JP4114694B2 - Optical wavelength conversion element and short wavelength light generator - Google Patents

Optical wavelength conversion element and short wavelength light generator Download PDF

Info

Publication number
JP4114694B2
JP4114694B2 JP2006008469A JP2006008469A JP4114694B2 JP 4114694 B2 JP4114694 B2 JP 4114694B2 JP 2006008469 A JP2006008469 A JP 2006008469A JP 2006008469 A JP2006008469 A JP 2006008469A JP 4114694 B2 JP4114694 B2 JP 4114694B2
Authority
JP
Japan
Prior art keywords
conversion element
wavelength conversion
optical
optical wavelength
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006008469A
Other languages
Japanese (ja)
Other versions
JP2006106804A (en
Inventor
公典 水内
和久 山本
康夫 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006008469A priority Critical patent/JP4114694B2/en
Publication of JP2006106804A publication Critical patent/JP2006106804A/en
Application granted granted Critical
Publication of JP4114694B2 publication Critical patent/JP4114694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、コヒーレント光源を応用した、光情報処理、光応用計測分野に使用される光導波路および波長変換素子に関するものである。   The present invention relates to an optical waveguide and a wavelength conversion element used in the field of optical information processing and applied optical measurement, to which a coherent light source is applied.

単一分極の強誘電体結晶の分極を部分的に反転させる分極反転は、非線形光学効果、電気光学効果、音響光学効果等の光波制御を可能にし、通信、光情報処理、計測等広い分野で応用されている。中でも非線形光学効果を利用した光波長変換素子への適用は、半導体レーザの波長変換による小型の短波長光源を実現できるため、盛んに研究が行われている。   Polarization reversal, which partially inverts the polarization of a single-polarized ferroelectric crystal, enables light wave control such as nonlinear optical effect, electro-optic effect, acousto-optic effect, etc. in a wide range of fields such as communication, optical information processing, measurement, etc. Applied. Among them, application to an optical wavelength conversion element utilizing a nonlinear optical effect has been actively studied because it can realize a small short wavelength light source by wavelength conversion of a semiconductor laser.

従来の分極反転製造方法は、強誘電体に電極を形成し電極間に電圧を印加することで分極反転を形成している(電子情報通信学会論文誌、金高健二 他、C-I、vol.J78-C-I, No.5 pp.238-245)。強誘電体であるLiNbO3の表面に周期構造の電極を裏面に平面電極を形成する。電極間に電圧を印加し流れる電荷量を制御して、分極反転構造を形成している。従来の分極反転の製造方法を図13に示す。分極反転に必要な電荷量は(自発分極Ps)×(電極範囲面積)×2で与えられている。また、分極反転部の広がりは、電極の周期Λと電極幅Wの比W/Λの値で決まり、基板の厚みに依存しない値だけ広がると考えられている。形成された分極反転は周期3μm、分極反転が形成された領域の面積は1mm2程度であった。 In the conventional polarization inversion manufacturing method, polarization inversion is formed by forming electrodes in a ferroelectric and applying a voltage between the electrodes (Journal of the Institute of Electronics, Information and Communication Engineers, Kenji Kindaka et al., CI, vol.J78). -CI, No.5 pp.238-245). An electrode having a periodic structure is formed on the surface of LiNbO 3 which is a ferroelectric, and a planar electrode is formed on the back surface. A polarization inversion structure is formed by controlling the amount of charge flowing by applying a voltage between the electrodes. A conventional polarization inversion manufacturing method is shown in FIG. The amount of charge necessary for polarization inversion is given by (spontaneous polarization Ps) × (electrode range area) × 2. Further, the spread of the domain-inverted portion is determined by the value of the ratio W / Λ of the electrode period Λ and the electrode width W, and is considered to spread by a value independent of the thickness of the substrate. The formed polarization inversion had a period of 3 μm, and the area of the region where the polarization inversion was formed was about 1 mm 2 .

また、従来の光波長変換素子の構造は、位相整合をとるため周期状の分極反転構造を非線形光学結晶内に形成した素子構造が報告されている(例えば、電気情報通信学会論文誌、佐藤学 他、C−I,vol.J78-C-I,No.8,pp.366-372)。   As for the structure of a conventional optical wavelength conversion element, an element structure in which a periodic polarization inversion structure is formed in a nonlinear optical crystal for phase matching has been reported (for example, IEICE Transactions, Sato Manabu). Et al., C-I, vol. J78-CI, No. 8, pp. 366-372).

従来の光波長変換素子の構造を図14に示す。光波長変換素子はLiTaO3基板に周期7.8μmの分極反転層を形成し、分極反転層により位相整合をとることで、素子内に集光された基本波を第二高調波(以下SHGとする)に変換している。 The structure of a conventional optical wavelength conversion element is shown in FIG. The optical wavelength conversion element is formed by forming a domain inversion layer with a period of 7.8 μm on a LiTaO 3 substrate and phase matching with the domain inversion layer to convert the fundamental wave collected in the element to the second harmonic (hereinafter referred to as SHG). )).

また、その作製方法は、LiTaO3基板の+Z面に櫛形電極を、-Z面に平面電極を形成し、電極間にパルス状の高電圧を印加することで周期状の分極反転層を形成している。その後、電極を除去し、光導波路の両端面を光学研磨して入出射部を形成している。
電子情報通信学会論文誌、金高健二 他、C-I、vol.J78-C-I, No.5 pp.238-245 電気情報通信学会論文誌、佐藤学 他、C−I,vol.J78-C-I,No.8,pp.366-372
Also, the fabrication method is that a comb-shaped electrode is formed on the + Z surface of a LiTaO 3 substrate, a planar electrode is formed on the -Z surface, and a periodic polarization inversion layer is formed by applying a pulsed high voltage between the electrodes. is doing. Thereafter, the electrodes are removed, and both end faces of the optical waveguide are optically polished to form the incident / exit portions.
IEICE Transactions, Kenji Kintaka et al., CI, vol.J78-CI, No.5 pp.238-245 IEICE Transactions, Sato Manabu et al., CI, vol.J78-CI, No.8, pp.366-372

分極反転の製造方法についての課題を述べる。   The subject about the manufacturing method of polarization inversion is described.

電界印加により形成される分極反転は、変換効率向上、生産性の向上から大面積に渡る分極反転構造の形成が必要である。しかしながら、従来の方法では周期状の分極反転が形成される面積が1mm2程度と小さく、大面積に渡り分極反転を形成すると、分極反転が形成されない、非反転領域が多数形成され均一な分極反転構造ができないといった問題があった。また周期3μm程度の粗い周期構造しか形成できず、さらに短周期の分極反転構造を形成するのが難しいという問題があった。 The polarization inversion formed by applying an electric field requires the formation of a domain-inverted structure over a large area in order to improve conversion efficiency and productivity. However, in the conventional method, the area where the periodic polarization inversion is formed is as small as about 1 mm 2, and when the polarization inversion is formed over a large area, the polarization inversion is not formed, and a large number of non-inversion regions are formed and uniform polarization inversion. There was a problem that the structure was not possible. In addition, only a rough periodic structure with a period of about 3 μm can be formed, and it is difficult to form a domain-inverted structure with a shorter period.

また分極反転を均一に形成するための、基板厚み、電極形状、印加電荷量等の関係が明らかではないため、微細な分極反転形状を形成するのが難しいという問題があった。   In addition, since the relationship among the substrate thickness, electrode shape, applied charge amount and the like for uniformly forming the polarization inversion is not clear, there is a problem that it is difficult to form a fine polarization inversion shape.

また、電界印加により形成された周期状の分極反転構造は、短周期で深い構造を実現し、バルク型の光波長変換素子において高効率の波長変換を可能にした。しかしながら、高圧の電界を印加するため結晶内に局所的な屈折率変化が残留し、結晶内を通る光の伝播損失になっていた。これを低減するため400℃以上の高温でアニール処理する方法も報告されているが、高温で熱処理すると結晶の光損傷が増大し、SHG出力の不安定性が増大するという問題があった。   In addition, the periodic domain-inverted structure formed by applying an electric field realizes a deep structure with a short period and enables highly efficient wavelength conversion in a bulk type optical wavelength conversion element. However, since a high-voltage electric field is applied, a local refractive index change remains in the crystal, resulting in light propagation loss through the crystal. In order to reduce this, a method of annealing at a high temperature of 400 ° C. or higher has also been reported, but there is a problem in that the heat damage of the crystal increases and the instability of the SHG output increases when the heat treatment is performed at a high temperature.

次に、光波長変換素子についての課題を述べる。従来の光波長変換素子はLiTaO3に周期状分極反転構造を形成することで位相整合をとり波長変換を行っている。そのため位相整合は波長許容度は0.1nm程度(相互作用長:10mm程度の場合)と非常に厳しく、環境温度の変化、焦電効果による電界の発生、光損傷等の影響による結晶の屈折率変化により変換効率が大きく変動し、出力が不安定になるという問題があった。 Next, problems with the optical wavelength conversion element will be described. A conventional optical wavelength conversion element performs wavelength conversion by phase matching by forming a periodic polarization inversion structure in LiTaO 3 . For this reason, the phase matching is extremely strict with a wavelength tolerance of about 0.1 nm (interaction length: about 10 mm), and changes in the refractive index of the crystal due to environmental temperature changes, generation of electric fields due to pyroelectric effects, optical damage, etc. As a result, the conversion efficiency fluctuates greatly and the output becomes unstable.

上記課題を解決するため本発明では、c板のLiTaO3基板と、前記基板に形成した周期状の分極反転層を有し、分極反転層の周期Λと、前記基板の厚みTが、
T<Λ/0.01
の関係を満足する光波長変換素子である。
In order to solve the above-mentioned problems, the present invention has a c-plate LiTaO 3 substrate and a periodic domain-inverted layer formed on the substrate, and the period Λ of the domain-inverted layer and the thickness T of the substrate are:
T <Λ / 0.01
This is an optical wavelength conversion element that satisfies the above relationship.

また、非線形光学効果を有する結晶と、前記結晶に形成された周期状の分極反転層と、前記結晶の端面に形成された入射面と、前記結晶の他の端面に形成された出射面と、前記結晶の表面または裏面の少なくとも一部に形成した金属膜を有する光波長変換素子である。   Further, a crystal having a nonlinear optical effect, a periodic domain-inverted layer formed on the crystal, an incident surface formed on the end surface of the crystal, and an exit surface formed on the other end surface of the crystal, An optical wavelength conversion element having a metal film formed on at least a part of the front surface or the back surface of the crystal.

また、非線形光学効果を有する結晶と、前記結晶に形成された周期状の分極反転層と、前記結晶の端面に形成された入射面と、前記結晶の他の端面に形成された出射面とを有し、前記周期状分極反転層が、前記入射面より入射された基本波の伝搬方向と平行な方向に2つ以上の領域に分割されており、かつ前記領域における前記分極反転の位相が互いに異なっている光波長変換素子である。   A crystal having a nonlinear optical effect; a periodic domain-inverted layer formed on the crystal; an incident surface formed on an end surface of the crystal; and an exit surface formed on the other end surface of the crystal. The periodic domain-inverted layer is divided into two or more regions in a direction parallel to the propagation direction of the fundamental wave incident from the incident surface, and the phases of polarization inversion in the regions are mutually It is a different optical wavelength conversion element.

また、非線形光学効果を有する結晶と、前記結晶に形成された周期状の分極反転層と、前記結晶の端面に形成された入射面と、前記結晶の他の端面に形成された出射面とを有し、前記周期状分極反転層が、前記入射面より入射された基本波の伝搬方向と平行な方向に2つ以上の領域に分割されており、かつ前記領域における前記分極反転の周期が互いに異なっている光波長変換素子である。   A crystal having a nonlinear optical effect; a periodic domain-inverted layer formed on the crystal; an incident surface formed on an end surface of the crystal; and an exit surface formed on the other end surface of the crystal. The periodic domain-inverted layer is divided into two or more regions in a direction parallel to the propagation direction of the fundamental wave incident from the incident surface, and the periods of domain inversion in the regions are mutually It is a different optical wavelength conversion element.

また、非線形光学効果を有する結晶を2つ以上備え、各々の結晶が内部に形成された周期状の分極反転層と、端面に形成された入射面と、他の端面に形成された出射面とを有し、かつ前記結晶が互いに光学的に接触している光波長変換素子である。   In addition, there are two or more crystals having a nonlinear optical effect, each of which has a periodic domain-inverted layer formed inside, an incident surface formed on one end surface, and an exit surface formed on another end surface. And the crystal is in optical contact with each other.

また、前述した光波長変換素子と、集光光学系と、レーザとを備え、前記レーザから出射した光が、前記光学系により前記光波長変換素子内に集光されて前記光波長変換素子により波長変換されている短波長光発生装置である。   Further, the optical wavelength conversion element described above, a condensing optical system, and a laser are provided, and light emitted from the laser is condensed in the optical wavelength conversion element by the optical system and is collected by the optical wavelength conversion element. This is a short-wavelength light generator that has undergone wavelength conversion.

以上説明したように、分極反転を形成時に、分極反転部分の形状が電極周辺部にある最小の値(ΔWmin)以上広がったときにのみ、分極が均一に形成されることが見いだされた。従って、分極反転の拡大(Wmin)を考慮した電極形状を作製することで、均一な分極反転構造が高い精度で形成できるため、その実用効果は大きい。   As described above, it has been found that the polarization is uniformly formed only when the shape of the domain-inverted portion spreads more than the minimum value (ΔWmin) in the periphery of the electrode when the domain-inversion is formed. Therefore, by producing an electrode shape that takes into account the expansion of polarization reversal (Wmin), a uniform polarization reversal structure can be formed with high accuracy, and its practical effect is great.

また、分極反転を形成する際、電極に与える電荷量を分極反転部の最小拡大部を含めた値以上印加することで、分極反転の際形成される非反転領域の形成を防止し、均一な分極反転構造を形成できるため、その実用効果は大きい。   Further, when forming polarization reversal, the amount of charge applied to the electrode is applied more than the value including the minimum enlarged portion of the polarization reversal part, thereby preventing formation of a non-reversal region formed at the time of polarization reversal. Since a domain-inverted structure can be formed, its practical effect is great.

また、周期状分極反転構造を形成する際、分極反転部の拡大により隣接する分極反転部同士が接触し周期状分極反転構造の形成を困難にするのを防止するため、分極反転部の最小拡大分を考慮して電極を形成することで、周期状の分極反転構造の形成が可能となり、その実用効果は大きい。   In addition, when forming a periodic domain-inverted structure, the enlargement of the domain-inverted part prevents the adjacent domain-inverted parts from coming into contact with each other to make it difficult to form the domain-inverted structure. By forming the electrode in consideration of the amount, it becomes possible to form a periodic domain-inverted structure, and its practical effect is great.

また、周期状分極反転構造を形成する際、電極に与える電荷量を分極反転部の最小拡大部を含めた値以上印加することで、分極反転の際形成される非反転領域の形成を防止し、均一な分極反転構造を形成できるため、その実用効果は大きい。   In addition, when forming a periodic domain-inverted structure, the amount of charge applied to the electrode is applied to a value that includes the minimum enlarged portion of the domain-inverted portion, thereby preventing the formation of a non-inverted region that is formed during domain-inversion. Since a uniform domain-inverted structure can be formed, its practical effect is great.

また、分極反転形成後、基板にプラズマを照射することで、耐光損傷性に優れた光波長変換素子が形成できるため、その実用効果は大きい。   Moreover, since the optical wavelength conversion element having excellent light damage resistance can be formed by irradiating the substrate with plasma after the polarization inversion formation, the practical effect is great.

また、光波長変換素子を作製するプロセスにおいて、分極反転形成後に基板を特定の温度でアニール処理することで、光の伝搬損失および光損傷を大幅に低減できるため、その実用効果は大きい。   Further, in the process of manufacturing the optical wavelength conversion element, the substrate is annealed at a specific temperature after the polarization inversion process, so that the light propagation loss and the optical damage can be greatly reduced, so that the practical effect is great.

また、光波長変換素子を作製するプロセスにおいて、電界印加直後に2秒間以上直流電圧を印加することで、分極反転の周期構造の均一化が大幅に増大するため、その実用効果は大きい。   In addition, in the process of manufacturing the optical wavelength conversion element, applying a DC voltage for 2 seconds or more immediately after the application of an electric field greatly increases the uniformity of the periodic structure of polarization inversion, so that the practical effect is great.

また、分極反転部の拡大が基板厚みに依存する関係を見いだしたことより、基板厚みに制限された分極反転周期を有する光波長変換素子構造をとることで、変換効率の高い素子が構成できるため、その実用効果は大きい。   In addition, since the expansion of the polarization inversion portion has been found to be dependent on the substrate thickness, an element with high conversion efficiency can be configured by adopting an optical wavelength conversion element structure having a polarization inversion period limited to the substrate thickness. The practical effect is great.

また、光波長変換素子の表面に金属膜を装着することで、焦電効果による屈折率変化を低減できる。さらに、結晶の熱伝導率を増大させることができるため、温度制御の高速化、安定化が可能となり、光波長変換素子の出力安定化が可能となるため、その実用効果は大きい。   Moreover, the refractive index change by a pyroelectric effect can be reduced by mounting | wearing the surface of a light wavelength conversion element with a metal film. Furthermore, since the thermal conductivity of the crystal can be increased, the temperature control can be speeded up and stabilized, and the output of the optical wavelength conversion element can be stabilized.

また、分極反転構造を分割し、各分割部分で互いに分極反転周期の位相を変えることで、光損傷の原因となる光励起による電荷の相殺効果を高めることができた。これによって、光損傷の少ない出力の安定な光波長変換素子が実現できるため、その実用効果は大きい。   Moreover, by dividing the domain-inverted structure and changing the phase of the domain-inverted period at each divided part, it was possible to enhance the charge canceling effect due to photoexcitation causing photodamage. As a result, a stable optical wavelength conversion element with less optical damage and an output can be realized, and its practical effect is great.

また、分極反転構造を分割し、各分割部分での分極反転周期を互いに変えることにより、光波長変換素子の波長許容度を向上させることができた。本発明の構成は、分割された部分の相関関係が素子の長さ方向に渡り均一なめ、光損傷等の長さ方向に分布をもった、屈折率変化に対しても、安定な位相整合特性を達成するため、光損傷に対し安定な出力の光波長変換素子が実現でき、その実用効果は大きい。   Moreover, the wavelength tolerance of the optical wavelength conversion element could be improved by dividing the domain-inverted structure and changing the domain-inverted period at each divided part. The structure of the present invention is such that the correlation of the divided portions is uniform over the length direction of the element, and the phase matching characteristics are stable even with respect to refractive index change, with distribution in the length direction such as optical damage. Therefore, an optical wavelength conversion element having a stable output against optical damage can be realized, and its practical effect is great.

また、分極反転構造を有する非線形光学結晶を積層することにより、厚い基板のバルク型光波長変換素子が作製できる。電界印加により形成可能な周期状分極反転は、短周期の分極反転構造を実現する場合、その基板厚みが制限される。そこで、薄い基板に形成した分極反転構造を積層することで厚いバルク型素子を実現できる。作製された素子は、素子長増大による変換効率の向上ならびに、素子アライメント尤度が増大する。さらに、光損傷および、焦電効果の低減も可能となるため、その実用効果は大きい。   Further, by stacking nonlinear optical crystals having a domain-inverted structure, a thick substrate bulk-type wavelength conversion device can be produced. The periodic polarization reversal that can be formed by applying an electric field has a limited substrate thickness when a short-period polarization reversal structure is realized. Therefore, a thick bulk element can be realized by stacking polarization inversion structures formed on a thin substrate. The manufactured element improves conversion efficiency by increasing the element length and increases the element alignment likelihood. Further, since the optical damage and the pyroelectric effect can be reduced, the practical effect is great.

また、同一の基板に周期の異なる2つの分極反転構造を形成することで、高次の高調波発生が可能となる。単一結晶で、第3高調波、または第4高調波の発生が可能となり、加えて素子のアライメントも簡単になるため、その実用効果は、大きい。   Further, by forming two domain-inverted structures with different periods on the same substrate, higher-order harmonics can be generated. A single crystal can generate the third harmonic or the fourth harmonic, and in addition, the alignment of the element is simplified, so that the practical effect is great.

また、レーザ光源を光波長変換素子により波長変換することで、短波長光源が実現できる。安定な特性の光波長変換素子を用いることにより、出力の安定な光源が作製できるため、その実用効果は大きい。   Moreover, a short wavelength light source is realizable by converting a wavelength of a laser light source with an optical wavelength conversion element. Since a light source having a stable output can be produced by using a light wavelength conversion element having a stable characteristic, its practical effect is great.

本発明は、第2高調波発生を利用した光波長変換素子に必要な周期状分極反転構造を形成するための方法で、具体的な分極反転の形成方法としては、単一分極の強誘電体基板(ここでは、主にLiTaO3基板)に電極を形成し、電極間に高圧の電圧を印加することで電極下に分極反転部を形成する。ここで問題となるのは、
・分極反転を大面積に渡り形成する際に、電極下に分極反転が均一に形成できない。
The present invention is a method for forming a periodic domain-inverted structure necessary for an optical wavelength conversion element using second harmonic generation. As a specific method for forming domain-inversion, a single-polarized ferroelectric is used. An electrode is formed on a substrate (mainly a LiTaO 3 substrate here), and a high voltage is applied between the electrodes to form a polarization inversion portion under the electrode. The problem here is that
-When the polarization inversion is formed over a large area, the polarization inversion cannot be uniformly formed under the electrode.

・微細な電極パターン下において分極反転部の形状が電極形状と同じにならない。   -The shape of the domain-inverted portion is not the same as the electrode shape under a fine electrode pattern.

・短周期の分極反転構造を形成する場合、隣接する分極反転部同士がくっついてしまい周期構造が形成できない。
等の問題が生じた。そこでこれらの問題を解決する方法について検討した結果について述べる。
When forming a domain-inverted structure with a short period, adjacent domain-inverted parts are stuck together and a periodical structure cannot be formed.
Etc. occurred. Then, the result of having examined the method of solving these problems is described.

(実施の形態1)
最初に、従来例に示されている方法によるLiTaO3の分極反転を試みた。図1に分極反転方法を示す。(a)c板のLiTaO3基板の+C面に電極パターン(電極の面積A)を形成し、(b)-C面に平面電極を形成した。(c)±C面の電極間にパルス状の電圧を印加して分極の反転を行った。電圧はLiTaO3の反転電圧(約21kV/mm)で、パルス幅を制御することで電極間に流れる電荷量を制御した。ところが、LiTaO3の自発分極Ps(50μC/cm2)から計算した分極反転に必要な電荷量2Ps・Aを印加すると、図2(a)に示すように、電極下に形成された分極反転は分極が反転しない非反転部分が多数形成された。またこの傾向は基板が厚くなるほど顕著に現れた。
(Embodiment 1)
First, we tried to reverse the polarization of LiTaO 3 by the method shown in the prior art. FIG. 1 shows a polarization inversion method. (a) An electrode pattern (electrode area A) was formed on the + C plane of the LiTaO 3 substrate of the c plate, and a planar electrode was formed on the (b) -C plane. (c) Polarization was reversed by applying a pulse voltage between the electrodes on the ± C plane. The voltage was the reverse voltage of LiTaO 3 (about 21 kV / mm), and the amount of charge flowing between the electrodes was controlled by controlling the pulse width. However, when the charge amount 2Ps · A necessary for the polarization inversion calculated from the spontaneous polarization Ps (50 μC / cm 2 ) of LiTaO 3 is applied, the polarization inversion formed under the electrode is as shown in FIG. 2 (a). Many non-inversion parts where the polarization was not inverted were formed. In addition, this tendency becomes more prominent as the substrate becomes thicker.

そこで、分極反転が均一に形成される方法について検討を行った結果、非反転領域を形成しない分極反転の状態が存在することを見いだした。そこで、非反転領域が形成されない分極反転条件を繰り返し実験したところ、+C面に形成した分極反転用の電極の周辺部に一定の値(ΔWmin)以上に分極反転部が広がったときに、図2(b)に示すような非反転を有さない分極反転が形成できることが明らかになった。さらに、ΔWminの値は用いる基板の厚みTに依存することを発見した。この関係を図3に示す。ΔWminと基板厚みTは実験結果(図3)より、
△Wmin=0.002×T−0.2 (μm) (1)
の関係があることが判明した。
Therefore, as a result of studying a method of forming polarization inversion uniformly, the inventors have found that there exists a state of polarization inversion that does not form a non-inversion region. Therefore, when the polarization inversion condition in which the non-inversion region is not formed is repeatedly experimented, when the domain inversion part spreads beyond a certain value (ΔWmin) in the peripheral part of the electrode for domain inversion formed on the + C plane, FIG. It became clear that polarization inversion without non-inversion as shown in (b) can be formed. Furthermore, it has been found that the value of ΔWmin depends on the thickness T of the substrate used. This relationship is shown in FIG. ΔWmin and substrate thickness T are based on the experimental results (FIG. 3).
△ Wmin = 0.002 × T-0.2 (μm) (1)
It was found that there is a relationship.

また、電極周辺部の分極反転部の広がりはC平面内でほぼ等方的に発生する。このため、均一な分極反転を形成するためには、分極反転部の拡大を考慮した電極形状、即ち図4に示すように、形成する分極反転形状の周辺部からΔWmin以上小さな電極を形成し、分極反転を行うことで、均一な分極反転を精度良く形成できるようになった。   In addition, the spread of the domain-inverted portion around the electrode occurs approximately isotropically in the C plane. For this reason, in order to form a uniform domain inversion, an electrode shape that takes into account the expansion of the domain inversion part, that is, as shown in FIG. 4, an electrode smaller than ΔWmin is formed from the periphery of the domain inversion shape to be formed, By performing polarization reversal, uniform polarization reversal can be formed with high accuracy.

分極反転が電極周辺部にΔWmin以上広がって形成されるときにのみ、非反転領域を有さない均一な分極反転形状が形成されることより、非反転領域を有さない分極反転に必要な電荷量が計算できる。従来例のように電極面積Aと自発分極Psより電荷量Qを2Ps・Aとすると電荷量不足のため非反転領域が形成されてしまう。これを防止するためには、電極周辺部への反転部の広がりΔWmin(図3)の面積の電荷量を余分に加える必要がある。即ち、電極の外周L(電極の周辺部の全距離)にΔWminをかけた面積分以上の電荷量が余分に必要となる。そのため、均一な分極反転を形成するのに必要な電荷量Qは電極面積(A)に電極周辺部への広がり(L・ΔWmin)を加えた以上の値となり、
Q>2Ps(A+L・ΔWmin) (2)
の形で与えられることが明らかになった。
Only when the polarization inversion is spread over the electrode periphery by ΔWmin or more, a uniform polarization inversion shape without a non-inversion region is formed. The amount can be calculated. If the charge amount Q is 2Ps · A based on the electrode area A and the spontaneous polarization Ps as in the conventional example, a non-inversion region is formed due to insufficient charge amount. In order to prevent this, it is necessary to add an additional charge amount in the area of the spread ΔWmin (FIG. 3) of the inversion part to the peripheral part of the electrode. That is, an extra charge amount equal to or larger than the area obtained by multiplying the outer circumference L of the electrode (the total distance of the peripheral portion of the electrode) by ΔWmin is required. Therefore, the amount of charge Q required to form a uniform polarization inversion is a value greater than the electrode area (A) plus the spread to the electrode periphery (L · ΔWmin),
Q> 2Ps (A + L · ΔWmin) (2)
It became clear that it was given in the form of

(実施の形態2)
次に、微細な分極反転形状を必要とする光波長変換素子に利用される周期状分極反転構造の形成について検討した。光波長変換素子は半導体レーザ光を波長変換することで光の波長を半分に変換することができる。また半導体レーザと光波長変換素子を一体化することで小型の短波長光源が実現でき、光ディスク、特殊計測、医用、バイオ等の多くの分野への応用が可能となる。現在、市販されている短波長の半導体レーザの波長は、800〜900nm、780nm近傍、630〜690nmである。それぞれの波長に対する周期はΛ=3〜4μm(波長:800〜900nm)、Λ=2.8μm近傍(波長:780nm)、Λ=1.5〜1.8μm(波長:630〜680nm)となっている。このような微細な反転形状を形成するには、反転の面内均一性を一層向上させる処理が必要となる。我々は、短周期分極反転を均一に形成する方法として、絶縁膜装荷の方法を提案した。図5にその製造方法を示す。(a)c板のLiTaO3基板の+C面に周期状の櫛形電極パターン(電極の面積A、電極指は長さLd、幅W、周期Λで距離Ls)を形成し、(b)-C面に平面電極を形成した。(d)+C面の電極パターンを絶縁膜(ここではSiO2を200nm堆積した)で被う。(e)±C面の電極間にパルス状の電圧を印加して分極の反転を行う。絶縁膜を用いないと分極反転が均一に形成される面積は10mm2以下になってしまい。変換効率の向上が難しいという問題があった。ところが、絶縁膜を用いることで分極反転を形成する領域が30mm2以上に拡大した。しかし、この場合でも、分極反転を均一に形成するには、(実施の形態1)に示した電極周辺部への分極反転部の拡大が必要があった。即ち、分極反転を均一に形成するには、図3に示したΔWmin以上の分極反転の拡大を必要とした。光波長変換素子に用いられる周期状の分極反転構造は、変換効率が最大になる最適な構造としてデューティ比(分極反転幅W/分極反転周期Λ)を50%程度に制御する必要がある。従って、電極周辺部への分極反転部の拡大を考慮すると、周期状の電極を構成する電極指の幅Wは、
W<Λ/2−2ΔWmin (3)
にしなければならない。
(Embodiment 2)
Next, the formation of a periodic domain-inverted structure used for an optical wavelength conversion element that requires a fine domain-inverted shape was studied. The optical wavelength conversion element can convert the wavelength of the light by half by converting the wavelength of the semiconductor laser light. Further, by integrating the semiconductor laser and the light wavelength conversion element, a small short wavelength light source can be realized, and application to many fields such as an optical disk, special measurement, medical use, and biotechnology is possible. Currently, the wavelengths of short-wavelength semiconductor lasers on the market are 800 to 900 nm, near 780 nm, and 630 to 690 nm. The period for each wavelength is Λ = 3 to 4 μm (wavelength: 800 to 900 nm), Λ = 2.8 μm (wavelength: 780 nm), and Λ = 1.5 to 1.8 μm (wavelength: 630 to 680 nm). In order to form such a fine reversal shape, it is necessary to further improve the in-plane uniformity of reversal. We proposed an insulating film loading method as a method of uniformly forming short-period polarization inversion. FIG. 5 shows the manufacturing method. (a) A periodic comb electrode pattern (electrode area A, electrode finger length Ld, width W, period Λ and distance Ls) is formed on the + C surface of the LiTaO 3 substrate of the c-plate, (b)- A planar electrode was formed on the C surface. (d) The electrode pattern on the + C plane is covered with an insulating film (here, SiO 2 is deposited to 200 nm). (e) A pulse voltage is applied between the electrodes on the ± C plane to invert the polarization. If an insulating film is not used, the area where polarization inversion is uniformly formed becomes 10 mm 2 or less. There was a problem that it was difficult to improve the conversion efficiency. However, by using an insulating film, the region where polarization inversion is formed has been expanded to 30 mm 2 or more. However, even in this case, in order to form the polarization inversion uniformly, it is necessary to expand the polarization inversion portion to the peripheral portion of the electrode as shown in (Embodiment 1). That is, in order to uniformly form the polarization inversion, it is necessary to expand the polarization inversion greater than ΔWmin shown in FIG. The periodic polarization reversal structure used for the optical wavelength conversion element needs to control the duty ratio (polarization reversal width W / polarization reversal period Λ) to about 50% as an optimum structure that maximizes the conversion efficiency. Therefore, considering the expansion of the domain-inverted portion to the electrode periphery, the width W of the electrode fingers constituting the periodic electrode is:
W <Λ / 2-2ΔWmin (3)
Must be.

また、周期状の分極反転構造を形成する場合に必要な電荷量の値も電極周辺部に広がる分極反転部の拡大を考慮すると計算できる。分極反転を形成する電極構造として図5に示したように、長さLd、幅Wの電極指を周期Λで距離Lsに渡って並べた櫛形電極を用いる場合、電極の面積はW・Ld・Ls/Λ、分極反転部の拡大部分の面積は2ΔWmin・Ld・Ls/Λで表される。従って、均一な分極反転を形成するための電荷量は、
Q>2Ps・(W+2ΔWmin)Ld・Ls/Λ (4)
で求められる。
Further, the value of the amount of charge necessary for forming a periodic domain-inverted structure can also be calculated in consideration of the expansion of the domain-inverted part spreading around the electrode periphery. As shown in FIG. 5, as an electrode structure for forming polarization inversion, when using a comb-shaped electrode in which electrode fingers having a length Ld and a width W are arranged over a distance Ls with a period Λ, the area of the electrode is W · Ld · Ls / Λ, the area of the enlarged portion of the polarization inversion portion is represented by 2ΔWmin · Ld · Ls / Λ. Therefore, the amount of charge to form a uniform polarization inversion is
Q> 2Ps · (W + 2ΔWmin) Ld · Ls / Λ (4)
Is required.

分極反転形成において特に難しいのが、短周期の分極反転構造を形成する場合である。分極反転部の広がりは、図3に示すように、基板の厚さに依存するが1μm以下の値である。このため、10μm以上の分極反転形状や周期状分極反転構造を形成する場合あまり問題にならない。ところが、分極反転で短周期の反転構造や微細な構造を形成する場合には、分極反転の拡大が大きな形状誤差となってくる。   Particularly difficult in the domain inversion formation is the case of forming a domain inversion structure with a short period. As shown in FIG. 3, the spread of the domain-inverted portion is a value of 1 μm or less depending on the thickness of the substrate. For this reason, there is not much problem when forming a domain-inverted shape or a periodic domain-inverted structure of 10 μm or more. However, in the case of forming a short period inversion structure or a fine structure by polarization inversion, the expansion of the polarization inversion becomes a large shape error.

例えば、周期2.8μmの分極反転構造を形成するにはデューティ比50%の反転構造を形成するのに分極反転部の幅を1.4μmに制御する必要がある。基板の厚みが0.2mmのとき、分極反転部の幅を1.4μmにするには、分極反転部の幅方向の広がりWmin=0.2μmを考慮して電極の幅を1μm以下に制限しなければならなかった。   For example, in order to form a domain-inverted structure with a period of 2.8 μm, it is necessary to control the width of the domain-inverted portion to 1.4 μm in order to form an inverted structure with a duty ratio of 50%. When the thickness of the substrate is 0.2 mm, in order to make the width of the domain-inverted portion 1.4 μm, the width of the electrode must be limited to 1 μm or less in consideration of the width Wmin = 0.2 μm of the domain-inverted portion. There wasn't.

さらに、分極反転周期2μm以下の反転構造の形成を試みた。分極反転周期1.7μm程度の反転構造の形成ができると波長680nm程度の赤色半導体レーザの波長変換が可能となり波長340nmの紫外光が発生できる。紫外光を用いると蛍光分光を利用した特殊計測、レーザプリンタ−等広い分野で応用できる。しかしながら、現在この波長帯の出力が可能な小型光源が存在しないため応用分野は広がっていない。しかしながら、周期2μmの分極反転構造を形成するには分極反転部を1μm以下にする必要がある。ここで0.5mm厚の基板を用いれば、分極反転部の拡大だけで1μmとなり、分極反転用の電極幅Wと両サイドの反転部の拡大をあわせると分極反転部の幅は2μm以上になり、周期構造が形成できなくなる。通常のフォトプロセスによるパターニングでは、電極の幅を0.4μm程度にしか小さくできないので、1μm幅の分極反転部を形成するには分極反転部の拡大は0.3μm以下に抑える必要がある。図3から判断すると、基板の厚みは0.2mm以下のものを用いないと分極反転が形成できない。分極反転の周期と基板の厚みの関係は電極幅が0.4μmと仮定して、(1)、(3)式から計算すると、
T<Λ/0.01 (5)
となる。
Furthermore, an attempt was made to form an inversion structure with a polarization inversion period of 2 μm or less. If an inversion structure with a polarization inversion period of about 1.7 μm can be formed, the wavelength conversion of a red semiconductor laser with a wavelength of about 680 nm becomes possible, and ultraviolet light with a wavelength of 340 nm can be generated. When ultraviolet light is used, it can be applied in a wide range of fields such as special measurement using fluorescence spectroscopy and laser printers. However, since there is currently no small light source capable of outputting in this wavelength band, the application field has not expanded. However, in order to form a domain-inverted structure with a period of 2 μm, the domain-inverted portion needs to be 1 μm or less. If a 0.5 mm thick substrate is used here, it becomes 1 μm only by expanding the domain-inverted part, and the width of the domain-inverted part becomes 2 μm or more when the electrode width W for domain-inverted and the expanded parts of both sides are combined. A periodic structure cannot be formed. In patterning by a normal photo process, the width of the electrode can only be reduced to about 0.4 μm. Therefore, in order to form a polarization inversion portion having a width of 1 μm, it is necessary to suppress the enlargement of the polarization inversion portion to 0.3 μm or less. Judging from FIG. 3, the polarization inversion cannot be formed unless the thickness of the substrate is 0.2 mm or less. Assuming that the electrode width is 0.4 μm, the relationship between the period of polarization inversion and the thickness of the substrate is calculated from the equations (1) and (3):
T <Λ / 0.01 (5)
It becomes.

即ち、短周期構造の分極反転を形成する場合、基板厚みが分極反転周期に規制されることを示している。特に周期2μm以下の分極反転層を必要とする紫外光発生用の波長変換素子の場合、基板厚みTが分極反転周期Λに限定されてしまう。実際に周期1.7μmの分極反転の形成を試みたところ0.2mm厚の基板では分極反転部の横方向拡大が大きくデューティ比50%の反転構造の形成は難しかった。基板厚みが0.17mm以下で反転構造の形成が可能となり、光波長変換素子を形成する場合、素子の基板厚みと分極反転周期は(4)式の関係を満足しなければならないことを確認できた。基板が0.17mmのときは基板表面から基板の中央部近傍までは均一な周期構造が形成できたが、基板の裏面近傍では周期構造に乱れが生じた。基板厚みが0.15mm以下のとき、分極反転構造が表面から裏面にかけて、均一になり変換効率の高い光波長変換素子が形成できた。波長680nmの赤色半導体レーザからの光を集光光学系で光波長変換素子内に集光し、シングルパスで波長変換を行ったところ、50mW入力で30μWの紫外光(波長:340nm)が得られた。このときの換算効率は1.2%/Wであった。さらに、基板の両端面に99%反射の多層膜を形成し、共振器型にしたところ、出力3mWの紫外光が得られた。(5)式の条件を満足することで短周期の分極反転構造を有する光波長変換素子の構成が可能となるため、紫外光発生用の光波長変換素子の実現が可能となった。   That is, when the domain inversion of the short period structure is formed, the substrate thickness is regulated by the domain inversion period. In particular, in the case of a wavelength conversion element for generating ultraviolet light that requires a domain-inverted layer with a period of 2 μm or less, the substrate thickness T is limited to the domain-inverted period Λ. When an attempt was made to form a domain inversion with a period of 1.7 μm, it was difficult to form an inversion structure with a duty ratio of 50% due to the large lateral expansion of the domain inversion part on a 0.2 mm thick substrate. The inversion structure can be formed when the substrate thickness is 0.17 mm or less, and it was confirmed that when the optical wavelength conversion element is formed, the substrate thickness of the element and the polarization inversion period must satisfy the relationship of formula (4). . When the substrate was 0.17 mm, a uniform periodic structure could be formed from the substrate surface to the vicinity of the center of the substrate, but the periodic structure was disturbed near the back surface of the substrate. When the substrate thickness was 0.15 mm or less, the polarization inversion structure was uniform from the front surface to the back surface, and an optical wavelength conversion element with high conversion efficiency could be formed. When light from a red semiconductor laser with a wavelength of 680 nm is condensed in the optical wavelength conversion element by a condensing optical system and wavelength conversion is performed with a single pass, 30 μW ultraviolet light (wavelength: 340 nm) is obtained with 50 mW input. It was. The conversion efficiency at this time was 1.2% / W. Furthermore, when 99% reflective multilayer films were formed on both end faces of the substrate to form a resonator type, ultraviolet light with an output of 3 mW was obtained. By satisfying the condition of the formula (5), it is possible to configure an optical wavelength conversion element having a short period polarization inversion structure, and thus it is possible to realize an optical wavelength conversion element for generating ultraviolet light.

(実施の形態3)
ここでは、耐光損傷特性に優れた光波長変換素子を製造する方法について述べる。波長400nm程度の青色光から紫外光にかけて高出力のSHG光を発生する場合問題となるのが、光損傷である。例えば、波長430nmのSHG光を発生する場合、出力が1mW程度以上になると、SHG出力のビーム形状が歪な形状となった。これは、光損傷により結晶の屈折率が部分的に変化しSHG光のビーム形状に影響を与えたためである。より短い波長では、さらに低いSHG出力に対し同様の光損傷が観測された。光損傷の原因として、高圧の電界印加により分極反転を行った際に基板内に蓄積される電荷が影響していると考察された。そこで、基板内の蓄積電荷を解放する方法としてプラズマ処理による方法を試みた。Arと酸素雰囲気中でプラズマを発生させ、基板にプラズマを照射した。プラズマを20分程度照射したところ、蓄積電荷が減少し、約1.5倍の耐光損傷強度を示した。さらに、耐光損傷強度を高めるため、基板を加熱しながら、プラズマを照射した。100℃いかでは、室温での効果とあまり大差が無かったが。100℃以上になると耐光損傷強度が徐々に高まってきた。250℃程度で最大となり、プラズマを照射しない場合の5倍の耐光損傷強度を示した。基板温度が300℃を越えると、SHG変換効率の低下が見られ、光波長変換素子の特性劣化が観測された。これは、高温のプラズマ照射が分極反転構造に何らかの影響を与えるためと考えられる。
(Embodiment 3)
Here, a method for manufacturing an optical wavelength conversion element having excellent light damage resistance will be described. When high-power SHG light is generated from blue light having a wavelength of about 400 nm to ultraviolet light, optical damage is a problem. For example, when generating SHG light with a wavelength of 430 nm, the beam shape of the SHG output becomes distorted when the output is about 1 mW or more. This is because the refractive index of the crystal partially changes due to optical damage and affects the beam shape of the SHG light. At shorter wavelengths, similar photodamage was observed for even lower SHG power. It was considered that the charge accumulated in the substrate when the polarization was reversed by applying a high-voltage electric field was the cause of the optical damage. Therefore, a method using plasma treatment was tried as a method of releasing the accumulated charges in the substrate. Plasma was generated in an atmosphere of Ar and oxygen, and the substrate was irradiated with plasma. When the plasma was irradiated for about 20 minutes, the accumulated charge decreased and the light damage resistance was about 1.5 times. Furthermore, in order to increase the light damage resistance, plasma was irradiated while heating the substrate. At 100 ° C, there was not much difference from the effect at room temperature. At 100 ° C. or higher, the light damage resistance gradually increased. The maximum was about 250 ° C., and the damage resistance against light was 5 times that when no plasma was irradiated. When the substrate temperature exceeded 300 ° C, the SHG conversion efficiency decreased, and the deterioration of the characteristics of the optical wavelength conversion element was observed. This is considered because high temperature plasma irradiation has some influence on the domain-inverted structure.

(実施の形態4)
ここでは、耐光損傷性に優れ、かつ導波損失の小さなバルク型SHG素子の製造方法について述べる。
(Embodiment 4)
Here, a method for manufacturing a bulk SHG element having excellent light damage resistance and low waveguide loss will be described.

光波長変換素子に必要な周期状分極反転は図5の製造方法に従う。電界印加による分極反転形成プロセスにおいて重要なのは、印加電圧波形である。LiTaO3において短周期の分極反転層を形成するには、パルス電圧波形として反転電圧(分極が反転する電圧でLiTaO3で約21kV/mm)以上の電圧を印加する必要がある。しかしパルス電圧印加後、瞬時に印加電圧を0に戻すと、反転した分極が再反転を生じ、分極反転層が消滅してしまう現象が観測された。そこで、パルス電圧印加後、CW電圧をしばらく印加したところ、反転した分極が安定化し、再反転が防止できることが分かった。 Periodic polarization inversion required for the optical wavelength conversion element follows the manufacturing method of FIG. What is important in the process of forming domain inversion by applying an electric field is an applied voltage waveform. In order to form the domain-inverted structure of a short period LiTaO 3, it is necessary to apply a higher voltage (approximately 21 kV / mm in LiTaO 3 with voltage polarization is reversed) inversion voltage as a pulse voltage waveform. However, when the applied voltage was instantaneously returned to 0 after applying the pulse voltage, a phenomenon was observed in which the inverted polarization caused reinversion and the polarization inversion layer disappeared. Thus, it was found that when the CW voltage was applied for a while after applying the pulse voltage, the inverted polarization was stabilized and re-inversion could be prevented.

ところが、CW電圧の印加時間が形成された分極反転構造の均一性にも大きく影響を与えることが明らかになった。例えば、基板厚0.2mmのLiTaO3にパルス電圧として4.2kV印加した後、CW電圧を3kV印加し、CW電圧の印加時間と分極反転周期の均一性の関係を測定したところ、2秒以下では、形成される分極反転の周期構造の不均一性が大きくなるのが分かった。周期構造の均一性を得るにはTbの時間を3秒以上必要であり、5秒以上にする非常に均一性の高い反転層が形成され、効率の高い光波長変換素子が製造できることが明らかになった。 However, it has been clarified that the uniformity of the domain-inverted structure in which the application time of the CW voltage is formed is greatly affected. For example, after 4.2 kV was applied as a pulse voltage to LiTaO 3 having a substrate thickness of 0.2 mm, a CW voltage was applied at 3 kV, and the relationship between the CW voltage application time and the uniformity of the polarization inversion period was measured. It has been found that the non-uniformity of the periodic structure of the polarization inversion formed increases. It is clear that the Tb time is 3 seconds or more to obtain the uniformity of the periodic structure, and a highly uniform inversion layer of 5 seconds or more is formed, so that an optical wavelength conversion element with high efficiency can be manufactured. became.

また、CW電圧としては、印加電界で20〜10kV/mmの間が望ましかった。20kV/mm以上の電界を印加すると、分極反転がさらに進行するため、分極反転構造が最適な形状からずれてくるという問題が生じた。また10kV/mm以下の電界では、分極反転構造の均一化に寄与しなかった。   The CW voltage was preferably between 20 and 10 kV / mm in the applied electric field. When an electric field of 20 kV / mm or more is applied, the polarization inversion further progresses, causing a problem that the polarization inversion structure deviates from the optimum shape. Further, an electric field of 10 kV / mm or less did not contribute to the homogenization of the domain-inverted structure.

一方、電界印加により形成された分極反転層は結晶内に周期状の屈折率変化を有するため光の伝搬損失が存在し、光波長変換素子と特性が劣化することが分かった。そこで、400℃程度で数分間アニール処理したところ伝搬損失の低減は図れたが、光波長変換素子において光損傷増大することを発見した。素子長10mmの光波長変換素子に波長860nmの基本波を入射して、波長430nmのSHG発生を行ったところ、数100μW以上のSHGが出射した場合に光損傷により出力が不安定になる現象が観測された。そこでアニール処理温度について種々の検討を行った結果、アニール処理温度と光損傷の間に相関関係があることを見いだした。以下に、アニール処理温度と結晶の伝搬損失並びに光損傷の関係を測定した結果を示す。   On the other hand, it was found that the polarization inversion layer formed by applying an electric field has a periodic refractive index change in the crystal, so that there is a light propagation loss, and the characteristics of the optical wavelength conversion element deteriorate. Therefore, it was found that, when annealing was performed at about 400 ° C. for several minutes, propagation loss was reduced, but optical damage increased in the optical wavelength conversion element. When a fundamental wave having a wavelength of 860 nm is incident on an optical wavelength conversion element having an element length of 10 mm and SHG having a wavelength of 430 nm is generated, a phenomenon in which the output becomes unstable due to optical damage when SHG of several hundred μW or more is emitted. Observed. As a result of various investigations on the annealing temperature, it was found that there is a correlation between the annealing temperature and photodamage. The measurement results of the relationship between annealing temperature, crystal propagation loss and optical damage are shown below.

Figure 0004114694
Figure 0004114694

伝搬損失は150℃程度の低温のアニール処理でも改善されることが分かった。また、光損傷は350℃以上では増大する傾向が観測された。従って、伝搬損失が小さく光損傷の小さな素子を形成するには150℃〜350℃の温度で熱処理を行う必要があることが分かった。特に光損傷強度の強い光波長変換素子を形成するには180℃〜280℃程度で熱処理するのが望ましかった。この温度範囲で熱処理した光波長変換素子により波長430nmのSHG発生を行ったところ、10mW以上のSHG出力においても光損傷による出力変動は観測されず、従来難しかった高出力のSHG発生が可能な素子が作製できた。   It has been found that the propagation loss can be improved by annealing at a low temperature of about 150 ° C. In addition, it was observed that photodamage tends to increase above 350 ° C. Therefore, it was found that heat treatment must be performed at a temperature of 150 ° C. to 350 ° C. in order to form an element with small propagation loss and small optical damage. In particular, in order to form a light wavelength conversion element having a high light damage strength, it was desirable to perform heat treatment at about 180 ° C. to 280 ° C. When SHG generation at a wavelength of 430 nm was performed by an optical wavelength conversion element heat-treated in this temperature range, no output fluctuation due to optical damage was observed even at an SHG output of 10 mW or more, and an element capable of generating high output SHG, which was difficult in the past Was made.

本実施の形態により形成した光波長変換素子が、特に有効である使用方法として、共振器型の光波長変換素子がある。共振器内に光波長変換素子を挿入することにより高いパワー密度の基本波を利用することができ、変換効率の大幅な向上が可能となる。しかしながら、光波長変換素子を透過する光の損失があると共振器特性が劣化してしまい、共振器内の光のパワー密度が増大しないという問題が生じる。光の伝搬損失としては数%以下に抑える必要がある。本実施の形態の方法で作製した光波長変換素子は伝搬損失が3%以下であり、共振器内に挿入することにより、変換効率の大幅な向上が図れた。   As a usage method in which the optical wavelength conversion element formed according to the present embodiment is particularly effective, there is a resonator type optical wavelength conversion element. By inserting an optical wavelength conversion element in the resonator, a fundamental wave having a high power density can be used, and conversion efficiency can be greatly improved. However, if there is a loss of light that passes through the optical wavelength conversion element, the resonator characteristics deteriorate, and the power density of light in the resonator does not increase. It is necessary to suppress the propagation loss of light to several percent or less. The optical wavelength conversion element manufactured by the method of the present embodiment has a propagation loss of 3% or less, and the conversion efficiency can be greatly improved by inserting it into the resonator.

なお、本実施例では基板にLiTaO3基板を用いたが他にMgO、Nb、NdなどをドープしたLiTaO3、またはLiNbO3またはその混合物であるLiTa(1-x)NbxO3(0≦x≦1)基板、そのほかKTP(KTiOPO4)でも同様な素子が作製できる。LiTaO3、LiNbO3、KTPはともに、高い非線形性を有するため、高効率の光波長変換素子が作製できる。 In this embodiment, a LiTaO 3 substrate is used as the substrate, but LiTaO 3 doped with MgO, Nb, Nd, or the like, or LiNbO 3 or a mixture thereof, LiTa (1-x) NbxO 3 (0 ≦ x ≦ 1) A similar device can be fabricated using a substrate and KTP (KTiOPO 4 ). Since LiTaO 3 , LiNbO 3 , and KTP all have high nonlinearity, a highly efficient optical wavelength conversion element can be manufactured.

次に、出力安定化を目的とした本発明のバルク型の光波長変換素子について説明する。具体的な素子構造としては、
・金属膜を光波長変換素子表面に堆積することにより、素子の温度均一性を図ると共に、焦電効果を防止する構造。
Next, the bulk type optical wavelength conversion element of the present invention for the purpose of stabilizing the output will be described. As a specific element structure,
A structure in which a metal film is deposited on the surface of the light wavelength conversion element to achieve temperature uniformity of the element and prevent a pyroelectric effect.

・分極反転周期の位相分布を変えることにより、光損傷の低減と光波長変換素子の許容度の拡大を実現する構造。   A structure that realizes reduction of optical damage and expansion of tolerance of optical wavelength conversion elements by changing the phase distribution of the polarization inversion period.

・分極反転の周期の分布を変えることにより、光波長変換素子の許容度の拡大を実現する構造。   A structure that realizes an increase in the tolerance of the optical wavelength conversion element by changing the distribution of the period of polarization inversion.

・分極反転構造を有する結晶を張り合わせることにより、素子の高効率化を行い、焦電効果を防止する構造。
である。以下の実施の形態において、それぞれの光波長変換素子の特性について述べる。
A structure that prevents the pyroelectric effect by increasing the efficiency of the element by bonding crystals having a domain-inverted structure.
It is. In the following embodiments, characteristics of each optical wavelength conversion element will be described.

(実施の形態5)
ここでは、バルク型光波長変換素子に金属膜を付加することで焦電効果の低減を図った結果について説明する。
(Embodiment 5)
Here, the result of reducing the pyroelectric effect by adding a metal film to the bulk type optical wavelength conversion element will be described.

光波長変換素子の構造を図6を用いて説明する。図6に示すように、C板のLiTaO3結晶1(結晶のC軸に垂直な面)内に周期状の分極反転層4が形成されている。さらに、表面をAl膜5で被っている。結晶1の端面は光学研磨されており、入射端より入射した波長860nmの基本波6は結晶内で、波長430nmの第2高調波(SHG)7に変換される。 The structure of the optical wavelength conversion element will be described with reference to FIG. As shown in FIG. 6, a periodic domain-inverted layer 4 is formed in the LiTaO 3 crystal 1 (plane perpendicular to the C-axis of the crystal) of the C plate. Further, the surface is covered with an Al film 5. The end face of the crystal 1 is optically polished, and the fundamental wave 6 having a wavelength of 860 nm incident from the incident end is converted into a second harmonic (SHG) 7 having a wavelength of 430 nm in the crystal.

従来のバルク型光波長変換素子は、温度が変化すると焦電効果により表面に電荷が溜り、これによって生じる屈折率変化によりSHG出力が変化していた。そこで基板表面に金属膜を形成し、発生する焦電電荷を相殺した。その結果、基板表面に生じる表面電荷をなくすことができ、温度変化0〜60℃において、焦電効果による出力変動は観測されず安定な出力が得られた。   In the conventional bulk type light wavelength conversion element, when the temperature is changed, charges are accumulated on the surface due to the pyroelectric effect, and the SHG output is changed due to the change in the refractive index caused by this. Therefore, a metal film was formed on the substrate surface to cancel the generated pyroelectric charge. As a result, the surface charge generated on the substrate surface can be eliminated, and a stable output was obtained with no change in output due to the pyroelectric effect observed at a temperature change of 0 to 60 ° C.

また、表面に金属膜を形成することにより、結晶の温度制御が容易になった。光波長変換素子は波長許容度が狭いため、温度変化による結晶の屈折率変化により位相整合条件が変化し、出力が低下する。これを防止するために、光波長変換素子の温度を制御する必要がある。しかしながら、LiTaO3結晶は熱伝導度が低いため、素子長10mmに渡って結晶温度の均一性を保つのが難しいという問題があった。ところが、結晶を金属膜で被うことで光波長変換素子の熱伝導度が増大し、素子長全域に渡る温度の均一化が容易になった。さらに、温度制御も高速に行え、急激な温度変化に対しても焦電効果が発生しないため安定な出力が得られた。 In addition, by forming a metal film on the surface, the crystal temperature can be easily controlled. Since the wavelength tolerance of the optical wavelength conversion element is narrow, the phase matching condition changes due to the change in the refractive index of the crystal due to the temperature change, and the output decreases. In order to prevent this, it is necessary to control the temperature of the optical wavelength conversion element. However, since the LiTaO 3 crystal has low thermal conductivity, there is a problem that it is difficult to keep the crystal temperature uniform over the element length of 10 mm. However, covering the crystal with a metal film increases the thermal conductivity of the optical wavelength conversion element, and makes it easy to equalize the temperature over the entire length of the element. In addition, temperature control can be performed at high speed, and a stable output can be obtained because a pyroelectric effect does not occur even when the temperature changes suddenly.

また、金属膜に電流を流し、金属膜をヒータとして使用する実験も行った。金属膜としてTiを30nm堆積し、ストライプ状に加工して、これに電流を流すことで薄膜ヒータとして用いた。ヒータにより結晶の温度を50℃に制御し、雰囲気温度の変化0〜50℃に対し、SHGの出力変動を±5%以下まで低減できることを確認した。金属膜をヒータとして用いることで、結晶の焦電効果を低減すると同時に、結晶温度安定化が図れた。   An experiment was also conducted in which a current was passed through the metal film and the metal film was used as a heater. Ti was deposited as a metal film with a thickness of 30 nm, processed into a stripe shape, and an electric current was passed through this to use it as a thin film heater. The temperature of the crystal was controlled at 50 ° C. with a heater, and it was confirmed that the output fluctuation of SHG could be reduced to ± 5% or less with respect to the change in atmospheric temperature from 0 to 50 ° C. By using the metal film as a heater, the pyroelectric effect of the crystal was reduced and at the same time the crystal temperature was stabilized.

また、金属膜を結晶表面に付加することで、結晶の汚れによる特性の劣化も防止できる。雰囲気温度の変化による焦電電荷は、結晶雰囲気中のダストを吸着し、長時間使用していると、結晶表面に多くのダストが付着して光波長変換素子特性の劣化が起こる。このようなダストの付着も結晶表面を金属膜で被うことで防止できた。   In addition, by adding a metal film to the crystal surface, it is possible to prevent deterioration of characteristics due to crystal contamination. The pyroelectric charge due to the change in the atmospheric temperature adsorbs dust in the crystal atmosphere and, when used for a long time, a lot of dust adheres to the crystal surface and the optical wavelength conversion element characteristics deteriorate. Such dust adhesion could be prevented by covering the crystal surface with a metal film.

なお、本実施例では基板にLiTaO3基板を用いたが他にMgO、Nb、NdなどをドープしたLiTaO3、またはLiNbO3またはその混合物であるLiTa(1-x)NbxO3(0≦x≦1)基板、そのほかKTP(KTiOPO4)でも同様な素子が作製できる。LiTaO3、LiNbO3、KTPはともに、高い非線形性を有するため、高効率の光波長変換素子が作製できる。 In this embodiment, a LiTaO 3 substrate is used as the substrate, but LiTaO 3 doped with MgO, Nb, Nd, or the like, or LiNbO 3 or a mixture thereof, LiTa (1-x) NbxO 3 (0 ≦ x ≦ 1) A similar device can be fabricated using a substrate and KTP (KTiOPO 4 ). Since LiTaO 3 , LiNbO 3 , and KTP all have high nonlinearity, a highly efficient optical wavelength conversion element can be manufactured.

(実施の形態6)
ここでは、分極反転の周期構造を変えることにより耐光損傷性の向上を図った結果について述べる。
(Embodiment 6)
Here, the result of improving the light damage resistance by changing the periodic structure of polarization inversion will be described.

光励起により発生した電荷が結晶の分極方向に移動して結晶内に電荷分布の偏りを生じる。これによって発生した電界により、電気光学効果を介した屈折率変化が発生し光損傷となる。電荷の移動は結晶の分極方向に沿って移動するため、結晶内の分極反転層と非反転層部分では電荷の移動が逆方向となる。そのため、短周期の分極反転構造を形成することで光励起により生じた電界を相殺することができる。ここでは、光励起による電界を相殺する効果をさらに高めるため、周期状の分極反転構造を光の伝搬方向に平行な方向で分割し、各部分での分極反転の位相を互いにずらした構成をとった。図7(a)に示すように伝搬方向に平行にA,B,C,D,E領域に分割し、各領域間での分極反転周期の位相が図7(b)に示すように互いに異なるように形成されている。分極反転構造に位相差を形成することにより、各領域間において光励起による電界の相殺が起こり、光損傷を低減することができた。   The electric charge generated by photoexcitation moves in the polarization direction of the crystal, and the electric charge distribution is biased in the crystal. The electric field generated thereby causes a refractive index change via the electro-optic effect, resulting in optical damage. Since the movement of charges moves along the polarization direction of the crystal, the movement of charges is reversed between the polarization inversion layer and the non-inversion layer portion in the crystal. Therefore, an electric field generated by photoexcitation can be canceled by forming a short period domain-inverted structure. Here, in order to further enhance the effect of canceling the electric field due to photoexcitation, the periodic domain-inverted structure is divided in a direction parallel to the light propagation direction, and the phase of domain-inverted phases in each part is shifted from each other. . As shown in FIG. 7A, the phase is divided into A, B, C, D, and E regions parallel to the propagation direction, and the phase of the polarization inversion period between the regions is different from each other as shown in FIG. 7B. It is formed as follows. By forming a phase difference in the domain-inverted structure, the electric field was canceled by photoexcitation between the regions, and optical damage could be reduced.

さらに、位相差を調整することにより光波長変換素子の波長許容度の拡大が可能となる。分極反転構造を伝搬方向にいくつかのセグメントに分割し、各セグメントの位相を制御することで光波長変換素子の波長許容度が拡大することが報告されている(エレクトロニクスレター記載、M.L.Bortz,M.Fujimura,and M.M.Fejer, Electronics Letters, vol.30, pp.34-35, 1994)。しかしながら、伝搬方向に反転構造を分割すると、長さ方向に渡り光損傷の分布が形成された場合(SHGは伝搬距離に対し二乗で増大するため光損傷の分布が形成される)、各セグメント間の相互関係が変化するため波長許容度拡大の効果が表れず、SHGの出力低下が生じるという問題があった。そこで、本発明の構成では伝搬方向に平行に分極反転構造を分割する構成をとった。本発明の構成では、伝搬方向に屈折率分布が生じた場合でも、各セグメント間の相互関係が常に保たれるため、SHG出力の安定化が図れた。   Further, the wavelength tolerance of the optical wavelength conversion element can be increased by adjusting the phase difference. It has been reported that the wavelength tolerance of the optical wavelength conversion element is expanded by dividing the domain-inverted structure into several segments in the propagation direction and controlling the phase of each segment (described in the electronics letter, MLBortz, M Fujimura, and MMFejer, Electronics Letters, vol.30, pp.34-35, 1994). However, when the inversion structure is divided in the propagation direction, when the distribution of optical damage is formed in the length direction (SHG increases in square with respect to the propagation distance, the distribution of optical damage is formed). As a result, the effect of expanding the wavelength tolerance does not appear, and the output of SHG is reduced. Therefore, in the configuration of the present invention, the polarization inversion structure is divided in parallel with the propagation direction. In the configuration of the present invention, even when a refractive index distribution occurs in the propagation direction, the mutual relationship between the segments is always maintained, so that the SHG output can be stabilized.

なお、本実施例では基板にLiTaO3基板を用いたが他にMgO、Nb、NdなどをドープしたLiTaO3、またはLiNbO3またはその混合物であるLiTa(1-x)NbxO3(0≦x≦1)基板、そのほかKTP(KTiOPO4)でも同様な素子が作製できる。LiTaO3、LiNbO3、KTPはともに、高い非線形性を有するため、高効率の光波長変換素子が作製できる。 In this embodiment, a LiTaO 3 substrate is used as the substrate, but LiTaO 3 doped with MgO, Nb, Nd, or the like, or LiNbO 3 or a mixture thereof, LiTa (1-x) NbxO 3 (0 ≦ x ≦ 1) A similar device can be fabricated using a substrate and KTP (KTiOPO 4 ). Since LiTaO 3 , LiNbO 3 , and KTP all have high nonlinearity, a highly efficient optical wavelength conversion element can be manufactured.

(実施の形態7)
ここでは、分極反転構造を変えることによる光波長変換素子の波長許容度の拡大について述べる。
(Embodiment 7)
Here, the expansion of the wavelength tolerance of the optical wavelength conversion element by changing the polarization inversion structure will be described.

周期状の分極反転構造を用いた光波長変換素子は、高効率の波長変換が可能であるが、反面、位相整合波長許容度が狭いため励起する基本波の波長変動により出力が大幅に低下するといった問題がある。そのため、位相整合波長を拡大することにより出力の安定化を図る必要がある。   An optical wavelength conversion element using a periodic domain-inverted structure is capable of highly efficient wavelength conversion, but on the other hand, because the phase matching wavelength tolerance is narrow, the output is greatly reduced due to wavelength fluctuation of the fundamental wave to be excited. There is a problem. Therefore, it is necessary to stabilize the output by expanding the phase matching wavelength.

本実施の形態では、図8(a)に示すように分極反転構造を光の進行方向に平行にAとBに2分割し、それぞれの分極反転周期Λ1とΛ2が異なるように形成した。このため、SHG出力の基本波波長依存性は、セグメントAでとセグメントBでは図8(b)に示すように僅かにずれており、光波長変換素子全体ではAとBの波長依存性を足した値となり波長許容度が増大する。   In this embodiment, as shown in FIG. 8 (a), the domain-inverted structure is divided into two parts A and B parallel to the light traveling direction, and the domain-inverted periods Λ1 and Λ2 are formed differently. For this reason, the fundamental wavelength dependency of the SHG output is slightly shifted between the segment A and the segment B as shown in FIG. 8B, and the wavelength dependency of A and B is added to the entire optical wavelength conversion element. The wavelength tolerance increases.

従来の構成としては伝搬方向に分極反転構造を分割し、各セグメントにおける周期構造を変えることで互いのセグメント間の相互作用により位相整合波長の許容度を拡大する方法があった。しかしながら、従来の構成では、伝搬方向に光損傷による屈折率分布が生じた場合、各セグメント間の相互関係が変化し、位相整合許容度が必ずしも増大しないという問題があった。   As a conventional configuration, there is a method of dividing the domain-inverted structure in the propagation direction and changing the periodic structure in each segment to expand the tolerance of the phase matching wavelength by the interaction between the segments. However, in the conventional configuration, when a refractive index distribution due to optical damage occurs in the propagation direction, there is a problem that the correlation between the segments changes and the phase matching tolerance does not always increase.

これに対し、本構成を用いると光の伝搬方向に対し均一な周期構造をとるため、伝搬方向において光損傷による屈折率分布が生じた場合もセグメント間の相互関係が変化しない。従って、光損傷による位相整合波長の変化に対しても安定な出力特性を得ることができた。   On the other hand, when this configuration is used, a uniform periodic structure is formed in the light propagation direction. Therefore, even when a refractive index distribution due to light damage occurs in the propagation direction, the interrelationship between the segments does not change. Therefore, stable output characteristics can be obtained even with respect to a change in phase matching wavelength due to optical damage.

さらに、導波損失や基本波からSHGへのパワーの移行により、基本波は伝搬するに従い減少する。このような基本波パワーの変化に対しても、分極反転構造との相互関係が変化しないため、素子設計が容易になる。   Furthermore, the fundamental wave decreases as it propagates due to waveguide loss and power transfer from the fundamental wave to SHG. The element design is facilitated because the correlation with the domain-inverted structure does not change even when the fundamental wave power changes.

なお、本実施例では基板にLiTaO3基板を用いたが他にMgO、Nb、NdなどをドープしたLiTaO3、またはLiNbO3またはその混合物であるLiTa(1-x)NbxO3(0≦x≦1)基板、そのほかKTP(KTiOPO4)でも同様な素子が作製できる。LiTaO3、LiNbO3、KTPはともに、高い非線形性を有するため、高効率の光波長変換素子が作製できる。 In this embodiment, a LiTaO 3 substrate is used as the substrate, but LiTaO 3 doped with MgO, Nb, Nd, or the like, or LiNbO 3 or a mixture thereof, LiTa (1-x) NbxO 3 (0 ≦ x ≦ 1) A similar device can be fabricated using a substrate and KTP (KTiOPO 4 ). Since LiTaO 3 , LiNbO 3 , and KTP all have high nonlinearity, a highly efficient optical wavelength conversion element can be manufactured.

(実施の形態8)
ここでは、分極反転構造を積層化することによる変換効率の向上並びに出力の安定化を図った結果について述べる。
(Embodiment 8)
Here, the results of improving the conversion efficiency and stabilizing the output by stacking the domain-inverted structures will be described.

LiTaO3、LiNbO3結晶に電界印加により深い分極反転層の形成が可能である。例えば、これらの結晶に周期3〜4μmの分極反転層を厚さ200μmに渡って形成することが報告されている。しかしながら、このような短周期の分極反転を深さ方向に渡り均一に形成できる基板厚みには限界がある。例えば、現在報告されているのは、厚みとして150〜200μm程度であり、300μmを越えると反転の不均一性が増大する。従って、バルク型の光波長変換素子を形成する結晶の厚みは約200μm程度に制限されてしまう。 A deep domain inversion layer can be formed by applying an electric field to LiTaO 3 and LiNbO 3 crystals. For example, it has been reported that a domain-inverted layer having a period of 3 to 4 μm is formed on these crystals over a thickness of 200 μm. However, there is a limit to the thickness of the substrate that can form such a short-period polarization inversion uniformly in the depth direction. For example, the currently reported thickness is about 150 to 200 μm, and if it exceeds 300 μm, the non-uniformity of inversion increases. Therefore, the thickness of the crystal forming the bulk type light wavelength conversion element is limited to about 200 μm.

このような光波長変換素子をバルク型として用いる場合、いくつかの問題が生じる。第一に、結晶内を通る基本波のビーム径が結晶の厚みに規制される。ビーム径が結晶の厚みより大きくなるとビームが歪み、得られるSHG出力の波面特性が劣化して、十分な集光が得られなくなからである。ビーム径が制限されると素子長が制限される。例えば、200μm程度の厚みの場合、素子長は10mm程度である。第二に、基本波を入射する面積が狭いため光学系のアライメントに微調性が必要となる。これらの問題を解決する方法として、本発明では分極反転した基板を光学的に接触させる(オプティカルコンタクト)ことにより基板の厚みを増大させる方法を見いだした。   When such an optical wavelength conversion element is used as a bulk type, several problems arise. First, the beam diameter of the fundamental wave passing through the crystal is restricted by the thickness of the crystal. This is because when the beam diameter is larger than the thickness of the crystal, the beam is distorted and the wavefront characteristics of the obtained SHG output are deteriorated, and sufficient condensing cannot be obtained. When the beam diameter is limited, the element length is limited. For example, when the thickness is about 200 μm, the element length is about 10 mm. Second, since the area where the fundamental wave is incident is small, fine alignment is required for alignment of the optical system. As a method for solving these problems, the present invention has found a method for increasing the thickness of the substrate by optically contacting the polarization-reversed substrate (optical contact).

光波長変換素子の構造としては、図9に示すように、周期状の分極反転構造4を形成したLiTaO3基板8と9を張り合わせて構成している。複数の基板を張り合わせると、さらに厚みを増大させることができる。 As shown in FIG. 9, the structure of the optical wavelength conversion element is formed by bonding LiTaO 3 substrates 8 and 9 on which a periodic domain-inverted structure 4 is formed. When a plurality of substrates are bonded together, the thickness can be further increased.

次に、本実施の形態の構成により、変換効率の高効率化が可能となった結果を示す。LiTaO3結晶は+C面より周期状の分極反転構造を形成する。従って、分極反転構造の均一性は+C面で最も優れ、−C面に近づくに従い劣化する。そこで、図9に示すように+C面どうしを接触させる構成をとった。基本波を基板の接触部分を中心に伝搬させることにより他の構成(例えば一つの基板を用いた場合、+C面と−C面とを接触した場合、または−C面どうしを接触した場合)に比べ、1.5〜2倍の高効率化が可能となった。さらに、従来の単一基板を用いた場合に比べ、素子長も2倍に増大させることが可能となり、変換効率をさらに2倍に増加させることができた。 Next, the result of having made it possible to increase the conversion efficiency by the configuration of the present embodiment will be shown. LiTaO 3 crystals form a periodic domain-inverted structure from the + C plane. Therefore, the uniformity of the domain-inverted structure is the best on the + C plane and degrades as it approaches the -C plane. Therefore, as shown in FIG. 9, a configuration is adopted in which the + C surfaces are brought into contact with each other. Propagating the fundamental wave around the contact portion of the substrate to another configuration (for example, when using one substrate, when contacting the + C surface and the −C surface, or when contacting the −C surfaces) In comparison, 1.5 to 2 times higher efficiency can be achieved. Furthermore, the element length can be increased twice as compared with the case of using a conventional single substrate, and the conversion efficiency can be further increased twice.

次に、基板を接着剤で貼合わせる際、接着剤に基板より屈折率の高い材料を用いた。接着剤は基本波および高調波に対して透明な材料である。材料としては、例えば、TiO2ゾルゲル液を用いた。基板間にTiO2ゾルゲルを流し込み、約500℃で焼結することにより基板を接着できた。屈折率の高い接着材料を用いると、高屈折率部分を基板で挟んだ対称構造の光導波路が形成できる。基本波は導波モードとなり、接着剤の部分を中心に伝搬するため、光のパワー密度を増大させることができる。また、伝搬距離も長くとれるため、相互作用長が増大し変換効率が大幅に向上した。 Next, when bonding a board | substrate with an adhesive agent, the material whose refractive index is higher than a board | substrate was used for the adhesive agent. The adhesive is a material that is transparent to the fundamental and harmonics. For example, a TiO 2 sol-gel solution was used as the material. The substrate could be adhered by pouring TiO 2 sol-gel between the substrates and sintering at about 500 ° C. When an adhesive material having a high refractive index is used, an optical waveguide having a symmetrical structure in which a high refractive index portion is sandwiched between substrates can be formed. Since the fundamental wave becomes a waveguide mode and propagates around the adhesive portion, the power density of light can be increased. Further, since the propagation distance can be increased, the interaction length is increased and the conversion efficiency is greatly improved.

次に、光損傷および焦電効果による出力の不安定化を低減できることを示す。図9の光波長変換素子の構成では基板8の分極反転層と基板9の非反転層が重なっているが、位相をずらせて、2つの基板の反転層が互いに重なるようにすると、結晶の分極方向が2つの基板間で対立することになる。これによって、光損傷で生じる電荷および焦電効果により発生する電荷は結晶の張り合わせた部分で正負逆の電荷が発生するため相殺され結晶内に電界による屈折率変化が生じなくなる。すなわち、光損傷および焦電効果による屈折率変動が発生せず、安定なSHG出力が得られた。   Next, it is shown that output instability due to optical damage and pyroelectric effect can be reduced. In the configuration of the optical wavelength conversion element of FIG. 9, the polarization inversion layer of the substrate 8 and the non-inversion layer of the substrate 9 overlap. However, if the inversion layers of the two substrates overlap each other by shifting the phase, the polarization of the crystal The direction will conflict between the two substrates. As a result, charges generated by optical damage and charges generated by the pyroelectric effect are canceled out because positive and negative charges are generated at the bonded portion of the crystal, and the refractive index change due to the electric field does not occur in the crystal. That is, the refractive index fluctuation due to optical damage and pyroelectric effect did not occur, and a stable SHG output was obtained.

次に、結晶を積層構造にした場合の互いの分極反転構造の周期のずれについて述べる。周期状の分極反転構造を有する結晶を重ねて、光波長変換素子を構成する場合、結晶内を通る基本波の進行方向に対する分極反転の周期が、ほぼ等しくならないと、それぞれを通る光の位相整合条件が異なり高効率の波長変換が行えない。そこで、位相整合条件を満足する分極反転構造のずれについて検討した。高効率化には、互いの分極反転構造のずれが0となるのが望ましいが、実際にずれをなくすのは困難である。効率が低下しない分極反転周期のずれを計算するとΛav/L>ΔΛn(n=1、2、3・・)となることが分かった。   Next, a description will be given of a shift in the period of the polarization inversion structure when the crystal is formed in a laminated structure. When an optical wavelength conversion element is configured by stacking crystals with a periodic polarization reversal structure, the phase matching of the light passing through each of them must be equal unless the period of polarization reversal with respect to the traveling direction of the fundamental wave passing through the crystal is substantially equal. High-efficiency wavelength conversion cannot be performed under different conditions. Therefore, the deviation of the domain-inverted structure that satisfies the phase matching condition was examined. For high efficiency, it is desirable that the deviation between the polarization inversion structures is 0, but it is difficult to actually eliminate the deviation. It was found that when calculating the deviation of the polarization inversion period that does not decrease the efficiency, Λav / L> ΔΛn (n = 1, 2, 3,...).

但し、Λavは分極反転の周期の平均値、ΔΛn(n=1、2、3・・)は各分極反転層の周期とVavとの差の絶対値、Lは相互作用長である。例えば図9に示すように2つの結晶を重ねた場合、Λav=(Λ1+Λ2)/2であり、ΔΛ1=|Λ1−Λav|、ΔΛ2=|Λ2−Λav|である。周期3.6μm作用長10mmの場合、分極反転周期のずれは、3.6x10-4μm以下にする必要がある。 Where Λav is the average value of the period of polarization inversion, ΔΛn (n = 1, 2, 3,...) Is the absolute value of the difference between the period of each polarization inversion layer and Vav, and L is the interaction length. For example, when two crystals are stacked as shown in FIG. 9, Λav = (Λ1 + Λ2) / 2, and ΔΛ1 = | Λ1−Λav | and ΔΛ2 = | Λ2−Λav |. When the period is 3.6 μm and the action length is 10 mm, the deviation of the polarization inversion period needs to be 3.6 × 10 −4 μm or less.

実施に分極反転構造を有する素子を重ねる場合は、結晶に基本波を入射しながら、基板を微動台で調整し、変換効率が最大になるように調整した後、接着した。基板をオプティカルコンタクトした状態で加熱することで、基板間が接着する。また接着剤を用いる場合は、基板の屈折率に近いものを用いることにより、SHG光の波面収差を低減することができた。また、接着剤を用いず、基板同志をオプティカルコンタクトした状態で固定することで、SHG光の波面収差をほとんどなくすことも可能であり、集光特性に優れた光波長変換素子の構成が実現できた。   In the case of stacking elements having a domain-inverted structure in practice, the substrate was adjusted with a fine moving table while the fundamental wave was incident on the crystal, and the substrate was bonded after adjusting the conversion efficiency to be maximum. The substrates are bonded together by heating in a state where the substrates are in optical contact. When using an adhesive, the wavefront aberration of SHG light could be reduced by using an adhesive having a refractive index close to that of the substrate. In addition, by fixing the substrates in an optical contact state without using an adhesive, it is possible to eliminate almost the wavefront aberration of SHG light, and it is possible to realize a configuration of an optical wavelength conversion element with excellent light collecting characteristics. It was.

重ねた基板の分極反転周期の差を積極的に利用する方法もある。実施の形態3で示したように、周期の異なる分極反転層を隣合わせに用い、ここに基本波を通すことにより、位相整合波長の許容度を増大させることも可能である。例えば、同一の周期を用いた基板を、重ね合わせわずかに回転させることにより、光の進行方向に対する周期に基板間で差を設けることにで、分極反転周期構造の異なる反転層を重ねた構造が実現できた。本方式により位相整合の波長許容度の拡大が可能であった。位相整合波長許容度が拡大することで、基本波の波長変動に対しても安定な出力が得られて有効であった。   There is also a method of positively utilizing the difference in polarization inversion period of the stacked substrates. As shown in the third embodiment, it is also possible to increase the tolerance of the phase matching wavelength by using the polarization inversion layers having different periods next to each other and passing the fundamental wave therethrough. For example, a structure in which different inversion layers having different polarization inversion periodic structures are stacked by providing a difference between the substrates in the period with respect to the traveling direction of light by overlapping and slightly rotating substrates using the same period. Realized. With this method, the wavelength tolerance of phase matching can be expanded. By expanding the phase matching wavelength tolerance, a stable output can be obtained even with respect to the wavelength fluctuation of the fundamental wave, which is effective.

なお、本実施例では基板にLiTaO3基板を用いたが他にMgO、Nb、NdなどをドープしたLiTaO3、またはLiNbO3またはその混合物であるLiTa(1-x)NbxO3(0≦x≦1)基板、そのほかKTP(KTiOPO4)でも同様な素子が作製できる。LiTaO3、LiNbO3、KTPはともに、高い非線形性を有するため、高効率の光波長変換素子が作製できる。 In this embodiment, a LiTaO 3 substrate is used as the substrate, but LiTaO 3 doped with MgO, Nb, Nd, or the like, or LiNbO 3 or a mixture thereof, LiTa (1-x) NbxO 3 (0 ≦ x ≦ 1) A similar device can be fabricated using a substrate and KTP (KTiOPO 4 ). Since LiTaO 3 , LiNbO 3 , and KTP all have high nonlinearity, a highly efficient optical wavelength conversion element can be manufactured.

(実施の形態9)
ここでは周期状分極反転構造を用いた、第3または第4高調波発生用のバルク型の光波長変換素子について述べる。
(Embodiment 9)
Here, a bulk type optical wavelength conversion element for generating a third or fourth harmonic using a periodically poled structure will be described.

前述の実施の形態において、周期状の分極反転構造を利用したバルク型の第2高調波発生を利用した光波長変換素子について説明した。周期状の分極反転を用いると、さらに高次の第3高調波、第4高調波の発生が可能となる。本実施の形態では、単一の素子による高次の高調波発生が可能な素子について述べる。   In the above-described embodiment, the optical wavelength conversion element using the bulk type second harmonic generation using the periodic domain-inverted structure has been described. When periodic polarization reversal is used, higher order third harmonics and fourth harmonics can be generated. In the present embodiment, an element capable of generating higher-order harmonics using a single element will be described.

従来、非線形光学効果を利用した第3高調波ならびに第4高調波発生は、非線形光学結晶を用いて、第2高調波発生を行い。さらに、他の非線形光学結晶を用いて、第2高調波を利用した第3または第4高調波発生を行っていた。これらの光学系では、複数の非線形光学結晶が必要であり、光学系の複雑な調整が必要であった。   Conventionally, the third harmonic generation and the fourth harmonic generation using the nonlinear optical effect are performed by using the nonlinear optical crystal to generate the second harmonic. Furthermore, the third or fourth harmonic generation using the second harmonic was performed using another nonlinear optical crystal. In these optical systems, a plurality of nonlinear optical crystals are required, and complicated adjustment of the optical system is required.

そこで、本実施の形態では、図10(a)に示す光波長変換素子の構成を用いた。図10(a)では、LiTaO3基板1が2つのセグメントA,Bに分割されており、セグメントAは基本波6を第2高調波に変換し、セグメントBではセグメントAを通過した基本波と第2高調波により第3高調波16を発生する。それぞれの分極反転の周期は、セグメントAでは、
Λ1=λ/2/(N2−N1)
セグメントBでは、
Λ2=λ/(3N3−N1−2N2)
となっている。但し、λは基本波の波長、N1は波長λの光に対する前記結晶の屈折率、N2は波長λ/2の光に対する前記結晶の屈折率、N3は波長λ/3の光に対する前記結晶の屈折率である。
Therefore, in the present embodiment, the configuration of the optical wavelength conversion element shown in FIG. In FIG. 10A, the LiTaO 3 substrate 1 is divided into two segments A and B. The segment A converts the fundamental wave 6 into the second harmonic, and the segment B has a fundamental wave that has passed through the segment A. A third harmonic 16 is generated by the second harmonic. The period of each polarization inversion is segment A,
Λ1 = λ / 2 / (N2-N1)
In segment B,
Λ2 = λ / (3N3-N1-2N2)
It has become. Where λ is the wavelength of the fundamental wave, N1 is the refractive index of the crystal for light of wavelength λ, N2 is the refractive index of the crystal for light of wavelength λ / 2, and N3 is the refraction of the crystal for light of wavelength λ / 3. Rate.

一つの非線形材料に異なる分極反転構造を形成することにより、単一の結晶で第3高調波発生が可能となった。さらに、基板に分極反転構造が形成されているため複雑な光学系調整が不要となり安定な出力が得られるという利点を持つ。本構造は、簡単な構成で短波長光の発生が可能であり、かつ安定な出力が得られる点で有効である。例えば、光源に波長1.06μmのYAGレーザを用い、レーザ光を光波長変換することで、0.35μmの紫外光発生ができた。   By forming different domain-inverted structures in one nonlinear material, third harmonic generation can be achieved with a single crystal. Furthermore, since the domain-inverted structure is formed on the substrate, there is an advantage that a complicated output adjustment is unnecessary and a stable output can be obtained. This structure is effective in that short wavelength light can be generated with a simple configuration and a stable output can be obtained. For example, by using a YAG laser with a wavelength of 1.06 μm as a light source and converting the wavelength of the laser light, ultraviolet light of 0.35 μm was generated.

同様の構成でさらに高次の第4高調波の発生も可能である。この場合は、セグメントAで第2高調波を発生し、第2高調波よりセグメントBで第4高調波を発生する。この時に分極反転周期は、セグメントAでは、
Λ1=λ/2(N2−N1)
であり、セグメントBでは、
Λ2=λ/4(N4−N2)
である。ただし、λは基本波の波長、N1は波長λの光に対する前記結晶の屈折率、N2は波長λ/2の光に対する前記結晶の屈折率、N4は波長λ/4の光に対する前記結晶の屈折率である。
It is possible to generate higher-order fourth harmonics with the same configuration. In this case, the second harmonic is generated in the segment A, and the fourth harmonic is generated in the segment B from the second harmonic. At this time, the polarization inversion period is segment A,
Λ1 = λ / 2 (N2-N1)
And in segment B,
Λ2 = λ / 4 (N4−N2)
It is. Where λ is the wavelength of the fundamental wave, N1 is the refractive index of the crystal for light of wavelength λ, N2 is the refractive index of the crystal for light of wavelength λ / 2, and N4 is the refraction of the crystal for light of wavelength λ / 4. Rate.

次に、温度変化等による光波長変換素子の位相整合ずれが生じた場合の調整機構を付加しした光波長変換素子構成についても図10(b)に示す。結晶の温度変化により屈折率が変化すると、位相整合条件が変わり高調波出力が低下する。このとき光波長変換素子をわずかに回転させ光の進行方向に対する分極反転周期を変調させることによりセグメントAで、第2高調波の発生を最大に調整することができる。しかし、セグメントBでの位相整合条件もずれるため、第3高調波の位相整合条件が成立しなくなる場合がある。これを調整するため、セグメントBは分極反転周期が素子の位置により僅かづつ異なる用に形成する。光波長変換素子の位置を左右に調整すれば、セグメントBでの位相整合状態を最良に調整することが可能となり、第3高調波を効率よく取り出すことが可能となる。   Next, FIG. 10B also shows an optical wavelength conversion element configuration to which an adjustment mechanism is added when a phase matching shift of the optical wavelength conversion element occurs due to a temperature change or the like. When the refractive index changes due to the temperature change of the crystal, the phase matching condition changes and the harmonic output decreases. At this time, the generation of the second harmonic can be adjusted to the maximum in the segment A by slightly rotating the optical wavelength conversion element to modulate the polarization inversion period with respect to the traveling direction of the light. However, since the phase matching condition in segment B is also shifted, the third harmonic phase matching condition may not be satisfied. In order to adjust this, the segment B is formed so that the polarization inversion period slightly differs depending on the position of the element. If the position of the optical wavelength conversion element is adjusted to the left and right, the phase matching state in segment B can be adjusted optimally, and the third harmonic can be extracted efficiently.

本構成を用いると、パラメトリック発振等への応用も可能であり、セグメントをさらに追加して、より高次の高調波の発生も可能である。   If this configuration is used, it can be applied to parametric oscillation or the like, and a segment can be further added to generate higher-order harmonics.

(実施の形態10)
ここでは、上述した実施の形態の光波長変換素子を用いた短波長光源について述べる。
(Embodiment 10)
Here, a short wavelength light source using the optical wavelength conversion element of the above-described embodiment will be described.

レーザ光源と光波長変換素子を用いて、短波長光源が構成できる。図12に本実施の形態の短波長光源を示す。レーザ12からでた基本波6は、光波長変換素子14により波長変換され、SHG7となって出射される。例えば波長800nm帯の半導体レーザを用いると波長400nm帯の青色のSHG光が得られ、小型の青色光源が実現できる。位相整合条件は、光軸に対し基板の角度を回転させることで、実効的な分極反転周期を調整することで達成した。位相整合のアライメントの角度調整は容易であり、温度安定化を図ることで安定な光源が実現できた。   A short wavelength light source can be configured using a laser light source and an optical wavelength conversion element. FIG. 12 shows a short wavelength light source of this embodiment. The fundamental wave 6 emitted from the laser 12 is wavelength-converted by the optical wavelength conversion element 14 and emitted as SHG7. For example, when a semiconductor laser with a wavelength of 800 nm is used, blue SHG light with a wavelength of 400 nm can be obtained, and a compact blue light source can be realized. The phase matching condition was achieved by adjusting the effective polarization inversion period by rotating the angle of the substrate with respect to the optical axis. It is easy to adjust the angle of phase matching alignment, and a stable light source can be realized by stabilizing the temperature.

安定な小型短波長光源は、高密度光記録、カラーレーザプリンター、医用、バイオなどの幅広い分野での応用が可能となる。波長680nm帯の赤色半導体レーザを基本波として用いることで、波長340nmの紫外光発生が可能となり、作製が困難な小型の紫外光源が実現できる。バイオ、蛍光寿命測定、特殊計測等への応用が可能となる。また、レーザをパルス駆動すると高いピークパワーの基本波が得られるため、高効率の波長変換が可能になる。例えは、CW駆動では最大出力40mW程度の半導体レーザでも、パルス駆動することで数100mWの高いピークパワーの発生が可能となり、SHG出力としても数10mWのものが得られる。高いピークパワーを持ったSHG光は、蛍光寿命測定等に応用することで、不純物検出等が可能となる。また、半導体レーザを高周波のRF駆動することで、高いピークパワーをもったパルス列発振が可能となり、平均パワーでCW駆動の半導体レーザに比べ5倍以上の変換効率向上が可能となった。高出力の小型光源として優れた特性を示した。   A stable small short wavelength light source can be applied in a wide range of fields such as high-density optical recording, color laser printers, medical use, and biotechnology. By using a red semiconductor laser having a wavelength of 680 nm as a fundamental wave, it is possible to generate ultraviolet light having a wavelength of 340 nm, and a small ultraviolet light source that is difficult to manufacture can be realized. Application to biotechnology, fluorescence lifetime measurement, special measurement, etc. becomes possible. Further, when the laser is pulse-driven, a fundamental wave having a high peak power can be obtained, so that highly efficient wavelength conversion is possible. For example, even a semiconductor laser having a maximum output of about 40 mW in CW drive can generate a high peak power of several hundreds mW by pulse driving, and an SHG output of several tens mW can be obtained. Impurity detection and the like can be performed by applying SHG light having high peak power to fluorescence lifetime measurement and the like. In addition, by driving the semiconductor laser with high frequency RF, pulse train oscillation with high peak power is possible, and the conversion efficiency can be improved by 5 times or more compared with the semiconductor laser driven by CW with average power. Excellent characteristics as a high output compact light source.

高出力のSHG光を発生した場合、光損傷による出力の不安定性が問題となる。本実施例で示した素子においても10mWを越えるSHG出力を発生した場合、出力の不安定性が観測される場合があった。これを解決するため、図11に示すように、光波長変換素子を微動台15に固定し基本波に対する光波長変換素子の位置を変動させた。光損傷は比較的ゆっくりした速度(数秒オーダ以上)で発生するため、光波長変換素子の位置を数10Hz以上の速さで変動することで、結晶内に照射されている光のパワーを分散させて、結果として光のパワー密度を低減することができる。この方法で耐光損傷の強度が2倍以上に向上し、安定な高出力SHGの発生が可能となった。   When high output SHG light is generated, output instability due to optical damage becomes a problem. Even in the element shown in this embodiment, when an SHG output exceeding 10 mW is generated, instability of the output may be observed. In order to solve this, as shown in FIG. 11, the optical wavelength conversion element is fixed to the fine movement table 15 and the position of the optical wavelength conversion element with respect to the fundamental wave is changed. Since optical damage occurs at a relatively slow speed (several seconds or more), the power of the light irradiated in the crystal is dispersed by changing the position of the optical wavelength conversion element at a speed of several tens of Hz or more. As a result, the power density of light can be reduced. By this method, the strength of light damage resistance was improved more than twice, and stable generation of high output SHG became possible.

一方、温度による位相整合条件の変化により、光波長変換素子の変換効率が劣化する減少が観測された。これは温度により基板結晶の屈折率が変化し、位相整合条件がずれたために発生した。そこで、図12に示すように、光波長変換素子を回転微動台15で制御した。周期状の分極反転層を有する光波長変換素子は、素子を光軸に対し傾けることで、光に対する実質的な分極反転周期を可変することが可能となる。この回転微動台を調整して、光波長変換素子の位相整合条件を常に最適に調整することにより、安定したSHGの発生が可能となった。   On the other hand, a decrease in the conversion efficiency of the optical wavelength conversion element due to changes in the phase matching condition due to temperature was observed. This occurred because the refractive index of the substrate crystal changed with temperature and the phase matching condition shifted. Therefore, as shown in FIG. 12, the optical wavelength conversion element was controlled by the rotary fine movement table 15. An optical wavelength conversion element having a periodic domain-inverted layer can vary the substantial domain-inverted period for light by tilting the element with respect to the optical axis. A stable SHG can be generated by adjusting this rotary fine movement table to always optimally adjust the phase matching condition of the optical wavelength conversion element.

本発明にかかる波長変換素子は、変換効率が高く、出力が安定した光波長変換素子として有用である。   The wavelength conversion element according to the present invention is useful as an optical wavelength conversion element having high conversion efficiency and stable output.

(a)〜(c)分極反転の製造方法を示す作製工程斜視図(A)-(c) Production process perspective view showing method for producing polarization inversion (a)非反転領域が形成された分極反転の表面図(b)均一な分極反転の表面図(A) Surface view of polarization inversion with non-inversion region formed (b) Surface view of uniform polarization inversion 分極反転部の拡大(Wmin)距離と基板厚みの関係を示す特性要因図Characteristic factor diagram showing the relationship between the expansion (Wmin) distance of the domain-inverted part and the substrate thickness 電極と分極反転部の位置関係を表す表面図Surface view showing the positional relationship between the electrode and the domain-inverted part (a)〜(d)本発明の光波長変換素子の作製工程斜視図(A)-(d) The manufacturing process perspective view of the optical wavelength conversion element of this invention 本発明の光波長変換素子の構成斜視図Configuration perspective view of optical wavelength conversion element of the present invention (a)本発明の光波長変換素子の構成斜視図(b)各領域における分極反転構造の位相関係を表す特性要因図(A) Configuration perspective view of optical wavelength conversion element of the present invention (b) Characteristic factor diagram showing phase relationship of polarization inversion structure in each region (a)本発明の光波長変換素子の構成斜視図(b)各領域における位相整合特性を表す特性要因図(A) Configuration perspective view of optical wavelength conversion element of the present invention (b) Characteristic factor diagram showing phase matching characteristics in each region 本発明の光波長変換素子の構成斜視図Configuration perspective view of optical wavelength conversion element of the present invention (a)高次高調波発生用の光波長変換素子の構成斜視図(b)位相整合調整機構付きの光波長変換素子の構成斜視図(A) Configuration perspective view of optical wavelength conversion element for high-order harmonic generation (b) Configuration perspective view of optical wavelength conversion element with phase matching adjustment mechanism 本発明の短波長光源の構成斜視図Configuration perspective view of the short wavelength light source of the present invention 本発明の短波長光源の構成斜視図Configuration perspective view of the short wavelength light source of the present invention 従来の分極反転の製造方法を示す作製斜視図Fabrication perspective view showing a conventional method of manufacturing polarization inversion 従来の光波長変換素子の構成斜視図Configuration perspective view of conventional optical wavelength conversion element

符号の説明Explanation of symbols

1 C板のLiTaO3基板
4 分極反転層
5 Al膜
6 基本光
7 SHG
8 第1のLiTaO3基板
9 第2のLiTaO3基板
11 SiO2
12 レーザ
13 集光光学系
14 光波長変換素子
15 微動台
16 高調波
17 櫛形電極
18 平面電極
19 絶縁膜
20 電極
21 分極反転部
22 非反転部分
23 LiNbO3基板
24 櫛形電極
25 平面電極
1 C-plate LiTaO 3 substrate 4 Polarization inversion layer 5 Al film 6 Basic light 7 SHG
8 First LiTaO 3 substrate 9 Second LiTaO 3 substrate 11 SiO 2
DESCRIPTION OF SYMBOLS 12 Laser 13 Condensing optical system 14 Optical wavelength conversion element 15 Fine moving table 16 Harmonic wave 17 Comb electrode 18 Planar electrode 19 Insulating film 20 Electrode 21 Polarization inversion part 22 Non-inversion part 23 LiNbO 3 substrate 24 Comb electrode 25 Plane electrode

Claims (6)

単一分極の強誘電体結晶と、
前記結晶に形成した周期状の分極反転層と、を有し、
前記周期状の分極反転層は、前記結晶表面に作製した幅Wの電極指を周期Λで並べた櫛型電極に電圧を印加することで形成されており、
前記分極反転層の周期Λと、前記基板の厚みTが、
T<Λ/0.01の関係を満足し、かつ、W < Λ/2−2(0.002×T−0.2)
であることを特徴とする光波長変換素子。
A single-polarized ferroelectric crystal;
Anda periodic polarization inversion layer formed in the crystal,
The periodic domain-inverted layer is formed by applying a voltage to a comb-shaped electrode in which electrode fingers with a width W produced on the crystal surface are arranged with a period Λ,
And the period Λ of the domain inverted layer, the thickness T of the substrate,
Satisfies the relationship of T <Λ / 0.01 and W <Λ / 2-2 (0.002 × T-0.2)
An optical wavelength conversion element characterized by the above .
前記分極反転周期が2μm以下である請求項1記載の光波長変換素子。   The optical wavelength conversion element according to claim 1, wherein the polarization inversion period is 2 μm or less. 請求項1または2記載の光波長変換素子と、
集光光学系と、
半導体レーザとを備え、
前記レーザから出射した光が、前記光学系により前記光波長変換素子内に集光されて前記光波長変換素子により波長変換されている短波長光発生装置。
The optical wavelength conversion element according to claim 1 or 2 ,
A condensing optical system;
A semiconductor laser ,
A short-wavelength light generator in which light emitted from the laser is condensed in the optical wavelength conversion element by the optical system and wavelength-converted by the optical wavelength conversion element.
前記レーザがパルス駆動されている請求項記載の短波長光発生装置。 The short-wavelength light generator according to claim 3, wherein the laser is pulse-driven. 微動台を備え、
前記光波長変換素子が前記微動台に固定されており、
前記集光光学系により前記レーザから出た光が光波長変換素子内部に集光されており、
かつ前記レーザ光に対する前記結晶の位置が前記微動台により変動している請求項記載の短波長光発生装置。
Equipped with a fine motion table,
The optical wavelength conversion element is fixed to the fine movement table;
The light emitted from the laser is condensed inside the optical wavelength conversion element by the condensing optical system,
4. The short wavelength light generating device according to claim 3, wherein a position of the crystal with respect to the laser light is varied by the fine movement table.
回転微動台を備え、
前記光波長変換素子が前記回転微動台に固定されており、
前記集光光学系により前記レーザから出た光が光波長変換素子内部に集光されており、
かつ前記回転台により前記レーザ光に対する前記結晶の位相整合条件を制御している請求項に記載の短波長光発生装置。
Equipped with a rotating fine table,
The optical wavelength conversion element is fixed to the rotary fine movement table;
The light emitted from the laser is condensed inside the optical wavelength conversion element by the condensing optical system,
4. The short-wavelength light generator according to claim 3 , wherein a phase matching condition of the crystal with respect to the laser beam is controlled by the turntable.
JP2006008469A 1996-03-12 2006-01-17 Optical wavelength conversion element and short wavelength light generator Expired - Lifetime JP4114694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008469A JP4114694B2 (en) 1996-03-12 2006-01-17 Optical wavelength conversion element and short wavelength light generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5460096 1996-03-12
JP2006008469A JP4114694B2 (en) 1996-03-12 2006-01-17 Optical wavelength conversion element and short wavelength light generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22486096A Division JP3915145B2 (en) 1996-03-12 1996-08-27 Optical wavelength conversion element and method of manufacturing polarization inversion

Publications (2)

Publication Number Publication Date
JP2006106804A JP2006106804A (en) 2006-04-20
JP4114694B2 true JP4114694B2 (en) 2008-07-09

Family

ID=36376518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008469A Expired - Lifetime JP4114694B2 (en) 1996-03-12 2006-01-17 Optical wavelength conversion element and short wavelength light generator

Country Status (1)

Country Link
JP (1) JP4114694B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158319B2 (en) 2007-03-26 2013-03-06 株式会社リコー Wavelength conversion element, laser device, image forming apparatus, and display device
JP5529153B2 (en) * 2009-10-21 2014-06-25 パナソニック株式会社 Wavelength conversion laser light source and image display device
JP5672529B2 (en) * 2010-09-13 2015-02-18 株式会社リコー ELECTRO-OPTICAL ELEMENT, MANUFACTURING METHOD THEREOF, AND LIGHT DEFLECTION DEVICE USING ELECTRO-OPTICAL ELEMENT
JP6324452B2 (en) * 2016-08-19 2018-05-16 大学共同利用機関法人自然科学研究機構 Pulsed light generator

Also Published As

Publication number Publication date
JP2006106804A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US5036220A (en) Nonlinear optical radiation generator and method of controlling regions of ferroelectric polarization domains in solid state bodies
Mizuuchi et al. Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO 3
JP3915145B2 (en) Optical wavelength conversion element and method of manufacturing polarization inversion
JP4545380B2 (en) Optical waveguide device, coherent light source using the same, and optical apparatus provided with the same
JPH05273623A (en) Optical wavelength conversion element and laser beam source using the same
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JP4114694B2 (en) Optical wavelength conversion element and short wavelength light generator
JP4119508B2 (en) Optical wavelength conversion element and manufacturing method thereof, light generation apparatus and optical pickup using the element, and manufacturing method of polarization inversion unit
JP2002250949A (en) Optical waveguide element, optical wavelength converting element and method for manufacturing optical waveguide element
JP3907762B2 (en) Optical wavelength conversion element, short wavelength light generator and optical pickup
JP3264081B2 (en) Optical wavelength conversion element and short wavelength light generator
JP4114693B2 (en) Manufacturing method of polarization reversal
JP2822778B2 (en) Wavelength conversion element
JP2910370B2 (en) Optical wavelength conversion element and short wavelength laser light source using the same
JPH1172810A (en) Optical waveguide and its production, optical wavelength conversion element using this optical waveguide, short wavelength light emitting device and optical pickup
JP2718259B2 (en) Short wavelength laser light source
JPH0651359A (en) Wavelength conversion element, short wavelength laser device and wavelength variable laser device
JP2921208B2 (en) Wavelength conversion element and short wavelength laser light source
JPH0566440A (en) Laser light source
WO2002103450A1 (en) Device for wavelength conversion and optical computing
JP3049986B2 (en) Optical wavelength conversion element
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JP2643735B2 (en) Wavelength conversion element
JPH06102553A (en) Optical wavelength conversion element and short wavelength laser beam source
JP2000241842A (en) Optical wavelength conversion element and short wavelength light generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

EXPY Cancellation because of completion of term