JPH05343716A - Transparent conducting body material - Google Patents

Transparent conducting body material

Info

Publication number
JPH05343716A
JPH05343716A JP4150479A JP15047992A JPH05343716A JP H05343716 A JPH05343716 A JP H05343716A JP 4150479 A JP4150479 A JP 4150479A JP 15047992 A JP15047992 A JP 15047992A JP H05343716 A JPH05343716 A JP H05343716A
Authority
JP
Japan
Prior art keywords
substrate
sample
indium oxide
ito
transparent conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4150479A
Other languages
Japanese (ja)
Inventor
Kyoko Ugi
共子 宇城
Hiroshi Taniguchi
浩 谷口
Masayoshi Koba
正義 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4150479A priority Critical patent/JPH05343716A/en
Publication of JPH05343716A publication Critical patent/JPH05343716A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a high quality transparent conducting body material excellent in conductivity and transparency by improving crystallinity. CONSTITUTION:Using a reactive sputtering method that a sintered body target of indium oxide containing 5wt% tin oxide is sputtered in argon gas containing 1% oxygen, an ITO thin film 2 whose crystal is oriented in the (100) direction is formed on a glass substrate 1. The ITO has a improved crystallinity: its crystal has an ideal orientation that the dense plane (100) of the indium oxide is parallel with the substrate plane. This makes the ITO a high quality transparent conducting body material having excellent electric and optical characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種ディスプレイや
太陽電池用の透明電極や、熱線反射ガラス,防曇ガラス,
防氷ガラス,帯電防止ガラスおよび電磁シールガラス等
に用いられる透明導電体材料に関する。
This invention relates to transparent electrodes for various displays and solar cells, heat ray reflective glass, anti-fog glass,
The present invention relates to a transparent conductor material used for anti-icing glass, antistatic glass, electromagnetic sealing glass and the like.

【0002】[0002]

【従来の技術】錫添加酸化インジウム(ITO)薄膜は、
大きな導電性と高い可視光透過性を兼ね備えた薄膜であ
り、工業的価値は極めて高い。酸化インジウム(In
23)の結晶は、図2に示すような格子定数が10.11
8オングストロームの体心立方結晶であり、単位格子に
は16分子が含まれる。図中、●はインジウム原子を表
し、○は酸素原子を表す。また、点線は酸素欠陥位置で
あり、ここに酸素が埋まれば蛍石(CaF2)構造の酸化物
になる。
2. Description of the Related Art Tin-doped indium oxide (ITO) thin films are
It is a thin film that has both large conductivity and high visible light transmission, and its industrial value is extremely high. Indium oxide (In
The crystal of 2 O 3 ) has a lattice constant of 10.11 as shown in FIG.
It is a body-centered cubic crystal of 8 Å, and its unit cell contains 16 molecules. In the figure, ● represents an indium atom, and ○ represents an oxygen atom. Also, the dotted line is the oxygen defect position, and if oxygen is filled here, it becomes an oxide having a fluorite (CaF 2 ) structure.

【0003】また、電子構造に関して言えば、上記酸化
インジウムはエネルギーギャップ値が3.7eVの半導体
であり、価電子帯は酸素のp状態から成り伝導帯はイン
ジウムのs状態およびp状態から成るものと予想され
る。ここで、インジウムに錫を添加すると、伝導帯に電
子が供給されてn型の電気伝導を示し、低抵抗化が図ら
れる。
In terms of electronic structure, the indium oxide is a semiconductor having an energy gap value of 3.7 eV, the valence band of which is the p state of oxygen, and the conduction band of which is the s state and p state of indium. It is expected to be. Here, when tin is added to indium, electrons are supplied to the conduction band to show n-type electrical conduction, and the resistance can be reduced.

【0004】[0004]

【発明が解決しようとする課題】近年の液晶産業の急速
な進展に伴って、液晶需要の増大と共にITO薄膜に対
するさらなる性能向上が強く望まれるようになってき
た。ところで、固体の電気的特性や光学的特性を向上さ
せるためにはイオン構造の改善が重要であり、これには
結晶性の改善と配向性の改善の2つの内容が含まれる。
従来、前者に対しては熱処理を施す等の注意が払われて
いたのであるが、後者に対しては特に注目されてはいな
い。
With the rapid progress of the liquid crystal industry in recent years, there has been a strong demand for further improvement in performance of ITO thin films as the demand for liquid crystals increases. By the way, it is important to improve the ionic structure in order to improve the electrical properties and optical properties of a solid, and this includes two contents: improvement of crystallinity and improvement of orientation.
Conventionally, attention has been paid to the former such as heat treatment, but no attention has been paid to the latter.

【0005】そこで、この発明の目的は、結晶性を改善
することによって得られる導電性および透明性に優れた
高品位の透明導電体材料を提供することにある。
Therefore, an object of the present invention is to provide a high-quality transparent conductor material excellent in conductivity and transparency obtained by improving crystallinity.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明の透明導電体材料は、基板面に対して
(100)方向に結晶配向した錫添加酸化インジウム膜か
ら成ることを特徴としている。
In order to achieve the above object, the transparent conductor material of the first invention is applied to the substrate surface.
It is characterized by comprising a tin-added indium oxide film crystallized in the (100) direction.

【0007】又、第2の発明の透明導電体材料は、第1
の発明の透明導電体材料において、上記基板としてガラ
ス基板,金属酸化膜,半導体基板,金属板あるいはプラス
チック基板等を用いたことを特徴としている。
The transparent conductor material of the second invention is the first conductor material.
In the transparent conductor material of the invention, a glass substrate, a metal oxide film, a semiconductor substrate, a metal plate, a plastic substrate or the like is used as the substrate.

【0008】[0008]

【作用】第1の発明では、錫添加酸化インジウム膜は基
板面に対して(100)方向に結晶配向されている。した
がって、酸化インジウムの稠密面(100)を基板面と平
行にした理想的な結晶配向を成しており、電気的特性お
よび光学的特性が向上される。
In the first invention, the tin-doped indium oxide film is crystallographically oriented in the (100) direction with respect to the substrate surface. Therefore, the dense plane (100) of indium oxide is in parallel with the substrate plane to form an ideal crystal orientation, and the electrical and optical characteristics are improved.

【0009】また、第2の発明では、上記基板としてガ
ラス基板,金属酸化膜,半導体基板,金属板あるいはプラ
スチック基板等が用いられている。したがって、種々の
用途に応じた基板の面に対して(100)方向に錫添加酸
化インジウム膜が結晶配向されて理想的に形成される。
In the second invention, a glass substrate, a metal oxide film, a semiconductor substrate, a metal plate, a plastic substrate or the like is used as the substrate. Therefore, the tin-added indium oxide film is ideally formed by crystallizing the tin-doped indium oxide film in the (100) direction with respect to the surface of the substrate according to various uses.

【0010】[0010]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。図2に示すような酸化インジウム結晶構造に
おいて、インジウムは酸素の約2/3のイオン半径しか
持たないので無視し、更に酸素欠陥も無視して考える
と、その稠密面の方向は(100)である。また、実用の
際のITO薄膜はガラス基板上に形成されるので、基板
からの静電ポテンシャルの影響は無視できる。したがっ
て、稠密面を基板と平行にして成長するのが理想と考え
られる。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. In the indium oxide crystal structure as shown in FIG. 2, indium has only an ionic radius of about ⅔ of oxygen, so it is neglected. Further, when oxygen defects are also neglected, the direction of the dense surface is (100). is there. Moreover, since the ITO thin film in practical use is formed on the glass substrate, the influence of the electrostatic potential from the substrate can be ignored. Therefore, it is ideal to grow the dense surface in parallel with the substrate.

【0011】すなわち、ガラス基板上に形成されるIT
O薄膜の理想的な結晶配向面は(100)である。したが
って、図1に示すように、(100)方向配向のITO薄
膜2を基板1上に作成すれば電子構造すなわち電気的特
性および光学的特性は向上するものと予想されるのであ
る。
That is, the IT formed on the glass substrate
The ideal crystal orientation plane of the O thin film is (100). Therefore, as shown in FIG. 1, if the ITO thin film 2 oriented in the (100) direction is formed on the substrate 1, it is expected that the electronic structure, that is, the electrical characteristics and the optical characteristics will be improved.

【0012】<第1実施例>酸化錫(SnO2)を5wt%含
有する酸化インジウム(In23)の焼結体ターゲットを
1%の酸素(O2)を含有するアルゴン(Ar)ガスでスパッ
タする反応性スパッタリング法によって、ガラス基板上
に異なるスパッタリング電圧によって4種類のITO薄
膜を作成し、夫々試料A,試料B,試料Cおよび試料Dと
する。尚、基板温度は250℃,ガス圧は0.4Paであ
る。
First Embodiment A sintered body target of indium oxide (In 2 O 3 ) containing 5 wt% of tin oxide (SnO 2 ) was used as an argon (Ar) gas containing 1% of oxygen (O 2 ). Four kinds of ITO thin films are formed on the glass substrate by different sputtering voltages by the reactive sputtering method in which the sample A, the sample B, the sample C, and the sample D are respectively formed. The substrate temperature is 250 ° C. and the gas pressure is 0.4 Pa.

【0013】上記4種類の試料のスパッタ電圧は夫々次
のようである。すなわち、試料Aのスパッタ電圧は25
0Vであり、試料Bは300Vであり、試料Cは350
Vであり、試料Dは400Vである。
The sputtering voltages of the above four kinds of samples are as follows. That is, the sputtering voltage of sample A is 25
0V, Sample B is 300V, Sample C is 350V
V and sample D is 400V.

【0014】図3に、上記4種類の試料の示すX線回折
パターンにおける(400)と(222)の強度比を示す。
図3より試料A>試料B>試料C>試料Dの順に(40
0)方向に結晶配向が顕著であることが分かる。
FIG. 3 shows the intensity ratios of (400) and (222) in the X-ray diffraction patterns of the above four types of samples.
From FIG. 3, the order of sample A> sample B> sample C> sample D (40
It can be seen that the crystal orientation is remarkable in the 0) direction.

【0015】図4に上記各試料A,B,C,Dの電気抵抗
を示し、図5に吸収端波長を示す。試料D>試料C>試
料B>試料Aの順に電気抵抗が小さく、吸収端波長も短
い。すなわち、導電性および透明性は試料A,試料B,試
料C,試料Dの順に優れていることが分かる。以上の結
果より、(400)方向への結晶配向が顕著なITO薄膜
は電気的特性および光学的特性に優れていると言える。
FIG. 4 shows the electric resistance of each of the samples A, B, C and D, and FIG. 5 shows the absorption edge wavelength. The electrical resistance is small and the absorption edge wavelength is short in the order of sample D> sample C> sample B> sample A. That is, it can be seen that the conductivity and the transparency are excellent in the order of Sample A, Sample B, Sample C, and Sample D. From the above results, it can be said that the ITO thin film having a remarkable crystallographic orientation in the (400) direction is excellent in electrical characteristics and optical characteristics.

【0016】したがって、結晶性を改善してガラス基板
面に対して(100)方向に結晶配向したITOを形成す
ることによって、導電性および透明性に優れた透明導電
体材料を提供できるのである。
Therefore, it is possible to provide a transparent conductor material having excellent conductivity and transparency by improving the crystallinity and forming ITO crystallized in the (100) direction with respect to the glass substrate surface.

【0017】<第2実施例>上記第1実施例におけるス
パッタ条件における基板温度のみを100℃に変更し
て、上記4種のスパッタ電圧による反応性スパッタリン
グ法によってプラスチック基板上に試料A',試料B',試
料C',試料D'を作成する。
<Second Embodiment> Only the substrate temperature under the sputtering conditions in the first embodiment is changed to 100.degree. C., and the samples A'and the samples are placed on the plastic substrate by the reactive sputtering method using the above four kinds of sputtering voltages. B ', sample C', and sample D'are created.

【0018】こうして得られた試料A',B',C',D'の
X線回折パターンにおける(400)と(222)との強度
比を測定した結果、試料A'>試料B'>試料C'>試料
D'の順に(400)方向への結晶配向が顕著であること
が分かった。また、試料D'>試料C'>試料B'>試料
A'の順に電気抵抗は小さく、吸収端波長も短いことが
分かった。
The intensity ratio of (400) and (222) in the X-ray diffraction patterns of the samples A ', B', C ', D'obtained in this way was measured. As a result, sample A'> sample B '> sample It was found that the crystal orientation in the (400) direction was remarkable in the order of C ′> Sample D ′. It was also found that the electrical resistance was small and the absorption edge wavelength was short in the order of sample D '> sample C'> sample B '> sample A'.

【0019】このように、本実施例における試料から
も、(400)方向への結晶配向の顕著なITO薄膜は電
気的特性および光学的特性に優れていることが分かる。
As described above, the sample in this example also shows that the ITO thin film having a remarkable crystallographic orientation in the (400) direction has excellent electrical and optical characteristics.

【0020】上記各実施例においては、基板としてガラ
ス基板を用いているがこの発明はこれに限定されるもの
ではない。例えば、金属酸化膜,半導体基板,金属板ある
いはプラスチック基板等であってもよい。
Although a glass substrate is used as the substrate in each of the above embodiments, the present invention is not limited to this. For example, it may be a metal oxide film, a semiconductor substrate, a metal plate or a plastic substrate.

【0021】[0021]

【発明の効果】以上より明らかなように、第1の発明の
透明導電体材料は、基板上に(100)方向に結晶配向し
て形成された錫添加酸化インジウム膜から成り、大きな
導電性と高い可視光透過性を有する。したがって、この
発明の透明導電体材料は電子材料として幅広い応用が期
待できる。
As is apparent from the above, the transparent conductor material of the first invention is composed of a tin-doped indium oxide film formed on the substrate with the crystal orientation in the (100) direction, and has a large conductivity. It has high visible light transparency. Therefore, the transparent conductor material of the present invention can be expected to find wide application as an electronic material.

【0022】また、第2の発明の透明導電体材料は、上
記基板としてガラス基板,金属酸化膜,半導体基板,金属
板あるいはプラスチック基板等を用いているので、種々
の用途に応じて最適な基板上に形成できる。したがっ
て、この発明の透明導電体材料は、電子材料としてさら
に応用範囲が広がる。
Since the transparent conductor material of the second invention uses a glass substrate, a metal oxide film, a semiconductor substrate, a metal plate, a plastic substrate or the like as the substrate, it is an optimal substrate for various applications. Can be formed on. Therefore, the transparent conductor material of the present invention has a wider range of applications as an electronic material.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の透明導電体材料としての基板上に製
膜された<100>結晶配向ITOにおける斜視図であ
る。
FIG. 1 is a perspective view of <100> crystal orientation ITO formed on a substrate as a transparent conductor material of the present invention.

【図2】酸化インジウムIn23の結晶構造を示す図で
ある。
FIG. 2 is a diagram showing a crystal structure of indium oxide In 2 O 3 .

【図3】第1実施例におけるITO薄膜試料A,B,C,
DのX線回折パターンから得られた(400)ピークと
(222)ピークとの強度比を示す図である。
FIG. 3 shows ITO thin film samples A, B, C, in the first embodiment.
The (400) peak obtained from the X-ray diffraction pattern of D and
It is a figure which shows the intensity ratio with a (222) peak.

【図4】図3と同じ試料における比抵抗を示す図であ
る。
FIG. 4 is a diagram showing the specific resistance of the same sample as in FIG.

【図5】図3と同じ試料における吸収端波長を示す図で
ある。
FIG. 5 is a diagram showing an absorption edge wavelength in the same sample as in FIG.

【符号の説明】[Explanation of symbols]

1…基板、 2…ITO薄膜。 1 ... Substrate, 2 ... ITO thin film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01J 29/96 // C30B 23/08 Z 9040−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01J 29/96 // C30B 23/08 Z 9040-4G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板面に対して(100)方向に結晶配向
した錫添加酸化インジウム膜から成ることを特徴とする
透明導電体材料。
1. A transparent conductor material comprising a tin-doped indium oxide film crystallized in the (100) direction with respect to the substrate surface.
【請求項2】 請求項1に記載の透明導電体材料におい
て、 上記基板として、ガラス基板,金属酸化膜,半導体基板,
金属板あるいはプラスチック基板等を用いたことを特徴
とする透明導電体材料。
2. The transparent conductor material according to claim 1, wherein the substrate is a glass substrate, a metal oxide film, a semiconductor substrate,
A transparent conductor material using a metal plate or a plastic substrate.
JP4150479A 1992-06-10 1992-06-10 Transparent conducting body material Pending JPH05343716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150479A JPH05343716A (en) 1992-06-10 1992-06-10 Transparent conducting body material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150479A JPH05343716A (en) 1992-06-10 1992-06-10 Transparent conducting body material

Publications (1)

Publication Number Publication Date
JPH05343716A true JPH05343716A (en) 1993-12-24

Family

ID=15497790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150479A Pending JPH05343716A (en) 1992-06-10 1992-06-10 Transparent conducting body material

Country Status (1)

Country Link
JP (1) JPH05343716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262931A (en) * 2003-11-18 2010-11-18 Nippon Sheet Glass Co Ltd Transparent base with transparent conductive film, method of manufacturing same, and photoelectric converter comprising such base

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262931A (en) * 2003-11-18 2010-11-18 Nippon Sheet Glass Co Ltd Transparent base with transparent conductive film, method of manufacturing same, and photoelectric converter comprising such base

Similar Documents

Publication Publication Date Title
JP2000044236A (en) Article having transparent conductive oxide thin film and its production
JPH0731950B2 (en) Method for producing transparent conductive film
GB2094355A (en) Sputtered indium-tin oxide coating
Lu et al. High quality of IWO films prepared at room temperature by reactive plasma deposition for photovoltaic devices
CN102051587A (en) Indium tin oxide sputtering target and transparent conductive film fabricated using the same
Kiuchi et al. Titanium nitride for transparent conductors
Peng et al. Structure and properties of indium-doped ZnO films prepared by RF magnetron sputtering under different pressures
JPH04272612A (en) Transparent electrode
JPH05343716A (en) Transparent conducting body material
JP2004050643A (en) Thin film laminated body
JP3780100B2 (en) Transparent conductive film with excellent processability
US4693906A (en) Dielectric for electroluminescent devices, and methods for making
JPH0790550A (en) Production of transparent conductive film
JPH0950711A (en) Transparent conductive film
JPH11293228A (en) Infrared reflecting composition
Enoki et al. CdO SnO2 Thin Films Prepared by DC Sputtering with Oxide Targets
JPH07278791A (en) Low resistance transparent conductive film
Balakrishnan et al. Microstructural and properties of P-type nickel oxide (NiO) thin films deposited by RF magnetron sputtering
JPS647445B2 (en)
JPH04277408A (en) Transparent electrode
Poonthong et al. Performance Analysis of Ti-Doped In2O3 Thin Films Prepared by Various Doping Concentrations Using RF Magnetron Sputtering for Light-Emitting Device
JP3338093B2 (en) Transparent conductive film and method for manufacturing the same
JPS6241311B2 (en)
JP2588910B2 (en) Improved dimmer
JPH084038B2 (en) Transparent conductive thin film