
Then, a laser beam having a wavelength λ0 from the semiconductor laser 3 is inputted from one end 5a of the optical waveguide 5, and
A configuration is adopted in which a short wavelength light having a second harmonic of λ0/2 is extracted from the other end 5b together with the fundamental wave light, and this output light is passed through a filter (not shown) to extract only the short wavelength light. It will be done.

【0005】このような導波路型SHG素子を用いる場
合、高SHG出力を得るには、その光導波路5における
基本波と第2高調波とが位相整合することが必要となる
[0005] When such a waveguide type SHG element is used, in order to obtain a high SHG output, it is necessary that the fundamental wave and the second harmonic in the optical waveguide 5 are phase matched.

【0006】ところが、非線形光学結晶4としてその非
線形光学定数d33が高いことから、この種のSHG素
子として用いて好適な例えばLiNbO3 (LNとい
う)を用いる場合、その高出力が得られる基本波は、例
えば通常の一般的な半導体レーザの発振波長780〜9
00nmより長い波長の例えば1000nm程度で位相
整合がとられることから基本波光源として半導体レーザ
を用いるに不適当である。このため、この種SHG素子
においては、その光導波路5の形成部に擬似位相整合を
とるための位相整合手段1が設けられる。
However, since the nonlinear optical crystal 4 has a high nonlinear optical constant d33, when using LiNbO3 (referred to as LN), which is suitable for use as this type of SHG element, the fundamental wave from which high output can be obtained is: For example, the oscillation wavelength of a normal semiconductor laser is 780 to 9
Since phase matching is achieved at a wavelength longer than 000 nm, for example about 1000 nm, it is inappropriate to use a semiconductor laser as a fundamental wave light source. For this reason, in this type of SHG element, a phase matching means 1 for achieving quasi-phase matching is provided in the forming portion of the optical waveguide 5.

【0007】この位相整合手段1は、例えば図1に矢印
aに示すようにその分極が単分域化された非線形光学結
晶4の主面4a側に、光導波路5に沿って周期的に例え
ば選択的にTiドープしてその分極方向を周期的に反転
させるかあるいはその屈折率が周期的に変化するように
した位相整合手段1を形成し、その周期分極反転あるい
は屈折率変化による位相整合手段1によって所要の入力
基本波の波長とその2次高調波の整合を採らしめるよう
にする構成が採られる。
This phase matching means 1 periodically aligns, for example, along an optical waveguide 5 on the main surface 4a side of a nonlinear optical crystal 4 whose polarization is made into a single domain, as shown by arrow a in FIG. A phase matching means 1 is formed by selectively doping Ti so that its polarization direction is periodically reversed or its refractive index is periodically changed, and the phase matching means is based on periodic polarization inversion or refractive index change. 1, a configuration is adopted in which the wavelength of the required input fundamental wave and its second harmonic are matched.

【0008】ところが、このような位相整合手段1は、
実際上温度依存性を有するものであり、一方その入力の
基本波光の光源としての半導体レーザ3についてもその
発振波長が温度依存性を有することから、位相整合手段
1の構造すなわち周期等を目的とする入力基本波波長に
応じて設定してもその外囲温度、あるいは動作時の温度
等によってその整合波長が変動することによって本来の
位相整合の機能が阻害され、高SHG出力が得られない
という問題が生じてくる。
However, such a phase matching means 1 is
In fact, it has a temperature dependence, and on the other hand, the oscillation wavelength of the semiconductor laser 3 as a light source of the input fundamental wave light also has a temperature dependence. Even if the matching wavelength is set according to the input fundamental wave wavelength to be used, the original phase matching function will be inhibited due to variations in the matching wavelength depending on the surrounding temperature or temperature during operation, making it impossible to obtain high SHG output. Problems arise.

【0009】すなわち、図5にそのSHG出力の温度に
対する依存性及び波長依存性を模式的に示すように、あ
る温度T0 においてある波長λでピーク値を示す。
That is, as shown schematically in FIG. 5, the dependence of the SHG output on temperature and wavelength shows a peak value at a certain temperature T0 and a certain wavelength λ.

【0010】今、図1の構成において、プロトン交換導
波路構成をとり、擬似位相整合により第2高調波を発生
させる場合において、その導波路長を8mmとするとき
、図5のSHG出力の波長半径幅Δλは、約1〜2Å、
温度の半値幅ΔTは約1℃であった。
Now, in the configuration of FIG. 1, when a proton exchange waveguide configuration is used and the second harmonic is generated by quasi-phase matching, and the waveguide length is 8 mm, the wavelength of the SHG output in FIG. The radius width Δλ is approximately 1 to 2 Å,
The temperature half width ΔT was about 1°C.

【0011】このため、光源3の波長及び温度のゆらぎ
に対してSHG出力は大きく変動する。
[0011] Therefore, the SHG output fluctuates greatly in response to fluctuations in the wavelength and temperature of the light source 3.

【0012】この変動を抑制するには、光源としての半
導体レーザ及びSHG素子をペルチェ素子等の電子温度
制御素子等を用いてそれぞれ個々に温度制御を精密に行
う必要が生じ、その構成、製造は極めて煩雑なものとな
る。
In order to suppress this fluctuation, it is necessary to individually precisely control the temperature of the semiconductor laser as a light source and the SHG element using an electronic temperature control element such as a Peltier element. It becomes extremely complicated.

【0013】例えば、図1において半導体レーザ3と位
相整合手段1の温度特性がそれぞれ図6の特性曲線6L
Dあるいは6PMに示すように、その両特性が所定の温
度T0 の1点で交わる場合、高SHG出力を得るため
には、この温度T0 に半導体レーザ及びSHG素子を
保持することになる。
For example, in FIG. 1, the temperature characteristics of the semiconductor laser 3 and the phase matching means 1 correspond to the characteristic curve 6L of FIG.
As shown in D or 6PM, when both characteristics intersect at a point at a predetermined temperature T0, the semiconductor laser and the SHG element must be maintained at this temperature T0 in order to obtain a high SHG output.

【0014】また、図7に示すように、その半導体レー
ザの温度特性7LDと位相整合の温度特性7PMに示す
ように、互いにその動作温度で交わることがない場合は
、それぞれ一定の波長を示す温度TLD及びTPMにそ
れぞれ異なる温度に保持する必要があることになる。
Further, as shown in FIG. 7, as shown in the temperature characteristics 7LD of the semiconductor laser and the temperature characteristics 7PM of phase matching, if the operating temperatures do not intersect with each other, the temperatures exhibiting a constant wavelength, respectively. It will be necessary to maintain the TLD and TPM at different temperatures.

【0015】[0015]

【発明が解決しようとする課題】本発明は、上述した位
相整合手段を有するSHG素子と、これに対する基本波
光の光源としての半導体レーザを有するSHG装置にお
いて、安定してまた特段の温度制御手段を設けることな
く、高SHG出力が得られるようにする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a stable and special temperature control means in an SHG device having an SHG element having the above-mentioned phase matching means and a semiconductor laser as a light source of fundamental wave light for the SHG element. To obtain high SHG output without providing any.

【0016】[0016]

【課題を解決するための手段】本発明は、図1で説明し
たように位相整合手段1すなわち屈折率周期パターンあ
るいはドメイン反転周期パターンを有する光第2高調波
発生素子すなわちSHG素子2とその基本波光源の半導
体レーザ3とを有してなる光第2高調波発生装置におい
て、そのSHG素子2の位相整合波長の温度特性と、半
導体レーザ3の発振波長の温度特性は、図2及び図3に
それぞれ示すように所定の動作温度領域の温度すなわち
温度T1 〜T2 の例えば10°〜60°において同
一の温度特性を有するようにほぼ一致するように構成す
る。
[Means for Solving the Problems] As explained with reference to FIG. In an optical second harmonic generation device having a semiconductor laser 3 as a wave light source, the temperature characteristics of the phase matching wavelength of the SHG element 2 and the temperature characteristics of the oscillation wavelength of the semiconductor laser 3 are shown in FIGS. 2 and 3. As shown in FIGS. 1 and 2, they are configured to have substantially the same temperature characteristics in a predetermined operating temperature range, that is, temperatures T1 to T2, for example, 10° to 60°.

【0017】[0017]

【作用】上述の本発明構成によれば、所要の動作温度T
1 〜T2において図2及び図3に示すように位相整合
波長の温度特性と半導体レーザの波長の温度特性とが一
致するようにしたので、この温度T1 〜T2 におけ
る基本波すなわち半導体レーザ3からの入射光がλ1 
〜λ2 に変化する場合、その位相整合波長もまたλ1
 〜λ2 において同一勾配をもって変化することから
常時この温度T1 〜T2 において温度に依存するこ
となく位相整合が確実になされることになる。
[Operation] According to the configuration of the present invention described above, the required operating temperature T
1 to T2, as shown in FIGS. 2 and 3, the temperature characteristics of the phase matching wavelength and the temperature characteristics of the semiconductor laser wavelength are made to match, so that the fundamental wave, that is, from the semiconductor laser 3 at this temperature T1 to T2, The incident light is λ1
~λ2, its phase matching wavelength also changes to λ1
Since it changes with the same gradient at temperatures T1 to T2, phase matching is always ensured regardless of the temperature.

【0018】したがって、温度に依存することなく所定
の波長λの高SHG出力が保持されるようにすることが
できる。
[0018] Therefore, a high SHG output of a predetermined wavelength λ can be maintained regardless of temperature.

【0019】[0019]

【実施例】図1を参照して本発明によるSHG装置を説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A SHG apparatus according to the present invention will be explained with reference to FIG.

【0020】本発明においては、例えば矢印aで示す単
分域化されたLNのZ板よりなる非線形光学結晶4の例
えば1主面4aに例えば選択的にTi等の拡散を行うこ
とによって、あるいはLiの外拡散法等の周知の技術に
よって周期分極反転による位相整合手段4を形成する。 或いは単分域化されたLN結晶基板に電圧印加、電子照
射等による局部的電界形成によってその分極を反転させ
て分極反転周期パターンによる位相整合手段1を形成す
る。その後、周知の技術例えばプロトン交換法によって
所要のストライプ状の光導波路5を形成する。このプロ
トン交換法としては、例えば非線形光学結晶4の1主面
4a上の光導波路5を形成すべき以外の部分を例えば2
00ÅのTa等よりなるマスクをレジストを用いたリフ
トオフ法によって光導波路を形成すべき部分のみにスト
ライプ状の窓開けを行って形成し、これを例えば220
℃の熱りん酸中に13分間浸漬し、その後大気中350
℃2時間程度の熱処理を行うことによって目的とする例
えばその相互作用長すなわち導波路長が8mmのストラ
イプ状の光導波路5を形成する。
In the present invention, for example, by selectively diffusing Ti or the like onto, for example, one main surface 4a of the nonlinear optical crystal 4, which is made of a Z-plate of single-domain LN as shown by the arrow a, or The phase matching means 4 by periodic polarization inversion is formed by a well-known technique such as the Li out-diffusion method. Alternatively, the polarization of the single-domain LN crystal substrate is inverted by applying a voltage, forming a local electric field by electron irradiation, etc., and forming the phase matching means 1 with a periodic pattern of polarization inversion. Thereafter, a desired striped optical waveguide 5 is formed using a well-known technique such as a proton exchange method. In this proton exchange method, for example, a portion of one principal surface 4a of the nonlinear optical crystal 4 other than where the optical waveguide 5 is to be formed is
A striped window is formed only in the area where the optical waveguide is to be formed by using a lift-off method using a mask made of Ta or the like with a thickness of 220 Å, for example.
immersed in hot phosphoric acid at 350°C for 13 minutes, then exposed to air at 350°C.
By performing a heat treatment for about 2 hours at °C, a striped optical waveguide 5 having an interaction length, that is, a waveguide length of 8 mm, is formed.

【0021】そして、このSHG素子の光導波路5の一
端部5aに対向して半導体レーザ例えば波長λ0 が8
40nmのレーザ光を発振する半導体レーザ3の光出射
端を対向させて光導波路5に波長λ0 の基本波光を導
入する。
[0021] A semiconductor laser, for example, with a wavelength λ0 of 8.0
A fundamental wave light having a wavelength λ0 is introduced into the optical waveguide 5 with the light emitting ends of the semiconductor laser 3 which oscillates a laser light of 40 nm facing each other.

【0022】そして、光導波路5の他端5b側から基本
波と共に、その第2高調波の短波長光を取出し、図示し
ないがこれをフィルターを通ずることによってこれより
目的とする2次高調波による短波長光を取出す。
Then, from the other end 5b side of the optical waveguide 5, the short wavelength light of the second harmonic is extracted together with the fundamental wave, and is passed through a filter (not shown) to obtain the desired second harmonic. Extracts short wavelength light.

【0023】そして、特に本発明においては、図3にそ
の半導体レーザ波長の温度依存性の一例を示すように、
例えばこのSHG装置の一般的動作温度領域例えばT1
 =10°〜T2 =60°程度の温度範囲によって例
えば温度TすなわちT1 ≦T≦T2 の範囲でその発
振波長が、各温度T1 ,TR ,T2 における波長
λ1 ,λR ,λ2 とするとき(λ2 −λ1 )
/(T2 −T1 )の傾きをもつ半導体レーザを用い
、一方図2に示すように上述の傾きと同程度の温度T1
 〜T2 においてそれぞれその温度勾配が図3の半導
体レーザ波長の温度依存性と同様の特性を示す温度依存
性を有する位相整合手段1とする。
In particular, in the present invention, as shown in FIG. 3, an example of the temperature dependence of the semiconductor laser wavelength is as follows.
For example, the general operating temperature range of this SHG device is T1.
= 10° to T2 = 60°, for example, when the oscillation wavelength is assumed to be the wavelengths λ1, λR, λ2 at each temperature T1, TR, T2 in the range of temperature T, that is, T1 ≦T≦T2 (λ2 − λ1)
A semiconductor laser with a slope of /(T2 - T1 ) is used, and as shown in FIG.
-T2, the phase matching means 1 is assumed to have temperature dependence, the temperature gradient of which exhibits characteristics similar to the temperature dependence of the semiconductor laser wavelength in FIG.

【0024】実際上、例えば半導体レーザとして80m
Wのシングルモードの発振をなし、30℃で波長839
nmの半導体レーザにおける25℃〜50℃の温度範囲
の温度特性の勾配は6nm/degであり、一方上述し
たようにプロトン交換によって導波路を形成し、ドメイ
ン反転周期パターンによって位相整合手段1を構成した
場合の温度依存性もこれとほぼ一致させることができる
In practice, for example, as a semiconductor laser, the distance is 80 m.
Single mode oscillation of W, wavelength 839 at 30℃
The slope of the temperature characteristic in the temperature range of 25° C. to 50° C. in a nm semiconductor laser is 6 nm/deg. On the other hand, as described above, a waveguide is formed by proton exchange, and the phase matching means 1 is configured by a domain inversion periodic pattern. The temperature dependence in this case can also be made to roughly match this.

【0025】上述したように本発明によれば、基本波光
源としての半導体レーザ3の温度依存性とSHG素子2
の位相整合波長の温度依存性を一致させるようにしたこ
とによって、何等温度制御手段あるいは温度設定手段等
を設けることなく確実にこの温度範囲において高SHG
出力を安定に得ることができる。
As described above, according to the present invention, the temperature dependence of the semiconductor laser 3 as a fundamental wave light source and the SHG element 2
By matching the temperature dependence of the phase matching wavelength of
Stable output can be obtained.

【0026】図1で説明した例においては、SHG素子
2に半導体レーザ3からの出射光を直接的に導入するよ
うにした場合であるが、ある場合は図4に示すように光
学系10を配置を介して導入することができる。
In the example explained in FIG. 1, the light emitted from the semiconductor laser 3 is directly introduced into the SHG element 2, but in some cases, the optical system 10 is changed as shown in FIG. Can be introduced via placement.

【0027】この光学系10としては、例えば、コリメ
ートレンズ11と集光レンズ12との組合せ等種々の構
成を採り得る。
The optical system 10 may have various configurations, such as a combination of a collimating lens 11 and a condensing lens 12, for example.

【0028】上述した例においては、LNのZ板よりな
る非線形光学結晶によるSHG素子2を用いた場合であ
るが、KTP(KTiOPO4 )等による光導波路S
HG素子あるいは非線形光学結晶4上に線形光学結晶の
光導波路を設けてかつ上述したような位相整合手段を具
備するチェレンコフ放射型SHG素子を用いる場合等種
々のSHG素子とその基本波光源として半導体レーザを
用いる場合に本発明を適用することができる。
In the above example, the SHG element 2 made of a nonlinear optical crystal made of an LN Z plate is used, but the optical waveguide S made of KTP (KTiOPO4) or the like is used.
Various SHG elements such as a Cerenkov radiation type SHG element having an optical waveguide of a linear optical crystal provided on the nonlinear optical crystal 4 and a phase matching means as described above are used, and a semiconductor laser as its fundamental wave light source. The present invention can be applied when using.

【0029】[0029]

【発明の効果】上述したように、本発明においては位相
整合手段1を有するSHG素子2のその位相整合の温度
特性とその基本波光源としての半導体レーザ3の温度特
性を所要の範囲でほぼ一致させるようにしたことによっ
て、何等特段の温度制御手段を設けることなく常に高S
HG出力を取出すことのできる光第2高調波発生装置S
HG装置を得ることができる。
As described above, in the present invention, the temperature characteristics of the phase matching of the SHG element 2 having the phase matching means 1 and the temperature characteristics of the semiconductor laser 3 as its fundamental wave light source are almost matched within the required range. As a result, high S temperature can be maintained without any special temperature control means.
Optical second harmonic generator S capable of extracting HG output
An HG device can be obtained.

【0030】したがって、光ディスク、光磁気ディスク
短波長光源として用いて好適な光第2高調波発生装置を
構成することができる。
Therefore, an optical second harmonic generation device suitable for use as a short wavelength light source for optical disks and magneto-optical disks can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明装置の説明に供する構成図である。FIG. 1 is a configuration diagram for explaining an apparatus of the present invention.

【図2】SHG素子の位相整合波長の温度依存性を示す
特性曲線図である。
FIG. 2 is a characteristic curve diagram showing the temperature dependence of the phase matching wavelength of the SHG element.

【図3】半導体レーザ波長の温度依存性を示す特性曲線
図である。
FIG. 3 is a characteristic curve diagram showing the temperature dependence of a semiconductor laser wavelength.

【図4】本発明装置の他の例の構成図である。FIG. 4 is a configuration diagram of another example of the device of the present invention.

【図5】SHG出力の温度及び波長依存性を示す特性曲
線図である。
FIG. 5 is a characteristic curve diagram showing the temperature and wavelength dependence of SHG output.

【図6】半導体レーザとSHG素子の位相整合の温度特
性曲線図である。
FIG. 6 is a temperature characteristic curve diagram of phase matching between a semiconductor laser and an SHG element.

【図7】半導体レーザと位相整合の温度特性曲線図であ
る。
FIG. 7 is a temperature characteristic curve diagram of a semiconductor laser and phase matching.

【符号の説明】[Explanation of symbols]

1  位相整合手段 2  光第2高調波発生素子(SHG素子)3  半導
体レーザ 4  非線形光学結晶 5  光導波路
1 Phase matching means 2 Optical second harmonic generation element (SHG element) 3 Semiconductor laser 4 Nonlinear optical crystal 5 Optical waveguide

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  位相整合手段を有する光第2高調波発
生素子と、その基本波光源の半導体レーザとを有してな
る光第2高調波発生装置において、上記位相整合波長の
温度特性と上記半導体レーザの発振波長の温度特性とが
、所要の動作温度範囲においてほぼ一致するようにした
ことを特徴とする光第2高調波発生装置。
1. An optical second harmonic generation device comprising an optical second harmonic generation element having a phase matching means and a semiconductor laser as a fundamental wave light source thereof, wherein the temperature characteristic of the phase matching wavelength and the above 1. An optical second harmonic generator characterized in that the temperature characteristics of the oscillation wavelength of a semiconductor laser are substantially the same in a required operating temperature range.
JP3063472A 1991-03-27 1991-03-27 Optical second harmonic generator Expired - Fee Related JP3010766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063472A JP3010766B2 (en) 1991-03-27 1991-03-27 Optical second harmonic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063472A JP3010766B2 (en) 1991-03-27 1991-03-27 Optical second harmonic generator

Publications (2)

Publication Number Publication Date
JPH04296830A true JPH04296830A (en) 1992-10-21
JP3010766B2 JP3010766B2 (en) 2000-02-21

Family

ID=13230210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063472A Expired - Fee Related JP3010766B2 (en) 1991-03-27 1991-03-27 Optical second harmonic generator

Country Status (1)

Country Link
JP (1) JP3010766B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0784881A1 (en) * 1994-10-03 1997-07-23 SDL, Inc. Tunable blue laser diode
WO2017104791A1 (en) * 2015-12-18 2017-06-22 Sharp Kabushiki Kaisha Light source configured for stabilization relative to external operating conditions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0784881A1 (en) * 1994-10-03 1997-07-23 SDL, Inc. Tunable blue laser diode
EP0784881A4 (en) * 1994-10-03 1997-09-17 Sdl Inc Tunable blue laser diode
WO2017104791A1 (en) * 2015-12-18 2017-06-22 Sharp Kabushiki Kaisha Light source configured for stabilization relative to external operating conditions

Also Published As

Publication number Publication date
JP3010766B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
JP3460840B2 (en) Optical element, laser light source, laser device, and method for manufacturing optical element
US6229828B1 (en) High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)
US5193023A (en) Method of controlling the domain of a nonlinear ferroelectric optics substrate
JPH10506724A (en) Tunable blue laser diode
US5253259A (en) Frequency doubler and visible laser source having a heater
JP2004219845A (en) Optical waveguide device, coherent light source using the same, and optical apparatus provided with the same
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JP3915145B2 (en) Optical wavelength conversion element and method of manufacturing polarization inversion
JP4119508B2 (en) Optical wavelength conversion element and manufacturing method thereof, light generation apparatus and optical pickup using the element, and manufacturing method of polarization inversion unit
JP3264081B2 (en) Optical wavelength conversion element and short wavelength light generator
EP0482497A2 (en) Light wavelentgh shifter
JP4114694B2 (en) Optical wavelength conversion element and short wavelength light generator
JPH04296830A (en) Optical second harmonic generator
JP3006309B2 (en) Optical wavelength conversion element and short wavelength laser light source
JPH0566440A (en) Laser light source
JP4156644B2 (en) Laser equipment
JP3049986B2 (en) Optical wavelength conversion element
JP2004157504A (en) Laser apparatus
JP3884401B2 (en) Laser light source and optical disk apparatus
JPH06265951A (en) Optical wavelength converter
JP2004070286A (en) Laser device
JP2004157505A (en) Laser light source and laser projection apparatus
JPH05323406A (en) Stabilized higher harmonic generator
JPH0643513A (en) Wavelength converting element
JP2004094200A (en) Laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees