JPH05343699A - Manufacture of semiconductor storage device - Google Patents

Manufacture of semiconductor storage device

Info

Publication number
JPH05343699A
JPH05343699A JP14952792A JP14952792A JPH05343699A JP H05343699 A JPH05343699 A JP H05343699A JP 14952792 A JP14952792 A JP 14952792A JP 14952792 A JP14952792 A JP 14952792A JP H05343699 A JPH05343699 A JP H05343699A
Authority
JP
Japan
Prior art keywords
insulating film
film
polycrystalline silicon
impurities
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14952792A
Other languages
Japanese (ja)
Inventor
Shoichi Kimura
正一 木村
Hideki Misawa
秀樹 三澤
Takako Ito
貴子 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14952792A priority Critical patent/JPH05343699A/en
Publication of JPH05343699A publication Critical patent/JPH05343699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To make it possible to form an insulating film, which is thinner than a conventional insulating film, between a floating gate and a control gate and to obtain a semiconductor storage device, whose write time is short, by a method wherein after the insulating film is formed on a polycrystalline silicon film, conductive impurities are implanted in the polycrystalline silicon film. CONSTITUTION:When a semiconductor storage element, such as an EPROM, is manufactured, a silicon nitride film is formed on a semiconductor substrate 101, this silicon nitride film is heat-oxidized to form a field insulating film 2 and a first insulating film 3 is formed thereon. Then, a first polycrystalline silicon film 104 is formed on these films 102 and 103 by a CVD method and after unnecessary parts of both films 103 and 104 are removed, a second insulating film 105 and a third insulating film 106 are respectively formed on the film 104 and the substrate 101 by a thermal oxidation method. Then, the surface part other than the films 105 and 102 is covered with a resist 107 and after conductive impurities, such as arsenic impurities, boron impurities or phosphorus impurities, are implanted in the film 104 by an ion-implantation method or the like, a second polycrystalline silicon film 109 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体記憶装置の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor memory device.

【0002】[0002]

【従来の技術】図2(a)から図2(e)は、従来技術
の1実施例における半導体記憶装置及びその周辺の半導
体装置の製造方法の工程毎の主要断面図である。なお、
従来例の全図において、同一の機能を有するものには、
同一の符号を付け、その繰り返しの説明は省略する。以
下、図2(a)から図2(e)に従い、順に説明してい
く。
2. Description of the Related Art FIGS. 2A to 2E are main cross-sectional views of respective steps of a method of manufacturing a semiconductor memory device and a peripheral semiconductor device according to a first embodiment of the prior art. In addition,
In all the drawings of the conventional example, those having the same function are
The same reference numerals are given and the repeated description is omitted. In the following, description will be made in order according to FIGS. 2A to 2E.

【0003】まず、図2(a)の如く半導体基板201
上にシリコン窒化膜を所定形に形成する。そして熱酸化
を行いフィールド絶縁膜202を形成する。前記窒化膜
を除去し熱酸化法により前記半導体基板201上に第1
絶縁膜103を形成する。第1絶縁膜203はEPRO
Mの場合は30nmから50nm、EEPROMの場合
は10nmぐらいが適当であろう。
First, a semiconductor substrate 201 as shown in FIG.
A silicon nitride film is formed in a predetermined shape on the top. Then, thermal oxidation is performed to form the field insulating film 202. The nitride film is removed and a first oxide film is formed on the semiconductor substrate 201 by a thermal oxidation method.
The insulating film 103 is formed. The first insulating film 203 is EPRO
In the case of M, 30 nm to 50 nm, and in the case of EEPROM, about 10 nm is appropriate.

【0004】次に、図2(b)の如く、前記フィールド
絶縁膜202及び前記第1絶縁膜203上にCVD法に
より第1多結晶シリコン膜204を200nm程度形成
する。通常モノシランガスの熱分解により前記第1多結
晶シリコン204を堆積させる。そしてこの前記第1多
結晶シリコン膜204を低抵抗化するためにたとえば5
族の元素(たとえば燐元素や砒素など導電性不純物)を
イオン打ち込み法を用いて、1×1015から1×1016
atoms・cm-2程度注入する。
Next, as shown in FIG. 2B, a first polycrystalline silicon film 204 of about 200 nm is formed on the field insulating film 202 and the first insulating film 203 by the CVD method. Usually, the first polycrystalline silicon 204 is deposited by thermal decomposition of monosilane gas. Then, in order to reduce the resistance of the first polycrystalline silicon film 204, for example, 5
An element of a group (for example, a conductive impurity such as phosphorus or arsenic) is used by an ion implantation method from 1 × 10 15 to 1 × 10 16
Inject about atoms · cm −2 .

【0005】次にフォト及びエッチング法により前記第
1絶縁膜203及び前記第1多結晶シリコン膜204の
不要な部分を取り除く。
Then, unnecessary portions of the first insulating film 203 and the first polycrystalline silicon film 204 are removed by photo and etching methods.

【0006】次に図2(c)の如く、熱酸化法により前
記第1多結晶シリコン204上に第2絶縁膜205、前
記半導体基板上に第3絶縁膜206を形成する。たとえ
ば、1000℃の乾燥酸素雰囲気中で、前記第2絶縁膜
205及び前記第3絶縁膜206を形成する。
Next, as shown in FIG. 2C, a second insulating film 205 is formed on the first polycrystalline silicon 204 and a third insulating film 206 is formed on the semiconductor substrate by a thermal oxidation method. For example, the second insulating film 205 and the third insulating film 206 are formed in a dry oxygen atmosphere at 1000 ° C.

【0007】次に図2(d)の如く、第2多結晶シリコ
ン膜207を前記フィールド絶縁膜202及び前記第2
絶縁膜205及び 前記第3絶縁膜206上にCVD法
により形成する。そして導体化する為にイオン注入法を
用い燐もしくは砒素等の不純物を前記第2多結晶シリコ
ン膜207に注入する。
Next, as shown in FIG. 2D, a second polycrystalline silicon film 207 is formed on the field insulating film 202 and the second polycrystalline silicon film 207.
The insulating film 205 and the third insulating film 206 are formed by a CVD method. Then, an impurity such as phosphorus or arsenic is implanted into the second polycrystalline silicon film 207 by using an ion implantation method to make it a conductor.

【0008】次に図2(e)の如く、フォト及びエッチ
ング法により、前記第3絶縁膜206上の前記第2多結
晶シリコン207の不要な部分を除去する。これが周辺
回路のトランジスタのゲート電極になる。そして、フォ
ト及びエッチング法により、前記第1多結晶シリコン2
04及び前記第2絶縁膜205及び前記第2多結晶シリ
コン207の不要な部分を除去する。これが半導体記憶
素子のゲート電極になる。
Next, as shown in FIG. 2E, an unnecessary portion of the second polycrystalline silicon 207 on the third insulating film 206 is removed by photo and etching methods. This becomes the gate electrode of the transistor of the peripheral circuit. Then, the first polycrystalline silicon 2 is formed by a photo and etching method.
04, the second insulating film 205, and unnecessary portions of the second polycrystalline silicon 207 are removed. This becomes the gate electrode of the semiconductor memory element.

【0009】最後にイオン打ち込みにより、燐や砒素な
どの不純物を注入しソース208、210及びドレイン
209、211を形成する。以上の従来の製造工程を経
て、半導体記憶装置が完成する。
Finally, impurities such as phosphorus and arsenic are implanted by ion implantation to form sources 208 and 210 and drains 209 and 211. The semiconductor memory device is completed through the above conventional manufacturing steps.

【0010】[0010]

【発明が解決しようとする課題】しかし、前述の従来の
技術では、フローティングゲート(前記第1多結晶シリ
コン204)とコントロールゲート(前記第2多結晶シ
リコン207)の間の前記第2絶縁膜205を形成する
際、前記第一多結晶シリコン204が不純物注入されて
いるため前記第2絶縁膜205の酸化速度が早く、膜厚
の厚い前記第2絶縁膜205となってしまう。前記第2
絶縁膜205はプロセス上周辺回路のトランジスタのゲ
ート絶縁膜と兼ねているため前記第2絶縁膜205の形
成条件は周辺回路のトランジスタの絶縁膜形成条件に委
ねられている。半導体装置の書き込み時間を短くする為
には前記フローティングゲート(前記第1多結晶シリコ
ン204)とコントロールゲート(前記第2多結晶シリ
コン207)間の容量を大きくする方法がある。前記第
2絶縁膜205が厚ければ厚いほど前記フローティング
ゲート(前記第1多結晶シリコン204)とコントロー
ルゲート(前記第2多結晶シリコン207)間の容量が
小さくなり書き込み時間の長い半導体装置となる。その
ため前記第2絶縁膜205の形成条件を変えずに薄い膜
にしなければならない。そこで本発明は、この様な問題
点を解決するもので、その目的とするところは、周辺回
路のゲート電極となる第3絶縁膜106と前記第2絶縁
膜205を同時に、しかもできるだけ薄いフローティン
グゲート(前記第1多結晶シリコン204)とコントロ
ールゲート(前記第2多結晶シリコン207)の間の前
記第2絶縁膜205を提供するところにある。
However, in the above-mentioned conventional technique, the second insulating film 205 between the floating gate (the first polycrystalline silicon 204) and the control gate (the second polycrystalline silicon 207) is formed. Since the first polycrystalline silicon 204 is doped with impurities at the time of forming, the oxidation rate of the second insulating film 205 is high and the second insulating film 205 becomes thick. The second
Since the insulating film 205 also serves as the gate insulating film of the transistor of the peripheral circuit in the process, the forming condition of the second insulating film 205 is left to the insulating film forming condition of the transistor of the peripheral circuit. In order to shorten the writing time of the semiconductor device, there is a method of increasing the capacitance between the floating gate (the first polycrystalline silicon 204) and the control gate (the second polycrystalline silicon 207). The thicker the second insulating film 205, the smaller the capacitance between the floating gate (the first polycrystalline silicon 204) and the control gate (the second polycrystalline silicon 207) and the longer the writing time becomes. . Therefore, a thin film must be formed without changing the conditions for forming the second insulating film 205. Therefore, the present invention solves such a problem, and an object of the present invention is to make the third insulating film 106 and the second insulating film 205, which are the gate electrodes of the peripheral circuit, simultaneously and to make the floating gate as thin as possible. The second insulating film 205 is provided between the (first polycrystalline silicon 204) and the control gate (the second polycrystalline silicon 207).

【0011】[0011]

【課題を解決するための手段】本発明は、フローティン
グゲートとコントロールゲートとを有するMOS型トラ
ンジスタ構造をなし、前記フローティングゲートへの電
荷の注入状態の如何によって、前記コントロールゲート
の前記MOSトランジスタの特性の制御しきい値電圧が
変化する半導体記憶装置の製造方法において、基板上に
フィールド絶縁膜を形成する工程、前記基板上に第1絶
縁膜を形成する工程、前記フィールド絶縁膜及び前記第
1絶縁膜上に第1多結晶シリコン膜を形成する工程、前
記第1多結晶シリコン上に第2絶縁膜を形成する工程、
前記第1多結晶シリコン膜に砒素やボロンや燐等の導電
性不純物を注入する工程からなることを特徴とする。
According to the present invention, a MOS type transistor structure having a floating gate and a control gate is formed, and a characteristic of the MOS transistor of the control gate is determined according to a state of injection of charges into the floating gate. In the method of manufacturing a semiconductor memory device in which the control threshold voltage changes, the step of forming a field insulating film on a substrate, the step of forming a first insulating film on the substrate, the field insulating film and the first insulating film. Forming a first polycrystalline silicon film on the film, forming a second insulating film on the first polycrystalline silicon,
It is characterized in that it comprises a step of implanting a conductive impurity such as arsenic, boron or phosphorus into the first polycrystalline silicon film.

【0012】[0012]

【実施例】図1(a)から図1(f)は、本発明の1実
施例における半導体記憶装置及びその周辺の半導体装置
の製造方法の工程毎の主要断面図である。なお、実施例
の全図において、同一の機能を有するものには、同一の
符号を付け、その繰り返しの説明は省略する。以下、図
1(a)から図1(f)に従い、順に説明していく。
1 (a) to 1 (f) are main cross-sectional views of respective steps of a method of manufacturing a semiconductor memory device and its peripheral semiconductor device according to an embodiment of the present invention. In all the drawings of the embodiments, those having the same function are designated by the same reference numeral, and the repeated description thereof will be omitted. Hereinafter, description will be made in order according to FIGS. 1A to 1F.

【0013】まず、図1(a)の如く半導体基板101
上にシリコン窒化膜を所定形に形成する。そして熱酸化
を行いフィールド絶縁膜102を形成する。前記窒化膜
を除去し熱酸化法により前記半導体基板101上に第1
絶縁膜103を形成する。第1絶縁膜103はEPRO
Mの場合は30nmから50nm、EEPROMの場合
は10nmぐらいが適当であろう。
First, as shown in FIG. 1A, a semiconductor substrate 101
A silicon nitride film is formed in a predetermined shape on the top. Then, thermal oxidation is performed to form the field insulating film 102. The nitride film is removed and a first oxide film is formed on the semiconductor substrate 101 by a thermal oxidation method.
The insulating film 103 is formed. The first insulating film 103 is EPRO
In the case of M, 30 nm to 50 nm, and in the case of EEPROM, about 10 nm is appropriate.

【0014】次に、図1(b)の如く、前記フィールド
絶縁膜102及び前記第1絶縁膜103上にCVD法に
より第1多結晶シリコン膜104を200nm程度形成
する。通常モノシランガスの熱分解により前記第1多結
晶シリコン104を堆積させる。
Next, as shown in FIG. 1B, a first polycrystalline silicon film 104 having a thickness of about 200 nm is formed on the field insulating film 102 and the first insulating film 103 by a CVD method. Usually, the first polycrystalline silicon 104 is deposited by thermal decomposition of monosilane gas.

【0015】次にフォト及びエッチング法により前記第
1絶縁膜103及び前記第1多結晶シリコン膜104の
不要な部分を取り除く。
Then, unnecessary portions of the first insulating film 103 and the first polycrystalline silicon film 104 are removed by photo and etching methods.

【0016】次に図1(c)の如く、熱酸化法により前
記第1多結晶シリコン104上に第2絶縁膜105、前
記半導体基板上に第3絶縁膜106を形成する。たとえ
ば、1000℃の乾燥酸素雰囲気中で、前記第2絶縁膜
105及び前記第3絶縁膜106を形成する。
Next, as shown in FIG. 1C, a second insulating film 105 is formed on the first polycrystalline silicon 104 and a third insulating film 106 is formed on the semiconductor substrate by a thermal oxidation method. For example, the second insulating film 105 and the third insulating film 106 are formed in a dry oxygen atmosphere at 1000 ° C.

【0017】次に図1(d)の如く前記第2絶縁膜10
5及び前記フィールド絶縁膜102以外の部分をレジス
ト107で覆う。そして、前記第1多結晶シリコン膜1
04を低抵抗化するためにたとえば5族の元素(たとえ
ば燐元素や砒素など導電性不純物)をイオン打ち込み法
109を用いて、1×1015から1×1016atoms
・cm-2程度注入する。次に図1(d)の如く前記第2
絶縁膜及び前記フィールド絶縁膜以外の部分をレジスト
107で覆う。
Next, as shown in FIG. 1D, the second insulating film 10 is formed.
5 and a portion other than the field insulating film 102 are covered with a resist 107. Then, the first polycrystalline silicon film 1
In order to reduce the resistance of No. 04, for example, a group 5 element (for example, a conductive impurity such as phosphorus element or arsenic) is used by an ion implantation method 109, and 1 × 10 15 to 1 × 10 16 atoms
・ Inject about cm -2 . Next, as shown in FIG.
A portion other than the insulating film and the field insulating film is covered with the resist 107.

【0018】次に図1(e)の如く、第2多結晶シリコ
ン膜109を前記フィールド絶縁膜102及び前記第2
絶縁膜105及び 前記第2絶縁膜106上にCVD法
により形成する。そして導体化する為にイオン注入法を
用い燐もしくは砒素等の不純物を前記第2多結晶シリコ
ン膜109に注入する。
Next, as shown in FIG. 1E, the second polycrystalline silicon film 109 is formed on the field insulating film 102 and the second polycrystalline silicon film 109.
The insulating film 105 and the second insulating film 106 are formed by a CVD method. Then, an impurity such as phosphorus or arsenic is implanted into the second polycrystalline silicon film 109 by using an ion implantation method to make it a conductor.

【0019】次に図1(f)の如く、フォト及びエッチ
ング法により、前記第3絶縁膜106上の前記第2多結
晶シリコン109の不要な部分を除去する。これが周辺
回路のトランジスタのゲート電極になる。そして、フォ
ト及びエッチング法により、前記第1多結晶シリコン1
04及び前記第2絶縁膜105及び前記第2多結晶シリ
コン109の不要な部分を除去する。これが半導体記憶
素子のゲート電極になる。最後にイオン打ち込みによ
り、燐や砒素などの不純物を注入しソース108、11
0及びドレイン109、110を形成する。以上の製造
工程を経て、本発明の一実施例の半導体記憶装置が完成
する。
Next, as shown in FIG. 1F, unnecessary portions of the second polycrystalline silicon 109 on the third insulating film 106 are removed by photo and etching methods. This becomes the gate electrode of the transistor of the peripheral circuit. Then, the first polycrystalline silicon 1 is formed by a photo and etching method.
04, the second insulating film 105, and unnecessary portions of the second polycrystalline silicon 109 are removed. This becomes the gate electrode of the semiconductor memory element. Finally, by ion implantation, impurities such as phosphorus and arsenic are implanted to form the sources 108, 11
0 and drains 109 and 110 are formed. Through the above manufacturing steps, the semiconductor memory device of one embodiment of the present invention is completed.

【0020】このように前記第1多結晶シリコン104
上に前記第2絶縁膜105を形成した後に前記第一多結
晶シリコン104を低抵抗化するための不純物打ち込み
を行うことにより従来よりも薄い前記第2絶縁膜105
を形成する事が可能となる。なぜならば、前記第1多結
晶シリコン104を低抵抗化する場合、前記第2絶縁膜
105を形成する前に不純物打ち込みしてしまうと同条
件で絶縁膜を形成しても不純物濃度の濃い前記第1多結
晶シリコン104と不純物打ち込みされていない前記第
1多結晶シリコン104とでは不純物打ち込みされてい
ない方が薄い絶縁膜を形成することができるからであ
る。また本発明の製造方法を用いれば、前記第2絶縁膜
105とプロセス上、周辺回路のトランジスタのゲート
絶縁膜(前記第3絶縁膜106)と兼ねることが可能と
なる。
As described above, the first polycrystalline silicon 104 is formed.
The second insulating film 105, which is thinner than the conventional one, is formed by implanting impurities to reduce the resistance of the first polycrystalline silicon 104 after forming the second insulating film 105 thereon.
Can be formed. This is because, when the resistance of the first polycrystalline silicon 104 is reduced, if an impurity is implanted before the second insulating film 105 is formed, even if the insulating film is formed under the same conditions, the impurity concentration is high. This is because a thinner insulating film can be formed between the first polycrystalline silicon 104 and the first polycrystalline silicon 104 which is not impurity-implanted when the impurity is not implanted. Further, by using the manufacturing method of the present invention, it is possible to serve as the second insulating film 105 and the gate insulating film (the third insulating film 106) of the transistor of the peripheral circuit in the process.

【0021】以上本発明者によってなされた発明を、前
記実施例に基づき、具体的に説明したが、本発明は、前
記実施例に限定されるものではなく、その要旨を逸脱し
ない範囲において、変形し得ることは勿論である。
The invention made by the present inventor has been specifically described based on the above-mentioned embodiment, but the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the scope of the invention. Of course, you can do that.

【0022】[0022]

【発明の効果】以上述べた様に、本発明によれば、絶縁
膜を形成した後に不純物打注入を行うことにより、従来
よりも薄いフローティングゲートとコントロールゲート
間絶縁膜を形成することが可能となる。その結果フロー
ティングゲートとコントロールゲート間絶縁膜の容量が
大きくなり、書き込み時間の短い半導体記憶装置を得る
ことができる。
As described above, according to the present invention, it is possible to form an insulating film between a floating gate and a control gate, which is thinner than before, by implanting impurities after forming the insulating film. Become. As a result, the capacity of the insulating film between the floating gate and the control gate increases, and a semiconductor memory device with a short writing time can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の半導体装置の製造方法の一実施例を
工程順に説明するための主要断面図である。
FIG. 1 is a main sectional view for explaining an embodiment of a method for manufacturing a semiconductor device of the present invention in the order of steps.

【図2】 従来の半導体装置の製造方法を工程順に説明
するための主要断面図である。
FIG. 2 is a main cross-sectional view for explaining a conventional method for manufacturing a semiconductor device in the order of steps.

【符号の説明】[Explanation of symbols]

101 半導体基板 102 フィールド絶縁膜 103 第1絶縁膜 104 第1多結晶シリコン膜 105 第2絶縁膜 106 第3絶縁膜 107 フォトレジスト 108 不純物打ち込み 109 第2多結晶シリコン 110 半導体装置 111 半導体装置 112 半導体記憶装置の周辺トランジスタのソース 113 半導体記憶装置の周辺トランジスタのドレイン 201 半導体基板 202 フィールド絶縁膜 203 第1絶縁膜 204 第1多結晶シリコン膜 205 第2絶縁膜 206 第3絶縁膜 207 第2多結晶シリコン膜 208 半導体装置のソース 209 半導体装置のドレイン 210 半導体記憶装置の周辺トランジスタのソース 211 半導体記憶装置の周辺トランジスタのドレイン 101 semiconductor substrate 102 field insulating film 103 first insulating film 104 first polycrystalline silicon film 105 second insulating film 106 third insulating film 107 photoresist 108 impurity implantation 109 second polycrystalline silicon 110 semiconductor device 111 semiconductor device 112 semiconductor memory Source of peripheral transistor of device 113 Drain of peripheral transistor of semiconductor memory device 201 Semiconductor substrate 202 Field insulating film 203 First insulating film 204 First polycrystalline silicon film 205 Second insulating film 206 Third insulating film 207 Second polycrystalline silicon Film 208 Source of semiconductor device 209 Drain of semiconductor device 210 Source of peripheral transistor of semiconductor memory device 211 Drain of peripheral transistor of semiconductor memory device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フローティングゲートとコントロールゲー
トとを有するMOS型トランジスタ構造をなし、前記フ
ローティングゲートへの電荷の注入状態の如何によっ
て、前記コントロールゲートの前記MOSトランジスタ
の特性の制御しきい値電圧が変化する半導体記憶装置の
製造方法において、基板上にフィールド絶縁膜を形成す
る工程、前記基板上に第1絶縁膜を形成する工程、前記
フィールド絶縁膜及び前記第1絶縁膜上に第1多結晶シ
リコン膜を形成する工程、前記第1多結晶シリコン上に
第2絶縁膜を形成する工程、前記第1多結晶シリコン膜
に砒素やボロンや燐等の導電性不純物を注入する工程か
らなることを特徴とする半導体記憶装置の製造方法。
1. A MOS type transistor structure having a floating gate and a control gate, wherein a control threshold voltage of a characteristic of the MOS transistor of the control gate is changed depending on how an electric charge is injected into the floating gate. In the method of manufacturing a semiconductor memory device according to claim 1, a step of forming a field insulating film on a substrate, a step of forming a first insulating film on the substrate, a first polycrystalline silicon on the field insulating film and the first insulating film. A step of forming a film, a step of forming a second insulating film on the first polycrystalline silicon film, and a step of implanting a conductive impurity such as arsenic, boron or phosphorus into the first polycrystalline silicon film. Manufacturing method of semiconductor memory device.
JP14952792A 1992-06-09 1992-06-09 Manufacture of semiconductor storage device Pending JPH05343699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14952792A JPH05343699A (en) 1992-06-09 1992-06-09 Manufacture of semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14952792A JPH05343699A (en) 1992-06-09 1992-06-09 Manufacture of semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH05343699A true JPH05343699A (en) 1993-12-24

Family

ID=15477089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14952792A Pending JPH05343699A (en) 1992-06-09 1992-06-09 Manufacture of semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH05343699A (en)

Similar Documents

Publication Publication Date Title
JPS61179567A (en) Manufacture of self-aligning laminated cmos structure
JP3161333B2 (en) Semiconductor device and method of manufacturing the same
US5536962A (en) Semiconductor device having a buried channel transistor
EP0160003B1 (en) Mos floating gate memory cell and process for fabricating same
CA1232365A (en) Dual electron injection structure and process with self-limiting oxidation barrier
KR940008571B1 (en) Manufacturing method of semiconductor device
US4713142A (en) Method for fabricating EPROM array
US5686338A (en) Process for fabricating high-resistance load resistors using dummy polysilicon in four-transistor SRAM devices
JPH07183409A (en) Semiconductor device and manufacture thereof
US6338997B2 (en) Method of fabricating semiconductor device having improved bias dependability
JP3140023B2 (en) Semiconductor device and manufacturing method thereof
JPH05343699A (en) Manufacture of semiconductor storage device
JPH05343698A (en) Manufacture of semiconductor device
JPH0629543A (en) Manufacture of semiconductor device
JPH11176959A (en) Manufacture of semiconductor device
JPH0629541A (en) Manufacture of semiconductor device
JP3257070B2 (en) Semiconductor storage device
JPH05251712A (en) Manufacture of nonvolatile semiconductor memory
KR940011799B1 (en) Method of fabricating a storage electrode with tin layer
JPH06296024A (en) Semiconductor device and manufacture thereof
JPS6315748B2 (en)
JPH05343703A (en) Manufacture of nonvolatile memory
JPH05145081A (en) Manufacture of semiconductor nonvolatile storage device
JPH07226447A (en) Manufacture of nonvolatile memory cell
JPH09260610A (en) Method for manufacturing semiconductor device