JPH05345904A - Production of titanium powder - Google Patents

Production of titanium powder

Info

Publication number
JPH05345904A
JPH05345904A JP10142092A JP10142092A JPH05345904A JP H05345904 A JPH05345904 A JP H05345904A JP 10142092 A JP10142092 A JP 10142092A JP 10142092 A JP10142092 A JP 10142092A JP H05345904 A JPH05345904 A JP H05345904A
Authority
JP
Japan
Prior art keywords
titanium
hydrogenation
furnace
phase
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10142092A
Other languages
Japanese (ja)
Inventor
Takashi Yoshimura
尚 吉村
Michio Tamura
道夫 田村
Noboru Takaku
昇 高久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10142092A priority Critical patent/JPH05345904A/en
Publication of JPH05345904A publication Critical patent/JPH05345904A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To provide the process for production of titanium powder by efficiently hydrogenating raw materials without restriction in the shapes thereof in a hydrogenation treatment for producing the titanium powder by a hydrogenation and dehydrogenation method. CONSTITUTION:The delta phase of the surface layer for rate determination of hydrogenation is removed by the collision of the titanium which is the raw material and the wall of a rotary furnace or the collision of the titanium against each other and the hydrogenation is accelerated by executing the hydrogenation treatment of the titanium in this furnace. Ordinary titanium ingots and titanium scrap are heretofore used as the raw materials by machining and thinning the ingots and scrap with a planing machine, etc., with the conventional static type hydrogenation furnace, but there is no need for machining according to this process and the straight use of various kinds of the scrap which cannot heretofore be machined to a smaller thickness is possible. The effects of reducing the cost of machining, improving the productivity, enabling the use of the inexpensive raw materials, etc., are thus obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金用原料として
のチタン粉末を水素化脱水素法(以降HDH法とい
う。)によって製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing titanium powder as a raw material for powder metallurgy by a hydrodehydrogenation method (hereinafter referred to as HDH method).

【0002】[0002]

【従来の技術】チタン合金は比強度が高く、耐熱性、耐
食性にも優れており、航空機等の材料として理想的な特
徴を備えている反面、溶解、鍛造、切削などの加工性に
難点がある。このため、加工費の低減、歩留りの向上の
観点から最終形状に近い半製品を直接製造する技術とし
て粉末冶金法が有望になっている。
2. Description of the Related Art Titanium alloy has a high specific strength and excellent heat resistance and corrosion resistance, and has ideal characteristics as a material for aircraft and the like, but has a difficulty in workability such as melting, forging and cutting. is there. Therefore, the powder metallurgy method is promising as a technique for directly manufacturing a semi-finished product having a final shape from the viewpoint of reducing the processing cost and improving the yield.

【0003】粉末冶金によってチタン合金を製造する場
合、原料として純チタン粉末とチタン母合金粉末の混合
粉末を用いる方法および、チタン合金粉末を用いる方法
の2通りがある。前者の方法は、両粉末の混合比を変え
ることにより種々の組成の合金を安価に製造できること
から有利な方法とされている。
When a titanium alloy is produced by powder metallurgy, there are two methods: a method using a mixed powder of pure titanium powder and a titanium master alloy powder as a raw material and a method using a titanium alloy powder. The former method is considered to be advantageous because alloys of various compositions can be manufactured at low cost by changing the mixing ratio of both powders.

【0004】純チタンの粉末製造方法としては、金属チ
タンとして一般に得られるスポンジチタンを機械的に粉
砕して粉末とする方法もあるが、スポンジチタンは展延
性に富むためこれを直接粉砕して微粉末を得ることは困
難であり、また塩素分が多いため粉末冶金用としては低
級品である。
As a method of producing pure titanium powder, there is a method of mechanically pulverizing sponge titanium, which is generally obtained as metallic titanium, into a powder. However, since sponge titanium is rich in spreadability, it is directly pulverized and finely divided. It is difficult to obtain a powder, and since it contains a large amount of chlorine, it is a low grade product for powder metallurgy.

【0005】そこで、一般的には溶融チタンをガスで吹
き飛ばして粉末を造るアトマイズ法、あるいはチタン電
極を回転させ、その電極をプラズマ等で溶融し、遠心力
で吹き飛ばして粉末を作る回転電極法がある。この方法
によれば比較的純度の高いチタン粉末を得ることができ
るが、粉末形状、粒度、コスト等に難点がある。
Therefore, in general, there is an atomizing method in which molten titanium is blown off with a gas to produce powder, or a rotating electrode method in which a titanium electrode is rotated and the electrode is melted by plasma or the like and blown away by centrifugal force to produce powder. is there. According to this method, a titanium powder having a relatively high purity can be obtained, but there are drawbacks in the powder shape, particle size, cost and the like.

【0006】このためチタンを水素化処理して、脆弱な
チタン水素化物とし、これを機械的に粉砕して粉末にし
た後、真空加熱等により脱水素してチタン粉末を得るH
DH法による方法が一般的に採用されている。
For this reason, titanium is hydrotreated to form a brittle titanium hydride, which is mechanically crushed into powder and then dehydrogenated by vacuum heating or the like to obtain titanium powder H
The method based on the DH method is generally adopted.

【0007】[0007]

【発明が解決しようとする課題】従来のHDH法では特
開昭56−20103号公報に示されいるようにチタン
を水素化して脆弱な水素化チタンを得る方式として、通
常チタンインゴット、チタンスクラップ等のチタン原料
を平削り盤等の機械で切削加工し、薄くして静止型水素
化炉へ装入する方法がとられている。
In the conventional HDH method, as disclosed in JP-A-56-20103, a method of hydrogenating titanium to obtain brittle titanium hydride is usually a titanium ingot, titanium scrap, etc. The titanium raw material is cut by a machine such as a planing machine, thinned, and charged into a static hydrogenation furnace.

【0008】これは、チタンを静止型水素化炉に装入し
た後炉内を真空引きし、水素を供給して炉を加熱する水
素化処理工程で、チタンの水素化の進行に伴いチタンに
水素が吸収され、表層に水素含有率の高い(3重量%以
上)δ相が形成され、これが内部の水素侵入の抵抗とな
って、インゴット、スクラップ等の厚物チタンであると
内部まで完全に脆化できない問題がある。そこで従来は
原料を水素化するために平削り盤等の機械で切削加工
し、薄くして静止型水素化炉へ装入する方法がとられて
いる。しかしながら、静止型水素化炉による水素化処理
法では表層に形成されたδ相が水素吸収の律速となり、
水素化処理するのに時間がかかり効率が悪いという問題
がある。さらに切削加工し薄くしたチタンを水素化処理
する方法では、原料であるチタンが切削可能な形状であ
ること、また切削に要するコストがかかる等の問題があ
る。
This is a hydrotreating process in which titanium is charged into a static hydrogenation furnace and then the furnace is evacuated and hydrogen is supplied to heat the furnace. Hydrogen is absorbed and a δ phase with a high hydrogen content (3 wt% or more) is formed on the surface layer, which becomes a resistance against hydrogen intrusion inside, and if it is thick titanium such as ingot, scrap, etc., it will completely penetrate to the inside. There is a problem that cannot be embrittled. Therefore, conventionally, in order to hydrogenate the raw material, a method of cutting the raw material with a machine such as a planing machine, thinning it, and charging it into a static hydrogenation furnace has been adopted. However, in the hydrotreatment method using a static hydrogenation furnace, the δ phase formed in the surface layer is the rate-determining factor for hydrogen absorption,
There is a problem that it takes a long time to perform the hydrotreatment and the efficiency is low. Further, in the method of hydrotreating titanium thinned by cutting, there are problems that the raw material titanium has a shape that can be cut and that the cost required for cutting is high.

【0009】本発明の第1の目的は、原料がチタンイン
ゴット、チタンスクラップ等の厚物材、切削不能形状の
チタンスクラップであっても、短時間で内部まで完全に
水素脆化(δ相化)でき、原料制約、切削コストを解消
できるHDH法におけるチタンの水素化処理方法を提供
することにある。
A first object of the present invention is to completely hydrogen embrittle (into the δ phase) even in the inside in a short time even if the raw material is a thick material such as titanium ingot or titanium scrap or titanium scrap having an uncut shape. The present invention is to provide a method for hydrotreating titanium in the HDH method, which is capable of eliminating raw material restrictions and cutting costs.

【0010】また、第2の目的はチタンインゴット、チ
タンスクラップ等を切削加工した原料については、その
水素化処理時間(δ相化所要時間)を大幅短縮できるH
DH法におけるチタンの水素化処理方法を提供すること
にある。
The second purpose is to significantly reduce the hydrogenation treatment time (δ-phase conversion required time) of raw materials obtained by cutting titanium ingot, titanium scrap and the like.
It is to provide a method for hydrotreating titanium in the DH method.

【0011】[0011]

【問題を解決するための手段】本発明は、水素化脱水素
法によりチタン粉末を製造する方法において、チタンの
水素化を回転炉内で行うことに特徴がある。この水素化
炉を回転させることは、表層に形成された水素含有率の
高い(3重量%以上)δ相を、炉を回転させることで原
料であるチタンを炉壁に衝突させるか、チタンどうしを
衝突させ、その時の衝突力で除去させることである。水
素化炉を回転させる方向としては、垂直方向または水平
方向に回転させる方式が考えられるが、原料であるチタ
ンを炉壁に衝突させるかまたはチタンどうしを衝突させ
るには、垂直方向に回転させることが望ましい。また、
水素化炉の操業はバッチ処理、連続処理の何れかの操業
条件でも炉を回転させることで、表層に形成されたδ相
を除去することが可能である。
The present invention is characterized in that in the method for producing titanium powder by the hydrodehydrogenation method, titanium is hydrogenated in a rotary furnace. Rotation of this hydrogenation furnace is performed by rotating the furnace to collide the δ phase having a high hydrogen content (3% by weight or more) formed in the surface layer with titanium as a raw material on the furnace wall, or between titanium. Is to be made to collide and to be removed by the collision force at that time. As the direction of rotating the hydrogenation furnace, it is possible to rotate vertically or horizontally, but in order to make the raw material titanium collide with the furnace wall or collide titanium with each other, it must be rotated vertically. Is desirable. Also,
The operation of the hydrogenation furnace can remove the δ phase formed in the surface layer by rotating the furnace under either batch processing or continuous processing operation conditions.

【0012】[0012]

【作用】HDH法のチタンを水素化炉に装入した後炉内
を真空引きし、水素を供給して炉を加熱する水素化処理
工程において、水素化の進展によりβ相およびβ+δ相
からδ相となるが、このδ相の水素吸収量は3重量%以
上である。チタンが水素化するのは表層から水素が吸収
されβ相およびβ+δ相からδ相になるが、δ相になる
と水素吸収がβ相およびβ+δ相に比べ大幅に低下す
る。そのため原料のチタン材が厚くなると表層のδ相が
水素吸収の律速になり、全体がδ相になるには長時間が
かかることになる。また、このβ相およびβ+δ相は常
温域ではα+δ相となり、δ相に比較して固く粉砕はや
や困難である。
[Function] In the hydrotreating process in which titanium of the HDH method is charged into the hydrogenation furnace, the inside of the furnace is evacuated, and hydrogen is supplied to heat the furnace, the progress of hydrogenation causes the β phase and the β + δ phase to change to δ The hydrogen absorption amount of the δ phase is 3% by weight or more. Titanium is hydrogenated because hydrogen is absorbed from the surface layer and changes from β phase and β + δ phase to δ phase, but when it becomes δ phase, hydrogen absorption is significantly reduced as compared with β phase and β + δ phase. Therefore, when the titanium material as a raw material becomes thicker, the δ phase in the surface layer becomes the rate-determining factor for hydrogen absorption, and it takes a long time for the whole to become the δ phase. Further, the β phase and the β + δ phase become the α + δ phase in the normal temperature region, and are harder than the δ phase, and the pulverization is somewhat difficult.

【0013】そこで水素化を促進とする手段として、こ
の表層のδ相を除去してやれば、水素化を促進すること
に着目した。δ相は非常に脆く、手で簡単に砕くことが
可能であり、衝撃を与えれば表層のδ相を除去すること
が可能である。この表層のδ相を除去する方法として、
炉を回転することで原料であるチタンが回転・衝突し、
その時の衝撃で表層のδ相を除去してやれば、常にチタ
ン表面が出て水素化は促進されることになる。この炉の
回転は原料のチタンを炉壁に衝突させるか、チタンどう
しを衝突させることが必要であり、炉の回転数は炉の大
きさ、原料装入量、原料形状等で異なってくるが、一般
的には10rpm 以上あれば充分である。
Therefore, as a means for promoting hydrogenation, attention has been paid to promoting hydrogenation by removing the δ phase in the surface layer. The δ phase is extremely brittle and can be easily crushed by hand, and the δ phase in the surface layer can be removed by applying an impact. As a method of removing the δ phase of this surface layer,
By rotating the furnace, the raw material titanium rotates and collides,
If the δ phase in the surface layer is removed by the impact at that time, the titanium surface is always exposed and hydrogenation is promoted. The rotation of this furnace requires that the raw material titanium collide with the furnace wall or the titanium collides with each other, and the number of revolutions of the furnace varies depending on the size of the furnace, the amount of raw material charged, the raw material shape, etc. Generally, 10 rpm or more is sufficient.

【0014】[0014]

【実施例1】水素化炉としてローターリキルン型回転式
水素化炉を用い、原料としては100mm×100×厚さ
50mmのチタンスクラップを使用して水素化した。ま
ず、ローターリキルン型回転式水素化炉にチタンスクラ
ップを装入した後、炉内圧力を10-3torrまで真空引き
し、水素を添加して炉内圧力を大気圧まで添加して、炉
を回転した。炉の回転数は60rpm で行い、炉は600
℃まで加熱し保定した。チタンの水素吸収に伴って炉圧
が低下するので、炉圧が大気圧になるように水素を供給
して炉圧制御を行った。
Example 1 A rotor re-kiln type rotary hydrogenation furnace was used as a hydrogenation furnace, and titanium scrap of 100 mm × 100 × 50 mm thickness was used as a raw material for hydrogenation. First, after loading titanium scrap into a rotor re-kiln type rotary hydrogenation furnace, the furnace pressure was evacuated to 10 -3 torr, hydrogen was added, and the furnace pressure was added to atmospheric pressure. Rotated. The rotation speed of the furnace is 60 rpm, and the furnace is 600
It was heated to ℃ and retained. Since the furnace pressure decreases as titanium absorbs hydrogen, the furnace pressure was controlled by supplying hydrogen so that the furnace pressure became atmospheric pressure.

【0015】その結果の水素化時間と表層のδ相厚みの
関係を図1に示す。表層のδ相厚みは除去されたδ相厚
みを示す。ローターリキルン型回転式水素化炉と同じ条
件で水素化を行った従来の静止型水素化炉では水素化時
間が3時間では除去されたδ相厚が5mmであるのに対
し、本発明では同じ水素化時間が3時間でδ相厚が20
mmとなり、水素化の処理時間、効率が大幅に短縮、向上
された。
FIG. 1 shows the relationship between the resulting hydrogenation time and the δ phase thickness of the surface layer. The δ-phase thickness of the surface layer indicates the δ-phase thickness removed. In the conventional static hydrogenation furnace in which hydrogenation was carried out under the same conditions as in the rotor re-kiln type rotary hydrogenation furnace, the δ phase thickness removed was 5 mm when the hydrogenation time was 3 hours. The same hydrogenation time is 3 hours and δ phase thickness is 20
mm, the hydrogenation processing time and efficiency have been greatly reduced and improved.

【0016】また、本発明では炉の回転により原料のチ
タンと炉壁の衝突か、チタンどうしの衝突で水素化され
たチタンが砕かれて粗粉砕されている。従来の静止型水
素化炉では水素化が完了した後、粉砕機にかける前に粗
粉砕の必要があったが、本発明ではその必要がないこと
が判明した。
Further, in the present invention, titanium which is hydrogenated by collision between titanium as a raw material and the furnace wall or collision between titanium is crushed by the rotation of the furnace and coarsely crushed. In the conventional static hydrogenation furnace, after the hydrogenation was completed, it was necessary to perform coarse pulverization before it was subjected to the pulverizer, but in the present invention, it was found that this is not necessary.

【0017】また従来の静止型水素化炉では、材料であ
るチタンが厚いと水素化時間を長くしても表層のδ相の
影響でδ相厚みが大きくならないが、本発明では水素吸
収の律速となる表層のδ相が除去されるので、水素化時
間にほぼ比例してチタンがδ相化する。
Further, in the conventional static hydrogenation furnace, if the material titanium is thick, the δ phase thickness does not increase due to the influence of the δ phase in the surface layer even if the hydrogenation time is lengthened, but in the present invention, the rate of hydrogen absorption is rate-determining. Since the δ phase in the surface layer is removed, titanium is converted to the δ phase almost in proportion to the hydrogenation time.

【0018】[0018]

【実施例2】従来と同じようにチタンスクラップを機械
で切削加工し薄くして、水素化炉としてローターリキル
ン型回転式水素化炉を用いて水素化した。機械で切削加
工した材料の厚みは0.5mmと1.0mmの2種類で水素
化を行った。水素化は切削した原料を水素化炉に装入し
た後、炉内圧力を10-3torrまで真空引きし、水素を添
加し、炉を回転した。炉の回転数は30rpm で行い、炉
は600℃まで加熱し保定した。チタンの水素吸収に伴
って炉圧が低下するので、炉圧が大気圧になるように水
素を供給して炉圧制御を行った。
Example 2 Titanium scrap was mechanically cut and thinned in the same manner as in the prior art, and hydrogenated using a rotor re-kiln type rotary hydrogenation furnace as a hydrogenation furnace. Hydrogenation was carried out with two types of machine-cut material thicknesses of 0.5 mm and 1.0 mm. In the hydrogenation, after the cut raw material was charged into the hydrogenation furnace, the pressure inside the furnace was evacuated to 10 −3 torr, hydrogen was added, and the furnace was rotated. The rotation speed of the furnace was 30 rpm, and the furnace was heated to 600 ° C. and held. Since the furnace pressure decreases as titanium absorbs hydrogen, the furnace pressure was controlled by supplying hydrogen so that the furnace pressure became atmospheric pressure.

【0019】その結果の必要水素化処理時間を表1に示
す。チタンが水素を吸収してδ相になるのに要した時間
は、材料の厚みが0.5mmで5分、1.0mmで10分で
あった。これは、同様な水素化条件で水素化を行った従
来の静止型水素化炉がチタンが水素を吸収してδ相にな
るのに要した時間が、材料の厚みが0.5mmで12分、
1.0mmで25分であるのに対し、水素化の処理時間が
大幅に短縮された。
Table 1 shows the required hydrotreatment time as a result. The time required for titanium to absorb hydrogen to form the δ phase was 5 minutes at a material thickness of 0.5 mm and 10 minutes at a thickness of 1.0 mm. This is because the time required for titanium to absorb hydrogen into the δ phase in a conventional static hydrogenation furnace that has been hydrogenated under similar hydrogenation conditions is 12 minutes when the material thickness is 0.5 mm. ,
The hydrogenation treatment time was significantly shortened, while it was 25 minutes at 1.0 mm.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】従来の静止型水素化炉では、原料として
通常チタンインゴット、チタンスクラップ等のチタン原
料を平削り盤等の機械で切削加工し薄くする方法がとら
れていたために、切削コストの増大、および対象となる
原料が限られていること、また切削加工し薄くするため
に嵩張り生産性が上がらないこと、さらには表層に形成
されたδ相が水素吸収の律速になり、水素化処理するの
に時間がかかり効率が悪い等の問題があった。
EFFECTS OF THE INVENTION In the conventional static hydrogenation furnace, a method of cutting the titanium raw material such as titanium ingot and titanium scrap as a raw material by a machine such as a planing machine to thin the raw material is used. Increase, and that the target materials are limited, that the material is bulky and does not increase productivity because it is thinned by cutting, and the δ phase formed in the surface layer is the rate-determining factor for hydrogen absorption, There was a problem that processing took time and was inefficient.

【0022】しかしながら本発明によれば、炉を回転さ
せることで水素化の律速となる表層のδ相を常に除去す
るため、原料のチタンを薄く切削加工する必要がない。
そのために切削コストの節減および水素化促進による生
産性の増大が図れることとなる。また、従来では薄く切
削加工できなかった各種スクラップがそのまま利用可能
となり、安価な原料の使用も可能となる等の効果が得ら
れ、大幅なコスト削減と生産性の向上が図れることがで
きる。一方、従来の原料を切削加工し薄くして使用して
も、本発明によれば水素化が促進されるため、水素化処
理時間が短縮し効率の向上を図ることができる。
However, according to the present invention, since the δ phase in the surface layer, which is the rate-determining factor for hydrogenation, is always removed by rotating the furnace, it is not necessary to cut the raw material titanium thinly.
Therefore, cutting costs can be reduced and productivity can be increased by promoting hydrogenation. In addition, various scraps that could not be thinly cut in the past can be used as they are, and it is possible to use inexpensive raw materials. Thus, it is possible to significantly reduce costs and improve productivity. On the other hand, according to the present invention, hydrogenation is promoted even if a conventional raw material is cut and thinned and used, so that the hydrogenation time can be shortened and the efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における水素化時間と水素脆化
相厚みの関係を従来法との比較で示した図である。
FIG. 1 is a diagram showing a relationship between a hydrogenation time and a hydrogen embrittlement phase thickness in an example of the present invention in comparison with a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素化脱水素法によりチタン粉末を製造
する方法において、チタンの水素化処理を回転炉内で行
うことを特徴とするチタン粉末の製造方法。
1. A method for producing titanium powder by a hydrodehydrogenation method, wherein the hydrogenation treatment of titanium is performed in a rotary furnace.
JP10142092A 1992-04-21 1992-04-21 Production of titanium powder Withdrawn JPH05345904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10142092A JPH05345904A (en) 1992-04-21 1992-04-21 Production of titanium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10142092A JPH05345904A (en) 1992-04-21 1992-04-21 Production of titanium powder

Publications (1)

Publication Number Publication Date
JPH05345904A true JPH05345904A (en) 1993-12-27

Family

ID=14300224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10142092A Withdrawn JPH05345904A (en) 1992-04-21 1992-04-21 Production of titanium powder

Country Status (1)

Country Link
JP (1) JPH05345904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502557A (en) * 2006-09-07 2010-01-28 コリア インスティテュート オブ インダストリアル テクノロジー Manufacturing method of titanium hydride powder (MANUFACTURINGMETHOODFORTITANIUMHYDRIDEPOWDERS)
JP2013053334A (en) * 2011-09-02 2013-03-21 Toho Titanium Co Ltd Titanium alloy hydride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502557A (en) * 2006-09-07 2010-01-28 コリア インスティテュート オブ インダストリアル テクノロジー Manufacturing method of titanium hydride powder (MANUFACTURINGMETHOODFORTITANIUMHYDRIDEPOWDERS)
JP2013053334A (en) * 2011-09-02 2013-03-21 Toho Titanium Co Ltd Titanium alloy hydride

Similar Documents

Publication Publication Date Title
CN109108273B (en) Preparation method of NbZrTiTa refractory high-entropy alloy powder and NbZrTiTa refractory high-entropy alloy powder
CN112317752B (en) TiZrNbTa high-entropy alloy for 3D printing and preparation method and application thereof
KR100248499B1 (en) Hard particle dispersed alloy powder manufacturing method
EP4364871A1 (en) Tantalum-tungsten alloy powder and preparation method therefor
JP2885098B2 (en) Processing method of titanium sponge powder
CN100595303C (en) Method of manufacturing single-phase Sm2Co17 nanocrystalline block body material
US5978432A (en) Dispersion fuel with spherical uranium alloy, and the fuel fabrication process
JP2782665B2 (en) Method for producing titanium or titanium alloy powder
JPH03122205A (en) Manufacture of ti powder
JPH05345904A (en) Production of titanium powder
CN112626404A (en) 3D printing high-performance WMoTaTi high-entropy alloy and low-cost powder preparation method thereof
CN111618310A (en) Spherical vanadium alloy powder and preparation method and application thereof
JP2821662B2 (en) Titanium-based powder and method for producing the same
JP2987603B2 (en) Method for producing titanium-based powder
JPS63303017A (en) Production of w-ti alloy target
JP2954711B2 (en) W-Ti alloy target and manufacturing method
CN110560696A (en) method for preparing titanium alloy spherical powder by recycling titanium material
JPH03173704A (en) Production of target for sputtering
JP2002332508A (en) Method for producing thermoelectric material
JPH07278612A (en) Method for crushing sponge titanium
JPH04362105A (en) Production of fine intermetallic compound powder
JPH0565629A (en) Production of sputtering target
RU2003436C1 (en) Method of blanks making from alloy on tungsten-base of system tungsten-copper
GB2354256A (en) uranium high-density dispersion fuel
JP2002256302A (en) Spherical titanium hydride powder for sintered alloy and method for producing the sintered alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706