JPH05343417A - Mos type semiconductor device and manufacture thereof - Google Patents

Mos type semiconductor device and manufacture thereof

Info

Publication number
JPH05343417A
JPH05343417A JP17734492A JP17734492A JPH05343417A JP H05343417 A JPH05343417 A JP H05343417A JP 17734492 A JP17734492 A JP 17734492A JP 17734492 A JP17734492 A JP 17734492A JP H05343417 A JPH05343417 A JP H05343417A
Authority
JP
Japan
Prior art keywords
gate electrode
region
drain
conductor
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17734492A
Other languages
Japanese (ja)
Inventor
Norio Yoshida
典生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP17734492A priority Critical patent/JPH05343417A/en
Publication of JPH05343417A publication Critical patent/JPH05343417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent deterioration in the characteristics of specific LDD structure by forming a conductor side wall formed on a low doped region in LDD structure by way of a thin insulation film on a gate electrode side surface in such a fashion that it may come into direct contact with the low doped region. CONSTITUTION:A drain region 20 provides an N type doped region 20b on a channel side and an N type high doped region 20a on a side separated from the channel. In a similar manner, a source region 18 provides a low doped region 18b on a channel side and a high doped region 18a on a side separated from the channel side. An N type polysilicon-made conductor side wall 24 is formed on sides of a gate electrode 16 by way of a thin silicon oxide film 22 whose film thickness ranges from 100 to 500Angstrom . The conductor side wall 24, the low doped regions 18b and 20b are electrically connected to each other. This construction makes it possible to eliminate deterioration in device characteristics which are specific to LDD structure induced by hot electrons.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はMOS型半導体装置、特
にLDD構造の半導体装置とその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS semiconductor device, and more particularly to a semiconductor device having an LDD structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】MOSトランジスタのホットキャリア耐
圧を向上させるために、ドレイン領域のチャネル側に低
不純物濃度領域をもつLDD構造が広く採用されてい
る。図4はLDD構造のドレイン近傍の要部を示したも
のである。基板2上のチャネル領域上にはゲート酸化膜
4を介してゲート電極6が形成されており、ゲート電極
6の側面にはLDD構造を形成するために使用された側
壁スペーサ8が絶縁物により形成されている。ドレイン
領域は高不純物濃度領域10aとチャネル側の低不純物
濃度領域10bとからなっている。
2. Description of the Related Art In order to improve the hot carrier breakdown voltage of a MOS transistor, an LDD structure having a low impurity concentration region on the channel side of a drain region is widely adopted. FIG. 4 shows the main part near the drain of the LDD structure. A gate electrode 6 is formed on the channel region on the substrate 2 via a gate oxide film 4, and a sidewall spacer 8 used for forming an LDD structure is formed on the side surface of the gate electrode 6 from an insulator. Has been done. The drain region is composed of a high impurity concentration region 10a and a low impurity concentration region 10b on the channel side.

【0003】LDD構造においてもホットキャリアによ
る特性の劣化は依然として存在する。これは、低濃度不
純物領域10b上の酸化膜中にホットエレクトロンが捕
捉され、そのホットエレクトロンによる見かけの相互コ
ンダクタンスgmが劣化するためである。酸化膜中に捕
捉されたホットエレクトロンは低不純物濃度領域10b
の表面を空乏化する方向に働くので、低不純物濃度領域
10bの抵抗を増加させる。低不純物濃度領域10bの
抵抗の増加は外部的には相互コンダクタンスgmの減少
又はしきい値電圧の増大として現われる。
Even in the LDD structure, deterioration of characteristics due to hot carriers still exists. This is because hot electrons are trapped in the oxide film on the low concentration impurity region 10b, and the apparent mutual conductance gm due to the hot electrons deteriorates. The hot electrons trapped in the oxide film are the low impurity concentration region 10b.
Of the low impurity concentration region 10b, the resistance of the low impurity concentration region 10b is increased. The increase in the resistance of the low impurity concentration region 10b appears externally as a decrease in the transconductance gm or an increase in the threshold voltage.

【0004】側壁スペーサ8が絶縁物でなくポリシリコ
ンとなったものも提案されている(特開平2−2684
42号公報、特開平2−276251号公報参照)。し
かし、それらのMOSトランジスタでも導電体の側壁と
低不純物濃度領域との間にはゲート酸化膜が存在してい
るため、図4で示したのと同じようにホットエレクトロ
ンによる特性の劣化は存在する。
It has been proposed that the side wall spacer 8 is made of polysilicon instead of an insulator (Japanese Patent Laid-Open No. 2-2684).
42, Japanese Patent Laid-Open No. 2-276251). However, even in those MOS transistors, since the gate oxide film exists between the side wall of the conductor and the low impurity concentration region, deterioration of the characteristics due to hot electrons exists as shown in FIG. ..

【0005】[0005]

【発明が解決しようとする課題】本発明はLDD構造特
有の特性の劣化を防止することを目的とするものであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent deterioration of characteristics peculiar to an LDD structure.

【0006】[0006]

【課題を解決するための手段】本発明のLDD構造MO
S型半導体装置では、ゲート電極の側面に薄い絶縁膜を
介して導電体が側壁状に形成されており、この導電体側
壁がドレイン領域の低不純物濃度領域上にあってその低
不純物濃度領域と直接接触している。。好ましい態様で
は、ゲート電極側面の導電体側壁はドレイン領域と同じ
導電型のポリシリコンで構成されている。
The LDD structure MO of the present invention
In the S-type semiconductor device, a conductor is formed in a side wall shape on the side surface of the gate electrode via a thin insulating film, and the side wall of the conductor is located on the low impurity concentration region of the drain region and the low impurity concentration region thereof. You are in direct contact. .. In a preferred mode, the side wall of the conductor on the side surface of the gate electrode is made of polysilicon having the same conductivity type as the drain region.

【0007】本発明の製造方法は以下の工程(A)から
(F)を含んでいる。(A)活性領域のゲート酸化膜上
にゲート電極を形成するとともに、ゲート電極の外側の
ゲート酸化膜を除去する工程、(B)全面に薄く絶縁膜
を形成し、エッチバックを施してゲート電極の側面にそ
の絶縁膜を残す工程、(C)ソース・ドレイン形成用
に、基板に不純物を低濃度にイオン注入する工程、
(D)全面にポリシリコン膜を堆積し、エッチバックを
施してゲート電極の側面に前記絶縁膜を介してこのポリ
シリコン膜を残す工程、(E)ソース・ドレイン形成用
に、基板に不純物を高濃度にイオン注入する工程、
(F)基板に注入された不純物を活性化し拡散させるた
めの熱処理工程。
The manufacturing method of the present invention includes the following steps (A) to (F). (A) A step of forming a gate electrode on the gate oxide film in the active region and removing the gate oxide film outside the gate electrode, (B) forming a thin insulating film on the entire surface, and performing etchback to form the gate electrode A step of leaving the insulating film on the side surface of the substrate, (C) a step of implanting impurities into the substrate at a low concentration to form the source / drain,
(D) A step of depositing a polysilicon film on the entire surface and performing etching back to leave the polysilicon film on the side surface of the gate electrode through the insulating film. (E) Impurity is added to the substrate for forming source / drain. High concentration ion implantation step,
(F) A heat treatment step for activating and diffusing the impurities injected into the substrate.

【0008】[0008]

【作用】LDD構造の低不純物濃度領域上にはゲート電
極側面に薄い絶縁膜を介して形成された導電体側壁がそ
の低不純物濃度領域と直接接触して形成されているの
で、低不純物濃度領域でホットエレクトロンが発生して
もその導電体側壁中に拡散し、低不純物濃度領域との界
面に負電荷が溜ることがなくなり、したがってホットエ
レクトロンによる相互コンダクタンスgmの低下やしき
い値電圧の増大という特性劣化は発生しない。
Since the side wall of the conductor formed on the side surface of the gate electrode via the thin insulating film is formed in direct contact with the low impurity concentration region of the LDD structure, the low impurity concentration region is formed. Therefore, even if hot electrons are generated, they are diffused into the side wall of the conductor and negative charges are not accumulated at the interface with the low impurity concentration region. Therefore, there is a decrease in mutual conductance gm and an increase in threshold voltage due to hot electrons. No characteristic deterioration occurs.

【0009】[0009]

【実施例】図1は一実施例の主要部を示したものであ
る。図1で、P型シリコン基板12上にゲート酸化膜1
4を介してポリシリコンにてなるゲート電極16が形成
されている。ドレイン領域20はチャネル側がN型の低
不純物濃度領域20bとなり、チャネルから離れた側が
N型の高不純物濃度領域20aとなっている。ソース領
域18も同様に、チャネル側がN型の低不純物濃度領域
18bとなり、チャネルから離れた側がN型の高不純物
濃度領域18aとなっている。ゲート電極16の側面に
は膜厚が100〜500Åの薄いシリコン酸化膜22を
介してN型ポリシリコンにてなる導電体側壁24が形成
され、導電体側壁24と低不純物濃度領域18b,20
bの間には絶縁膜は存在せず、導電体側壁24と低不純
物濃度領域18b,20bは電気的に接続されている。
図示は省略されているが、MOSトランジスタとしては
更に層間絶縁膜が形成され、そのコンタクトホールを介
してメタル配線がソース・ドレイン領域18,20やゲ
ート電極16と接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the main part of one embodiment. In FIG. 1, a gate oxide film 1 is formed on a P-type silicon substrate 12.
A gate electrode 16 made of polysilicon is formed via the gate electrode 4. The drain region 20 has an N-type low impurity concentration region 20b on the channel side and an N-type high impurity concentration region 20a on the side away from the channel. Similarly, the source region 18 has an N-type low impurity concentration region 18b on the channel side and an N-type high impurity concentration region 18a on the side away from the channel. A conductor side wall 24 made of N-type polysilicon is formed on the side surface of the gate electrode 16 through a thin silicon oxide film 22 having a film thickness of 100 to 500Å, and the conductor side wall 24 and the low impurity concentration regions 18b, 20 are formed.
There is no insulating film between b, and the conductor side wall 24 and the low impurity concentration regions 18b and 20b are electrically connected.
Although not shown, an interlayer insulating film is further formed as a MOS transistor, and metal wirings are connected to the source / drain regions 18 and 20 and the gate electrode 16 through the contact holes.

【0010】図1の実施例の動作を図2により説明す
る。このNMOSトランジスタが動作することによりチ
ャネルから低濃度ドレイン領域20bを経て高濃度ドレ
イン領域20aに電子が流れ込むとき、ドレイン端部で
の高電圧でホットエレクトロンが発生したとしても、そ
の電荷は導電体側壁24中を拡散し、低濃度ドレイン領
域20bとの界面には留まらない。
The operation of the embodiment shown in FIG. 1 will be described with reference to FIG. When electrons flow from the channel to the high-concentration drain region 20a through the low-concentration drain region 20b by the operation of this NMOS transistor, even if hot electrons are generated by a high voltage at the drain end, the charge is stored in the conductor sidewall. It diffuses in 24 and does not stay at the interface with the low concentration drain region 20b.

【0011】次に、図1の実施例を製造する方法につい
て図3を参照して説明する。 (A)P型シリコン基板12の素子分離された活性領域
にゲート酸化膜14を形成し、全面にポリシリコン膜を
堆積し、写真製版とエッチングによりパターン化を施し
てゲート電極16を形成する。 (B)全面にシリコン酸化膜を薄く堆積するか熱酸化に
より形成する。そのシリコン酸化膜は100〜500Å
の膜厚になるように形成する。そしてエッチバックを施
し、ゲート電極16の側面のみにシリコン酸化膜22を
残す。 次に、ソース・ドレインの低不純物濃度領域を形成する
ために、P型不純物として例えばリンイオンを60Ke
Vで1×1013/cm2程度注入する。26は基板12
に注入されたリンイオンである。
Next, a method of manufacturing the embodiment of FIG. 1 will be described with reference to FIG. (A) A gate oxide film 14 is formed in the active region of the P-type silicon substrate 12 in which elements are isolated, a polysilicon film is deposited on the entire surface, and patterning is performed by photolithography and etching to form a gate electrode 16. (B) A silicon oxide film is thinly deposited on the entire surface or formed by thermal oxidation. The silicon oxide film is 100 ~ 500Å
It is formed to have a film thickness of. Then, etch back is performed to leave the silicon oxide film 22 only on the side surface of the gate electrode 16. Next, in order to form low impurity concentration regions of the source / drain, for example, phosphorus ions of 60 Ke are used as P-type impurities.
Implant at about 1 × 10 13 / cm 2 with V. 26 is the substrate 12
Is the phosphorus ions implanted in the.

【0012】(C)全面にポリシリコン膜を堆積し、エ
ッチバックを施してゲート電極16の側面にシリコン酸
化膜22を介してポリシリコン膜24を残す。 次に、ソース・ドレインの高不純物濃度領域を形成する
ために、N型不純物として例えば砒素を50KeVで6
×1015/cm2程度注入する。このときゲート電極1
6の側面のポリシリコン側壁24にも砒素が注入され
る。28は基板12に注入された砒素、30はポリシリ
コン側壁24に注入された砒素である。 (D)注入されたイオンの活性化と拡散のための熱処理
を施す。これによってN型ソース・ドレイン領域20
a,20bが形成されるとともに、ポリシリコン側壁2
4がN型になる。 その後は通常のプロセスに従って、層間絶縁膜を堆積
し、コンタクトホールを形成し、メタル配線を形成し、
パッシベーション膜を形成する。
(C) A polysilicon film is deposited on the entire surface and is etched back to leave the polysilicon film 24 on the side surface of the gate electrode 16 with the silicon oxide film 22 interposed therebetween. Next, in order to form high impurity concentration regions of the source / drain, for example, arsenic as an N-type impurity is added at 50 KeV to 6
About 10 15 / cm 2 is injected. At this time, the gate electrode 1
Arsenic is also implanted into the polysilicon side wall 24 on the side surface of No. 6. 28 is arsenic implanted into the substrate 12, and 30 is arsenic implanted into the polysilicon side wall 24. (D) A heat treatment for activating and diffusing the implanted ions is performed. As a result, the N-type source / drain region 20
a and 20b are formed and the polysilicon side wall 2 is formed.
4 becomes N type. After that, according to a normal process, an interlayer insulating film is deposited, contact holes are formed, metal wiring is formed,
A passivation film is formed.

【0013】[0013]

【発明の効果】本発明のLDD構造のMOSトランジス
タでは、ドレインの低不純物濃度領域上に絶縁膜がな
く、ゲート電極の側面に絶縁膜を介して形成された導電
体側壁がドレインの低不純物濃度領域と直接接触してい
るので、ドレインでのアバランシェホットエレクトロン
が低不純物濃度領域とその上の部分との界面に捕捉され
ることがなく、そのため低不純物濃度領域上に捕捉され
たホットエレクトロンによるLDD構造特有の素子特性
の劣化は起こらない。本発明の製造方法で製造すると、
ゲート電極の側面に絶縁膜を介して形成された導電体側
壁への不純物導入とソース・ドレイン形成の不純物導入
が同じ工程で行なわれるので、プロセスが簡単になる。
In the LDD structure MOS transistor of the present invention, there is no insulating film on the low impurity concentration region of the drain, and the side wall of the conductor formed on the side surface of the gate electrode through the insulating film has the low impurity concentration of the drain. Since it is in direct contact with the region, avalanche hot electrons at the drain are not trapped at the interface between the low impurity concentration region and the portion above it, and therefore LDD by hot electrons trapped on the low impurity concentration region is caused. Degradation of device characteristics peculiar to the structure does not occur. When manufactured by the manufacturing method of the present invention,
Since the impurity introduction to the side wall of the conductor formed on the side surface of the gate electrode via the insulating film and the impurity introduction of the source / drain formation are performed in the same step, the process is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例を示す要部断面図である。FIG. 1 is a sectional view of an essential part showing an embodiment.

【図2】同実施例における動作を示すドレイン近傍の要
部断面図である。
FIG. 2 is a cross-sectional view of the main part near the drain showing the operation in the same Example.

【図3】一実施例の製造方法を示す工程断面図である。FIG. 3 is a process cross-sectional view showing the manufacturing method of the embodiment.

【図4】従来のLDD構造における動作を示す要部断面
図である。
FIG. 4 is a cross-sectional view of essential parts showing an operation in a conventional LDD structure.

【符号の説明】[Explanation of symbols]

12 P型シリコン基板 14 ゲート酸化膜 16 ゲート電極 20a 高濃度ドレイン領域 20b 低濃度ドレイン領域 22 ゲート電極側面のシリコン酸化膜 24 ポリシリコン側壁 12 P-type silicon substrate 14 Gate oxide film 16 Gate electrode 20a High-concentration drain region 20b Low-concentration drain region 22 Silicon oxide film on side face of gate electrode 24 Polysilicon sidewall

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にゲート酸化膜を介してゲ
ート電極が形成され、少なくともドレイン領域はチャネ
ル側に低不純物濃度領域をもつLDD構造をしており、
ゲート電極の側面には薄い絶縁膜を介して導電体が側壁
状に形成されており、かつこの導電体側壁が前記低不純
物濃度領域上にあってその低不純物濃度領域と直接接触
していることを特徴とするMOS型半導体装置。
1. A gate electrode is formed on a semiconductor substrate via a gate oxide film, and at least a drain region has an LDD structure having a low impurity concentration region on a channel side,
A conductor is formed in a sidewall shape on the side surface of the gate electrode through a thin insulating film, and the sidewall of the conductor is on the low impurity concentration region and is in direct contact with the low impurity concentration region. MOS type semiconductor device characterized by the above.
【請求項2】 前記導電体側壁はソース・ドレイン領域
と同じ導電型のポリシリコンにてなる請求項1に記載の
MOS型半導体装置。
2. The MOS semiconductor device according to claim 1, wherein the side wall of the conductor is made of polysilicon having the same conductivity type as the source / drain regions.
【請求項3】 以下の工程(A)から(F)を含むMO
S型半導体装置の製造方法。 (A)活性領域のゲート酸化膜上にゲート電極を形成す
るとともに、ゲート電極の外側のゲート酸化膜を除去す
る工程、 (B)全面に薄く絶縁膜を形成し、エッチバックを施し
てゲート電極の側面にその絶縁膜を残す工程、 (C)ソース・ドレイン形成用に、基板に不純物を低濃
度にイオン注入する工程、 (D)全面にポリシリコン膜を堆積し、エッチバックを
施してゲート電極の側面に前記絶縁膜を介してこのポリ
シリコン膜を残す工程、 (E)ソース・ドレイン形成用に、基板に不純物を高濃
度にイオン注入する工程、 (F)基板に注入された不純物を活性化し拡散させるた
めの熱処理工程。
3. An MO including the following steps (A) to (F):
Manufacturing method of S-type semiconductor device. (A) A step of forming a gate electrode on the gate oxide film in the active region and removing the gate oxide film outside the gate electrode, (B) forming a thin insulating film on the entire surface, and performing etch back to perform the gate electrode The step of leaving the insulating film on the side surface of the substrate, (C) the step of ion-implanting impurities into the substrate at a low concentration to form the source / drain, and (D) the polysilicon film deposited on the entire surface and etched back to form the gate. A step of leaving the polysilicon film on the side surface of the electrode through the insulating film; (E) a step of ion-implanting impurities into the substrate at a high concentration to form a source / drain; Heat treatment process to activate and diffuse.
JP17734492A 1992-06-10 1992-06-10 Mos type semiconductor device and manufacture thereof Pending JPH05343417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17734492A JPH05343417A (en) 1992-06-10 1992-06-10 Mos type semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17734492A JPH05343417A (en) 1992-06-10 1992-06-10 Mos type semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05343417A true JPH05343417A (en) 1993-12-24

Family

ID=16029329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17734492A Pending JPH05343417A (en) 1992-06-10 1992-06-10 Mos type semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05343417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780901A (en) * 1994-06-30 1998-07-14 Kabushiki Kaisha Toshiba Semiconductor device with side wall conductor film
WO2001018877A1 (en) * 1999-09-07 2001-03-15 Sharp Kabushiki Kaisha Semiconductor device and method of manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780901A (en) * 1994-06-30 1998-07-14 Kabushiki Kaisha Toshiba Semiconductor device with side wall conductor film
US5955761A (en) * 1994-06-30 1999-09-21 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof
WO2001018877A1 (en) * 1999-09-07 2001-03-15 Sharp Kabushiki Kaisha Semiconductor device and method of manufacture thereof

Similar Documents

Publication Publication Date Title
US5436482A (en) MOSFET with assymetric lightly doped source-drain regions
US6759717B2 (en) CMOS integrated circuit device with LDD n-channel transistor and non-LDD p-channel transistor
US5824588A (en) Double spacer salicide MOS process and device
KR0180310B1 (en) Method for manufacturing cmos transistor
JP3283614B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US6576521B1 (en) Method of forming semiconductor device with LDD structure
US6078079A (en) Semiconductor device and method of manufacturing the same
US5756383A (en) Method of manufacturing an active region of a semiconductor by diffusing a counterdopant out of a sidewall spacer
JP2730535B2 (en) Method for manufacturing semiconductor device
JP3106757B2 (en) Method for manufacturing MOS field effect semiconductor device
JPS6136975A (en) Semiconductor device
JPH0656855B2 (en) Insulated gate type field effect transistor
JPH0460352B2 (en)
JPH0234936A (en) Semiconductor device and its manufacture
JPH05343417A (en) Mos type semiconductor device and manufacture thereof
JP3387782B2 (en) Semiconductor device
JP4186247B2 (en) Method for manufacturing semiconductor device and method for forming conductive silicon film
US5923949A (en) Semiconductor device having fluorine bearing sidewall spacers and method of manufacture thereof
JP2917301B2 (en) Semiconductor device and manufacturing method thereof
JP3403117B2 (en) Method for manufacturing semiconductor device
JPH0575045A (en) Manufacture of semiconductor device
KR960013947B1 (en) Mos transistor
JPH0831949A (en) Dual gate structure cmos semiconductor device and its manufacture
JPH0348428A (en) Semiconductor device
JP3191313B2 (en) Method for manufacturing semiconductor device