JPH05343227A - Garnet thin film - Google Patents

Garnet thin film

Info

Publication number
JPH05343227A
JPH05343227A JP14708892A JP14708892A JPH05343227A JP H05343227 A JPH05343227 A JP H05343227A JP 14708892 A JP14708892 A JP 14708892A JP 14708892 A JP14708892 A JP 14708892A JP H05343227 A JPH05343227 A JP H05343227A
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
lattice constant
garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14708892A
Other languages
Japanese (ja)
Inventor
Akiyuki Tate
彰之 館
Shinji Mino
真司 美野
Atsushi Shibukawa
篤 渋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14708892A priority Critical patent/JPH05343227A/en
Publication of JPH05343227A publication Critical patent/JPH05343227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide a magneto-optical garnet thin film whose stress between the substrate and the thin film is relaxed and that has a high magneto-optical effect. CONSTITUTION:In a Ce-substituted-YIG thin film formed on a crystal substrate having a garnet structure, part or the whole of iron (Fe) is replaced by Al, Ga, or both Al and Ga together. Further, part of Y is replaced by one ore more elements selected from Lu, Yb, Tm, Er, Dy, Tb, Gd, and Eu. Furthermore, part of Fe is replaced by Al, Ga, or both Al and Ga, and part of Ce is replaced by one or more elements selected from Lu, Yb, Tm, Er, Dy, Tb, and Eu.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光アイソレータ等に用い
られる磁気光学結晶のガーネット材料に係り、特に、基
板と薄膜との間の格子定数差を±0.5%以内に制御し、
基板‐薄膜間の応力の軽減を実現したガーネット薄膜に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a garnet material of a magneto-optical crystal used for an optical isolator, etc., and particularly, controlling a lattice constant difference between a substrate and a thin film within ± 0.5%,
The present invention relates to a garnet thin film that realizes stress reduction between the substrate and the thin film.

【0002】[0002]

【従来の技術】光アイソレータ等に用いられる磁気光学
材料としては、ガーネット基板上に形成した薄膜状のイ
ットリウム鉄ガーネット(YIG)の各種置換系が用いられ
ている。これらの置換系のファラデー定数は数百度/cm
程度であり、45度回転子として用いられる時には、液相
エピタキシャル法により数百μmの厚膜を作製して使用
されていた。ここで、数百μmの厚膜を液相エピタキシ
ャル法により作製する際、成長時間が数百分に及ぶこと
から、成長途中の雑晶の混入、膜成長のムラ、欠陥発生
等の原因となっていた。最近になり、液相エピタキシャ
ル法では作製し得なかったセリウム(Ce)のイットリウム
サイトへの高濃度置換をした Ce置換YIG薄膜がスパッタ
法によって実現され、ファラデー定数が数千度/cmにも
達することが示された。この薄膜を用いれば、数十μm
の膜厚で 45度回転子が実現でき、雑晶、膜の成長ム
ラ、欠陥等による特性劣化の抑制が可能となる。しか
し、Ce置換YIG膜と各種ガーネット基板との格子定数差
が大きく、このため、薄膜形成後に基板と薄膜間に応力
を生じ、反り、クラックや結晶性低下等の原因となって
いた。図14は従来技術における試料について反りの測定
を行った場合の結果を示す図で、図の結果から、基板両
端と中央部において約6.8μmの反りを生じていることが
わかる。
2. Description of the Related Art As a magneto-optical material used for an optical isolator or the like, various substitution systems of thin film yttrium iron garnet (YIG) formed on a garnet substrate are used. The Faraday constant of these substitution systems is several hundred degrees / cm
When used as a 45-degree rotator, a thick film of several hundred μm was produced by the liquid phase epitaxial method and used. Here, when a thick film of several hundred μm is produced by the liquid phase epitaxial method, the growth time extends for several hundred minutes, which may cause mixing of miscellaneous crystals during growth, unevenness of film growth, generation of defects, etc. Was there. Recently, a Ce-substituted YIG thin film with high concentration substitution of cerium (Ce) for yttrium sites, which could not be produced by liquid phase epitaxial method, has been realized by the sputtering method, and the Faraday constant reaches several thousand degrees / cm. Was shown. With this thin film, several tens of μm
A 45-degree rotor can be realized with this film thickness, and it is possible to suppress characteristic deterioration due to miscellaneous crystals, uneven growth of the film, defects, etc. However, there is a large difference in lattice constant between the Ce-substituted YIG film and various garnet substrates, which causes stress between the substrate and the thin film after forming the thin film, which causes warpage, cracks, and deterioration of crystallinity. FIG. 14 is a diagram showing the results of the measurement of the warpage of the sample in the prior art. From the results of the diagram, it can be seen that a warp of about 6.8 μm occurs at both ends and the central part of the substrate.

【0003】この結果、数μm以上の厚膜を形成した場
合、薄膜のひび割れ、剥離を生じる等の他に、薄膜の各
種光学特性、光磁気特性の劣化、フォトリソグラフィを
用いた微細パターン形成時のパターンだれ等種々の弊害
を生じ、実用上好ましくない影響を与えていた。従っ
て、Ce置換YIG薄膜と基板の格子定数差を制御し、基板
と薄膜間の応力を軽減するすることが、高品質でかつ実
用的な光磁気デバイス作製上重要である。特に上記の目
的を実現する上では、基板と薄膜の格子定数差を±0.5
%以内に制御することが望ましい。
As a result, when a thick film of several μm or more is formed, in addition to cracking and peeling of the thin film, deterioration of various optical characteristics and magneto-optical characteristics of the thin film, and formation of a fine pattern using photolithography However, various adverse effects such as the pattern dripping were caused, which had an unfavorable effect in practical use. Therefore, it is important to control the lattice constant difference between the Ce-substituted YIG thin film and the substrate to reduce the stress between the substrate and the thin film in order to manufacture a high quality and practical magneto-optical device. In particular, to achieve the above purpose, the difference in lattice constant between the substrate and the thin film should be ± 0.5.
It is desirable to control within%.

【0004】[0004]

【発明が解決しようとする課題】従来技術には上記した
ような欠点があり、高い磁気光学効果を有する薄膜材料
を得ることが困難であった。
The prior art has the above-mentioned drawbacks, and it is difficult to obtain a thin film material having a high magneto-optical effect.

【0005】本発明の目的は、上記従来技術の有してい
た課題を解決して、Ce置換YIGを用いた磁気光学薄膜の
作製において、基板と薄膜間の格子定数差を±0.5%以
内に制御し、基板と薄膜間の応力を軽減しかつ高い磁気
光学効果を有する構成のガーネット薄膜を提供すること
にある。
The object of the present invention is to solve the problems of the prior art described above, and in the production of a magneto-optical thin film using Ce-substituted YIG, the lattice constant difference between the substrate and the thin film should be within ± 0.5%. It is an object of the present invention to provide a garnet thin film having a structure that controls and reduces stress between the substrate and the thin film and has a high magneto-optical effect.

【0006】[0006]

【課題を解決するための手段】上記目的は、下記内容の
ガーネット薄膜とすることによって達成することができ
る。すなわち、(1) ガーネット構造を有する結晶基板上
に形成する Ce置換YIG薄膜において、鉄(Fe)の一部また
は全てをアルミニウム(Al)、ガリウム(Ga)または Al と
Gaの両者で置換することにより基板と薄膜の格子定数
を整合させたことを特徴とするガーネット薄膜とするこ
と、(2) ガーネット構造を有する結晶基板上に形成する
Ce置換YIG薄膜において、イットリウム(Y)の一部をルテ
チウム(Lu)、イッテルビウム(Yb)、ツリウム(Tm)、エル
ビウム(Er)、ジスプロシウム(Dy)、テルビウム(Tb)、ガ
ドリニウム(Gd)、ユウロピウム(Eu)の中から選ばれる一
種あるいは数種の元素で置換することにより基板と薄膜
の格子定数を整合させたことを特徴とするガーネット薄
膜とすること、 (3) ガーネット構造を有する結晶基板
上に形成するCe置換YIG薄膜において、Feの一部を Al、
Ga またはその両者で置換し、かつ、Ce の一部を Lu、Y
b、Tm、Er、Dy、Tb、Gd、Euの中から選ばれる一種ある
いは数種の元素で置換することにより基板と薄膜の格子
定数を整合させたことを特徴とするガーネット薄膜とす
ること、によって達成することができる。
The above object can be achieved by using a garnet thin film having the following contents. That is, (1) in a Ce-substituted YIG thin film formed on a crystal substrate having a garnet structure, part or all of iron (Fe) is replaced with aluminum (Al), gallium (Ga) or Al.
A garnet thin film characterized by matching the lattice constants of the substrate and the thin film by substituting both of Ga, (2) Formed on a crystalline substrate having a garnet structure
In the Ce-substituted YIG thin film, part of yttrium (Y) is lutetium (Lu), ytterbium (Yb), thulium (Tm), erbium (Er), dysprosium (Dy), terbium (Tb), gadolinium (Gd), europium. (3) A garnet thin film characterized by matching the lattice constants of the substrate and the thin film by substituting one or several elements selected from (Eu), (3) On a crystalline substrate having a garnet structure In the Ce-substituted YIG thin film formed on, part of Fe is Al,
Replace with Ga or both, and replace part of Ce with Lu, Y
b, Tm, Er, Dy, Tb, Gd, a garnet thin film characterized by matching the lattice constant of the thin film with the substrate by substituting one or several elements selected from Eu, Can be achieved by

【0007】[0007]

【作用】上記本発明構成とすることの作用は次の通りで
ある。
The operation of the above-mentioned constitution of the present invention is as follows.

【0008】(1') Ce置換YIG薄膜の組成において、Feの
一部をさらに Al、Ga により置換した材料を用いること
により基板と薄膜との格子定数差を±0.5%以内に制御
し、基板と薄膜間の応力を軽減すること及びガーネット
材料の特性劣化の抑制が可能となる。
(1 ') In the composition of the Ce-substituted YIG thin film, a material in which a part of Fe is further substituted by Al and Ga is used to control the difference in lattice constant between the substrate and the thin film within ± 0.5%. It is possible to reduce the stress between the thin film and the thin film and to suppress the characteristic deterioration of the garnet material.

【0009】(2') Ce置換YIG薄膜の組成において、Y の
一部をさらに Lu、Yb、Tm、Er、Dy、Tb、Gd、Euの中か
ら選ばれる一種あるいは数種の元素(以下、R と略称す
る)で置換した材料(以下、Ce/R置換YIGと略称する)を用
いることにより、基板と薄膜との格子定数差を±0.5%
以内に制御し、基板と薄膜間の応力を軽減することと、
ガーネット材料の特性劣化の抑制を可能にしかつ高い磁
気光学効果を有する Ce高濃度置換ガーネット薄膜材料
が得られる。
In the composition of the (2 ') Ce-substituted YIG thin film, a part of Y is further added to one or several elements selected from Lu, Yb, Tm, Er, Dy, Tb, Gd, and Eu (hereinafter, By using a material replaced with (abbreviated as R) (hereinafter, abbreviated as Ce / R-substituted YIG), the difference in lattice constant between the substrate and the thin film is ± 0.5%.
Control within to reduce the stress between the substrate and the thin film, and
A Ce high-concentration substituted garnet thin film material having a high magneto-optical effect and capable of suppressing characteristic deterioration of the garnet material can be obtained.

【0010】(3') 化学式(Ce3-yR'y)(Fe5-zR''z)Ov
(v:〜12)のCe含有鉄ガーネット薄膜の組成において、
R''の一部を Al あるいは Ga またはその両者を用いて
置換し、また、R' の一部をLu、Yb、Tm、Er、Dy、Tb、G
d、Euの各元素の中の1種あるいは数種を用いてさらに
置換した材料を用いることにより、基板と薄膜との格子
定数差を±0.5%以内に制御し、基板と薄膜間の応力の
軽減を図ることと、ガーネット材料の特性劣化の抑制を
可能にしかつ高い磁気光学効果を有する Ce高濃度置換
ガーネット薄膜材料が得られる。
(3 ') Chemical formula (Ce 3-y R'y ) (Fe 5-z R'' z ) O v
In the composition of the Ce-containing iron garnet thin film of (v: ~ 12),
Part of R '' is replaced by Al or Ga or both, and part of R'is replaced by Lu, Yb, Tm, Er, Dy, Tb, G.
By using a material that is further substituted with one or several of the elements d and Eu, the lattice constant difference between the substrate and the thin film is controlled within ± 0.5%, and the stress between the substrate and the thin film is controlled. It is possible to obtain a Ce high-concentration substituted garnet thin film material having a high magneto-optical effect and capable of suppressing the deterioration of the characteristics of the garnet material.

【0011】[0011]

【実施例】スパッタ法を用いて作製した Ce高濃度置換Y
IG薄膜の格子定数は各構成元素の組成比の他に、作製時
の基板温度、酸素流量、高周波入射パワー密度、基板の
種類(基板結晶の格子定数、面方位、基板の表面状態等
々を含む)等の要因により変化する。しかし、Ce置換YIG
薄膜の格子定数 afは、大きくは、Ce置換量;x(CexYy
FezOv;y 〜 3−x、z 〜5、v 〜12)に対して次式に
よって評価することができる。
[Example] Ce high-concentration substitution Y produced by the sputtering method
The lattice constant of the IG thin film includes, in addition to the composition ratio of each constituent element, substrate temperature during production, oxygen flow rate, high-frequency incident power density, substrate type (substrate crystal lattice constant, plane orientation, substrate surface state, etc.). ) And other factors. But Ce replacement YIG
The lattice constant a f of the thin film is largely the Ce substitution amount; x (Ce x Y y
Fe z O v ; y ~ 3-x, z ~ 5, v ~ 12) can be evaluated by the following formula.

【0012】 af 〜12.376+0.193x (単位 A) (1) また、Feサイトをスパッタ法を用いて作製した Al、Ga
で置換した Ce置換YIG薄膜の格子定数も各構成元素の組
成比の他に、作製時の基板温度、酸素流量、高周波入射
パワー密度、基板の種類(基板結晶の格子定数、面方
位、基板の表面状態等を含む)等の要因により変化す
る。しかし、大きくは、格子定数の減少量△aも Feサ
イトへの Al、Ga置換量z{〔Ce/Y〕u〔Fe5-zR''z
Ov;u 〜3}により次式で評価できる 0.0736z ; Al置換 △a 〜 (単位 A) (2) 0.0202z ; Ga置換 また、スパッタ法を用いて作製した Ce/R置換YIG薄膜の
格子定数も各構成元素の組成比の他に、作製時の基板温
度、酸素流量、高周波入射パワー密度、基板の種類(基
板結晶の格子定数、面方位、基板の表面状態等を含む)
等の要因により変化する。しかし、大きくは、格子定数
の減少量△aも Y サイトへの R置換量y{〔CexRyY
3-x-y〕Fe5Ov}により次式で評価できる。
A f ˜12.376 + 0.193x (unit A) (1) In addition, Al and Ga in which Fe sites are formed by a sputtering method
In addition to the composition ratio of each constituent element, the lattice constant of the Ce-substituted YIG thin film substituted with is also the substrate temperature during production, oxygen flow rate, high-frequency incident power density, substrate type (substrate crystal lattice constant, plane orientation, substrate (Including surface condition)). However, the decrease Δa of the lattice constant is largely due to the amount of Al and Ga substitution at the Fe site z {[Ce / Y] u [Fe 5-z R '' z ].
O v ; u 〜 3} can be used to evaluate by the following formula 0.0736z ; Al substitution △ a 〜 (unit A) (2) 0.0202z ; Ga substitution Also, Ce / R substituted YIG thin film lattice prepared by sputtering method In addition to the composition ratio of each constituent element, the constant also includes the substrate temperature during production, the oxygen flow rate, the high-frequency incident power density, the type of substrate (including the lattice constant of the substrate crystal, the plane orientation, the surface state of the substrate, etc.).
It changes depending on factors such as. However, to a large extent, the decrease Δa of the lattice constant is also the amount of R substitution y {[Ce x R y Y
3-xy ] Fe 5 O v } can be evaluated by the following equation.

【0013】 0.0357y ;Lu置換 0.0257y ;Yb置換 0.0150y ;Tm置換 △a 〜 0.00867y ;Er置換 (単位 A) (3) −0.0140y ;Dy置換 −0.0180y ;Tb置換 −0.0280y ;Gd置換 −0.0480y ;Eu置換 格子定数が 12.383、12.439、12.496及び12.509Aである
ガーネット基板上に各種の Ce置換量を有する薄膜を基
板格子定数と整合を取りながら作製するために必要な A
l 及び Ga 置換量を(1)、(2)式から計算した結果を図1
に、上記基板上に同じく基板格子定数と整合を取りなが
ら薄膜を作製するために必要な R 置換量を(1)、(3)式
から計算した結果を図2〜9に、上記基板上に同じく基
板格子定数と整合を取りながら薄膜を作製するために必
要な R'と R''置換量を(1)、(2)、(3)式から計算した
結果を図10〜13に示す。なお、図10〜13において、Dy、
Tb、Gd、Eu については、図を簡素化するために、図示
は省略した。
0.0357y; Lu substitution 0.0257y; Yb substitution 0.0150y; Tm substitution Δa to 0.00867y; Er substitution (unit A) (3) -0.0140y; Dy substitution -0.0180y; Tb substitution -0.0280y; Gd Substitution −0.0480y ; Eu substitution A necessary for preparing thin films with various Ce substitutions on garnet substrates with lattice constants of 12.383, 12.439, 12.496 and 12.509A while matching the lattice constants of the substrates.
Fig. 1 shows the results of calculating the amounts of l and Ga substitution from equations (1) and (2).
2 to 9 show the calculation results of Eqs. (1) and (3) for the amount of R substitution necessary to form a thin film on the above substrate while matching the lattice constant of the substrate. Similarly, Figures 10 to 13 show the results of calculating the R'and R '' substitutions required to form a thin film while matching the lattice constant of the substrate from Eqs. (1), (2), and (3). Note that in FIGS. 10 to 13, Dy,
The illustration of Tb, Gd, and Eu has been omitted to simplify the drawing.

【0014】以下、本発明のガーネット薄膜について実
施例によって具体的に説明する。
The garnet thin film of the present invention will be specifically described below with reference to examples.

【0015】[0015]

【実施例1】本実施例は Feの ALによる置換の場合の例
である。
Example 1 This example is an example in the case of replacing Fe with AL.

【0016】格子定数12.496Aの(111) 2インチφ基板上
に Ce1.0Y2Fe4.5Al0.5Oxのターゲットを用いて通常の高
周波スパッタ法により膜形成を行った。基板温度500
℃、アルゴン流量9.9sccm、酸素流量 0sccm、スパッタ
圧力4.0Pa、電極プレート電流密度 3mA/cm2(R.F.入射パ
ワー320W、反射パワー75W)、膜厚1μmとした。得られ
た膜の組成は Ce0.99Y2.01Fe4.2Al0.5Oyであり、反り、
クラック、膜の剥離等は見られなかった。また、膜の格
子定数を求めるため、二結晶X線回折装置により膜と基
板の(444)回折ピークプロファイルを調べた。膜と基板
のピークの分離から格子定数差は0.035Aと0.28%程度で
膜と基板の格子定数は一致していた。(1)及び(2)式から
期待される格子定数の一致する Al組成は0.992である
が、実際には膜形成時の基板温度と室温間の熱収縮効果
や膜の組成ずれ等により上記の組成で一致したものであ
る。
A film was formed on a (111) 2 inch φ substrate having a lattice constant of 12.496A by a usual high frequency sputtering method using a target of Ce 1.0 Y 2 Fe 4.5 Al 0.5 O x . Substrate temperature 500
° C., argon flow rate 9.9Sccm, oxygen flow rate 0 sccm, sputtering pressure 4.0 Pa, the electrode plate current density 3mA / cm 2 (RF incident power 320W, reflected power 75W), and a thickness of 1 [mu] m. The composition of the obtained film was Ce 0.99 Y 2.01 Fe 4.2 Al 0.5 O y , and warpage
No cracks or peeling of the film were observed. Further, in order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer. From the separation of the peaks of the film and substrate, the difference in lattice constant was 0.035A, which was about 0.28%, and the lattice constants of the film and substrate were in agreement. The Al composition with the matching lattice constants expected from Eqs. (1) and (2) is 0.992, but in reality, due to the heat shrinkage effect between the substrate temperature and room temperature during film formation, the composition shift of the film, etc. The composition is consistent.

【0017】[0017]

【実施例2】本実施例は Feの Gaによる置換の場合の例
である。
Example 2 This example is an example of replacing Fe with Ga.

【0018】格子定数12.496Aの(111) 2インチφ基板上
に組成 Ce1.0Y2Fe3.17Ga1.83Oxのターゲットを用いて通
常の高周波スパッタ法により膜形成を行った。基板温度
500℃、アルゴン流量9.9sccm、酸素流量0.02sccm、スパ
ッタ圧力4.0Pa、電極プレート電流密度 3mA/cm2(R.F.入
射パワー320W、反射パワー75W)、膜厚3μmとした。得
られた膜の組成は Ce1.00Y2.00Fe3.15Ga1.84Oyであり、
反り、クラック、膜の剥離等は見られなかった。また、
膜の格子定数を求めるため、二結晶X線回折装置により
膜と基板の(444)回折ピークプロファイルを調べた。膜
と基板のピークの分離から格子定数差は 0.012Aと0.096
%程度で膜と基板の格子定数は一致していた。(1)及び
(2)式から期待される格子定数の一致する Ga組成は3.61
であるが、実際には膜形成時の基板温度と室温間の熱収
縮効果や膜の組成ずれ等により上記の組成で一致したも
のである。
A film was formed on a (111) 2 inch φ substrate having a lattice constant of 12.496A by a usual high frequency sputtering method using a target of the composition Ce 1.0 Y 2 Fe 3.17 Ga 1.83 O x . Substrate temperature
The temperature was 500 ° C., the argon flow rate was 9.9 sccm, the oxygen flow rate was 0.02 sccm, the sputtering pressure was 4.0 Pa, the electrode plate current density was 3 mA / cm 2 (RF incident power 320 W, reflection power 75 W), and the film thickness was 3 μm. The composition of the obtained film was Ce 1.00 Y 2.00 Fe 3.15 Ga 1.84 O y ,
No warp, crack, peeling of the film or the like was observed. Also,
In order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer. From the separation of the peaks of the film and substrate, the lattice constant difference was 0.012A and 0.096A.
%, The lattice constants of the film and the substrate were the same. (1) and
The Ga composition with the matching lattice constant expected from Eq. (2) is 3.61.
However, in reality, the above compositions are the same due to the heat shrinkage effect between the substrate temperature and the room temperature during film formation, the film composition shift, and the like.

【0019】[0019]

【実施例3】本実施例は Feの Alと Gaとによる共置換
の場合の例である。
[Embodiment 3] This embodiment is an example in the case of co-substitution of Fe with Al and Ga.

【0020】格子定数12.496Aの(111) 2インチφ基板上
に、組成 Ce1.0Y2Fe3.12Al0.40Ga1.48Oxのターゲットを
用いて通常の高周波スパッタ法により膜形成を行った。
基板温度500℃、アルゴン流量9.9sccm、酸素流量0.02sc
cm、スパッタ圧力4.0Pa、電極プレート電流密度 3mA/cm
2(R.F.入射パワー320W、反射パワー75W)、膜厚10μmと
した。得られた膜の組成は Ce1.00Y2.00Fe3.12Al0.48Ga
1.48Oyであり、反り、クラック、膜の剥離等は見られな
かった。また、膜の格子定数を求めるため二結晶X線回
折装置により膜と基板の(444)回折ピークプロファイル
を調べた。膜と基板のピークの分離から格子定数差は0.
006Aと0.05%程度で膜と基板の格子定数は一致してい
た。(1)及び(2)式から期待される格子定数が一致する A
l及びGa組成は0.97及び2.64であるが、実際には膜形成
時の基板温度と室温間の熱収縮効果や膜の組成ずれ等に
より上記の組成で一致したものである。
A film was formed on a (111) 2 inch φ substrate having a lattice constant of 12.496A by a usual high frequency sputtering method using a target having a composition of Ce 1.0 Y 2 Fe 3.12 Al 0.40 Ga 1.48 O x .
Substrate temperature 500 ℃, Argon flow rate 9.9sccm, Oxygen flow rate 0.02sc
cm, sputter pressure 4.0Pa, electrode plate current density 3mA / cm
2 (RF incident power 320 W, reflection power 75 W) and film thickness 10 μm. The composition of the obtained film is Ce 1.00 Y 2.00 Fe 3.12 Al 0.48 Ga
It was 1.48 O y , and no warp, crack, film peeling, or the like was observed. Further, in order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer. The lattice constant difference is 0 due to the separation of the peaks of the film and substrate.
The lattice constants of the film and the substrate were the same at about 006A and about 0.05%. The lattice constants expected from Eqs. (1) and (2) match A
The l and Ga compositions are 0.97 and 2.64, respectively, but in reality, the above compositions are the same due to the heat shrinkage effect between the substrate temperature and the room temperature during film formation, the film composition shift, and the like.

【0021】[0021]

【実施例4】本実施例は Ce2による置換の場合の例であ
る。
[Embodiment 4] This embodiment is an example of substitution with Ce 2 .

【0022】格子定数12.496Aの(111) 2インチφ基板上
に組成 Ce2.0Y1.0Fe3.01Al1.99Oxのターゲットを用いて
通常の高周波スパッタ法により膜形成を行った。基板温
度500℃、アルゴン流量9.9sccm、酸素流量 0sccm、スパ
ッタ圧力4.0Pa、電極プレート電流密度 3mA/cm2(R.F.入
射パワー320W、反射パワー75W)、膜厚1μmとした。得
られた膜の組成は Ce1.99Y1.01Fe2.99Al1.98Oyであり、
反り、クラック、膜の剥離等は見られなかった。また、
膜の格子定数を求めるため二結晶X線回折装置により膜
と基板の(444)回折ピークプロファイルを調べた。膜と
基板のピークの分離から格子定数差は0.042Aと0.34%程
度で膜と基板の格子定数は一致していた。(1)及び(2)式
から期待される格子定数が一致する Al組成は3.61であ
るが、実際には膜形成時の基板温度と室温間の熱収縮効
果や膜の組成ずれ等により上記の組成で一致したもので
ある。
A film was formed on a (111) 2 inch φ substrate having a lattice constant of 12.496A by a usual high frequency sputtering method using a target of the composition Ce 2.0 Y 1.0 Fe 3.01 Al 1.99 O x . The substrate temperature was 500 ° C., the argon flow rate was 9.9 sccm, the oxygen flow rate was 0 sccm, the sputtering pressure was 4.0 Pa, the electrode plate current density was 3 mA / cm 2 (RF incident power 320 W, reflection power 75 W), and the film thickness was 1 μm. The composition of the obtained film is Ce 1.99 Y 1.01 Fe 2.99 Al 1.98 O y ,
No warp, crack, peeling of the film or the like was observed. Also,
In order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer. From the separation of the peaks of the film and the substrate, the lattice constant difference was 0.042A, which was about 0.34%, and the lattice constants of the film and substrate were the same. The Al composition for which the lattice constants expected from Eqs. (1) and (2) match is 3.61, but in reality, due to the heat shrinkage effect between the substrate temperature and room temperature during film formation, the compositional shift of the film, etc. The composition is consistent.

【0023】[0023]

【実施例5】本実施例は Y の Luによる置換の場合の例
である。
[Embodiment 5] This embodiment is an example of replacement of Y with Lu.

【0024】格子定数12.496Aの(111) 2インチφ基板上
に組成 Ce1.0Lu1.04Y0.96Fe5.0Oxのターゲットを用いて
通常の高周波スパッタ法により膜形成を行った。基板温
度500℃、アルゴン流量9.9sccm、酸素流量0.04sccm、ス
パッタ圧力4.0Pa、電極プレート電流密度 3mA/cm2(R.F.
入射パワー320W、反射パワー75W)、膜厚1μmとした。
得られた膜の組成は Ce0.99Lu1.04Y0.97Fe4.8Oyであ
り、反り、クラック、膜の剥離等は見られなかった。ま
た、膜の格子定数を求めるため二結晶X線回折装置によ
り膜と基板の(444)回折ピークプロファイルを調べた。
膜と基板のピークの分離から格子定数差は0.036Aと0.29
%程度で膜と基板の格子定数は一致していた。(1)及び
(2)式から期待される格子定数が一致する Lu組成は2.04
5であるが、実際には膜形成時の基板温度と室温間の熱
収縮効果や膜の組成ずれ等により上記の組成で一致した
ものである。
A film was formed on a (111) 2 inch φ substrate having a lattice constant of 12.496A by a conventional high frequency sputtering method using a target having a composition of Ce 1.0 Lu 1.04 Y 0.96 Fe 5.0 O x . Substrate temperature 500 ℃, Argon flow rate 9.9sccm, Oxygen flow rate 0.04sccm, Sputtering pressure 4.0Pa, Electrode plate current density 3mA / cm 2 (RF
The incident power was 320 W, the reflection power was 75 W, and the film thickness was 1 μm.
The composition of the obtained film was Ce 0.99 Lu 1.04 Y 0.97 Fe 4.8 O y , and no warp, crack, peeling of the film, or the like was observed. Further, in order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer.
From the separation of the peaks of the film and substrate, the lattice constant difference was 0.036 A and 0.29.
%, The lattice constants of the film and the substrate were the same. (1) and
The Lu composition with lattice constants expected from Eq. (2) is 2.04.
Although it is 5, the above compositions are actually the same because of the heat shrinkage effect between the substrate temperature and the room temperature during film formation, the compositional shift of the film, and the like.

【0025】なお、本実施例試料のファラデー回転角を
測定したところ、3000deg/cmと、高い磁気光学効果が得
られた。
When the Faraday rotation angle of the sample of this example was measured, a high magneto-optical effect of 3000 deg / cm was obtained.

【0026】[0026]

【実施例6】本実施例は Y の Ybによる置換の場合の例
である。
Sixth Embodiment This embodiment is an example in the case of replacing Y by Yb.

【0027】格子定数12.496Aの(111) 2インチφ基板上
に組成 Ce1.0Yb1.44Y0.56Fe5Oxのターゲットを用いて通
常の高周波スパッタ法により膜形成を行った。基板温度
500℃、アルゴン流量9.9sccm、酸素流量0.02sccm、スパ
ッタ圧力4.0Pa、電極プレート電流密度 3mA/cm2(R.F.入
射パワー320W、反射パワー75W)、膜厚3μmとした。得
られた膜の組成は Ce1.00Yb1.43Y0.57Fe4.8Oyであり、
反り、クラック、膜の剥離等は見られなかった。また、
膜の格子定数を求めるため二結晶X線回折装置により膜
と基板の(444)回折ピークプロファイルを調べた。膜と
基板のピークの分離から格子定数差は0.011Aと0.088%
程度で膜と基板の格子定数は一致していた。(1)及び(2)
式から期待される格子定数が一致する Yb組成は2.84で
あるが、実際には膜形成時の基板温度と室温間の熱収縮
効果や膜の組成ずれ等により上記組成で一致したもので
ある。
A film was formed on a (111) 2 inch φ substrate having a lattice constant of 12.496A by a usual high frequency sputtering method using a target of the composition Ce 1.0 Yb 1.44 Y 0.56 Fe 5 O x . Substrate temperature
The temperature was 500 ° C., the argon flow rate was 9.9 sccm, the oxygen flow rate was 0.02 sccm, the sputtering pressure was 4.0 Pa, the electrode plate current density was 3 mA / cm 2 (RF incident power 320 W, reflection power 75 W), and the film thickness was 3 μm. The composition of the obtained film was Ce 1.00 Yb 1.43 Y 0.57 Fe 4.8 O y ,
No warp, crack, peeling of the film or the like was observed. Also,
In order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer. The lattice constant difference is 0.011A and 0.088% from the separation of the peaks of the film and substrate.
The lattice constants of the film and the substrate were almost the same. (1) and (2)
The Yb composition for which the lattice constant is expected from the equation is 2.84, but in reality it is the same for the above composition due to the thermal contraction effect between the substrate temperature and room temperature during film formation, the film composition shift, and other factors.

【0028】なお、本実施例の試料についてファラデー
回転角を測定したところ、2000deg/cmと高い磁気光学効
果が得られた。
When the Faraday rotation angle of the sample of this example was measured, a high magneto-optical effect of 2000 deg / cm was obtained.

【0029】[0029]

【実施例7】本実施例は Y の Ybと Luとによる共置換
の場合の例である。
[Embodiment 7] This embodiment is an example in the case of co-substitution of Y with Yb and Lu.

【0030】格子定数12.496Aの(111) 2インチφ基板上
に組成 Ce1.0Lu0.52Yb0.72Y0.76Fe5.0Oxのターゲットを
用いて通常の高周波スパッタ法により膜形成を行った。
基板温度500℃、アルゴン流量9.9sccm、酸素流量0.02sc
cm、スパッタ圧力4.0Pa、電極プレート電流密度 3mA/cm
2(R.F.入射パワー320W、反射パワー75W)、膜厚10μmと
した。得られた膜の組成は Ce1.00Lu0.51Yb0.71Y0.78Fe
4.8Oyであり、反り、クラック、膜の剥離等は見られな
かった。また、膜の格子定数を求めるため二結晶X線回
折装置により膜と基板の(444)回折ピークプロファイル
を調べた。膜と基板のピークの分離から格子定数差は0.
006Aと0.05%程度で膜と基板の格子定数は一致してい
た。(1)及び(2)式から期待される格子定数が一致する L
u及び Yb組成は1.023及び1.42であるが、実際には膜形
成時の基板温度と室温間の熱収縮効果や膜の組成ずれ等
により上記の組成で一致したものである。
A film was formed on a (111) 2 inch φ substrate having a lattice constant of 12.496A by a usual high frequency sputtering method using a target of the composition Ce 1.0 Lu 0.52 Yb 0.72 Y 0.76 Fe 5.0 O x .
Substrate temperature 500 ℃, Argon flow rate 9.9sccm, Oxygen flow rate 0.02sc
cm, sputter pressure 4.0Pa, electrode plate current density 3mA / cm
2 (RF incident power 320 W, reflection power 75 W) and film thickness 10 μm. The composition of the obtained film is Ce 1.00 Lu 0.51 Yb 0.71 Y 0.78 Fe
It was 4.8 O y , and no warp, crack, peeling of the film, or the like was observed. Further, in order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer. The lattice constant difference is 0 due to the separation of the peaks of the film and substrate.
The lattice constants of the film and the substrate were the same at about 006A and about 0.05%. L that matches the lattice constant expected from Eqs. (1) and (2)
The u and Yb compositions are 1.023 and 1.42, but in reality, the above compositions are the same due to the heat shrinkage effect between the substrate temperature and the room temperature during film formation, the compositional shift of the film, and the like.

【0031】[0031]

【実施例8】本実施例は Ce0.5による置換の場合の例で
ある。
[Embodiment 8] This embodiment is an example of replacement with Ce 0.5 .

【0032】格子定数12.496Aの(111) 2インチφ基板上
に組成 Ce0.50Tb0.66Y1.84Fe5.0Oxのターゲットを用い
て通常の高周波スパッタ法により膜形成を行った。基板
温度500℃、アルゴン流量9.9sccm、酸素流量 0sccm、ス
パッタ圧力4.0Pa、電極プレート電流密度 3mA/cm2(R.F.
入射パワー320W、反射パワー75W)、膜厚1μmとした。
得られた膜の組成は Ce0.49Tb0.65Y1.86Fe4.8Oyであ
り、反り、クラック、膜の剥離等は見られなかった。ま
た、膜の格子定数を求めるため二結晶X線回折装置によ
り膜と基板の(444)回折ピークプロファイルを調べた。
膜と基板のピークの分離から格子定数差は0.042Aと0.34
%程度で膜と基板の格子定数は一致していた。(1)及び
(2)式から期待される格子定数が一致する Tb組成は1.31
であるが、実際には、膜形成時の基板温度と室温間の熱
収縮効果や膜の組成ずれ等により上記の組成で一致した
ものである。
A film was formed on a (111) 2 inch φ substrate having a lattice constant of 12.496A by a usual high frequency sputtering method using a target of the composition Ce 0.50 Tb 0.66 Y 1.84 Fe 5.0 O x . Substrate temperature 500 ℃, Argon flow rate 9.9sccm, Oxygen flow rate 0sccm, Sputtering pressure 4.0Pa, Electrode plate current density 3mA / cm 2 (RF
The incident power was 320 W, the reflection power was 75 W, and the film thickness was 1 μm.
The composition of the obtained film was Ce 0.49 Tb 0.65 Y 1.86 Fe 4.8 O y , and warpage, cracks, peeling of the film, and the like were not observed. Further, in order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer.
From the separation of the peaks of the film and substrate, the lattice constant difference is 0.042A and 0.34A.
%, The lattice constants of the film and the substrate were the same. (1) and
The Tb composition in which the lattice constant expected from Eq. (2) matches is 1.31.
However, in reality, the above compositions are the same because of the heat shrinkage effect between the substrate temperature and the room temperature during film formation, the film composition shift, and the like.

【0033】[0033]

【実施例9】本実施例は Y の Yb による置換の場合の
例である。
[Embodiment 9] This embodiment is an example of the replacement of Y with Yb.

【0034】格子定数12.496Aの(111) 2インチφ基板上
に組成 Ce2.00Yb1.00Fe3.51Al1. 49Oxのターゲットを用
いて通常の高周波スパッタ法により膜形成を行った。基
板温度500℃、アルゴン流量9.9sccm、酸素流量0.02scc
m、スパッタ圧力4.0Pa、電極プレート電流密度 3mA/cm2
(R.F.入射パワー320W、反射パワー75W)、膜厚3μmとし
た。得られた膜の組成は Ce1.99Yb1.01Fe3.32Al1.48Oy
であり、反り、クラック、膜の剥離等は見られなかっ
た。また、膜の格子定数を求めるため二結晶X線回折装
置により膜と基板の(444)回折ピークプロファイルを調
べた。膜と基板のピークの分離から格子定数差は0.012A
と0.096%程度で膜と基板の格子定数は一致していた。
(1)、(2)及び(3)式から期待される格子定数が一致する
Al組成は3.26であるが、実際には膜形成時の基板温度と
室温間の熱収縮効果や膜の組成ずれ等により上記の組成
で一致したものである。
[0034] The film was formed by the lattice constants 12.496A (111) 2 inches φ composition on a substrate Ce 2.00 Yb 1.00 Fe conventional RF sputtering method using a target of 3.51 Al 1. 49 O x. Substrate temperature 500 ℃, Argon flow rate 9.9sccm, Oxygen flow rate 0.02scc
m, sputter pressure 4.0Pa, electrode plate current density 3mA / cm 2
(RF incident power 320 W, reflection power 75 W) and film thickness 3 μm. The composition of the obtained film is Ce 1.99 Yb 1.01 Fe 3.32 Al 1.48 O y
No warpage, cracks, film peeling, etc. were observed. Further, in order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer. The lattice constant difference is 0.012A from the separation of the peaks of the film and substrate.
At about 0.096%, the lattice constants of the film and substrate matched.
The lattice constants expected from Eqs. (1), (2), and (3) match.
The Al composition is 3.26, but in reality, the above compositions are in agreement due to the heat shrinkage effect between the substrate temperature and the room temperature during film formation, the compositional deviation of the film, and the like.

【0035】なお、本実施例の試料についてファラデー
回転角を測定したところ、4000deg/cmと高い磁気光学効
果が得られた。
When the Faraday rotation angle of the sample of this example was measured, a high magneto-optical effect of 4000 deg / cm was obtained.

【0036】[0036]

【実施例10】本実施例は Ce の Lu による置換の場合
の例である。
[Embodiment 10] This embodiment is an example of replacement of Ce with Lu.

【0037】格子定数12.496Aの(111) 2インチφ基板上
に組成 Ce1.50Lu1.50Fe3.38Ga1. 62Oxのターゲットを用
いて通常の高周波スパッタ法により膜形成を行った。基
板温度500℃、アルゴン流量9.9sccm、酸素流量0.04scc
m、スパッタ圧力4.0Pa、電極プレート電流密度 3mA/cm2
(R.F.入射パワー320W、反射パワー75W)、膜厚1μmとし
た。得られた膜の組成は Ce1.50Lu1.50Fe3.18Ga1.60Oy
であり、反り、クラック、膜の剥離等は見られなかっ
た。また、膜の格子定数を求めるため二結晶X線回折装
置により膜と基板の(444)回折ピークプロファイルを調
べた。膜と基板のピークの分離から格子定数差は0.032A
と0.26%程度で膜と基板の格子定数は一致していた。
(1)、(2)及び(3)式から期待される格子定数の一致する
Ga組成は5.74であるが、実際には膜形成時の基板温度と
室温間の熱収縮効果や膜の組成ずれ等により、上記の組
成で一致したものである。
[0037] The film was formed by the lattice constants 12.496A (111) 2 inches φ composition on a substrate Ce 1.50 Lu 1.50 Fe 3.38 Ga 1. using a target of 62 O x normal frequency sputtering. Substrate temperature 500 ℃, Argon flow rate 9.9sccm, Oxygen flow rate 0.04scc
m, sputter pressure 4.0Pa, electrode plate current density 3mA / cm 2
(RF incident power 320 W, reflection power 75 W) and film thickness 1 μm. The composition of the obtained film is Ce 1.50 Lu 1.50 Fe 3.18 Ga 1.60 O y
No warpage, cracks, film peeling, etc. were observed. Further, in order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer. The lattice constant difference is 0.032A from the separation of the peaks of the film and substrate.
At about 0.26%, the lattice constants of the film and substrate matched.
The lattice constants expected from Eqs. (1), (2), and (3) match.
Although the Ga composition is 5.74, the above composition is actually the same due to the heat shrinkage effect between the substrate temperature and the room temperature during film formation, the film composition shift, and the like.

【0038】なお、本実施例の試料についてファラデー
回転角を測定したところ、3700deg/cmと高い磁気光学効
果が得られた。
When the Faraday rotation angle of the sample of this example was measured, a high magneto-optical effect of 3700 deg / cm was obtained.

【0039】[0039]

【実施例11】本実施例は Fe の Al 置換及び Ce の Y
b、Lu共置換の場合の例である。
Example 11 This example shows Al substitution of Fe and Y substitution of Ce.
This is an example of the case of b and Lu co-substitution.

【0040】格子定数12.496Aの(111) 2インチφ基板上
に組成 Ce1.50Lu0.75Yb0.75Fe4. 45Al0.55Oxのターゲッ
トを用いて通常の高周波スパッタ法により膜形成を行っ
た。基板温度500℃、アルゴン流量9.9sccm、酸素流量0.
02sccm、スパッタ圧力4.0Pa、電極プレート電流密度 3m
A/cm2(R.F.入射パワー320W、反射パワー75W)、膜厚10μ
mとした。得られた膜の組成は Ce1.49Lu0.76Yb0.75Fe
4.40Al0.54Oyであり、反り、クラック、膜の剥離等は見
られなかった。また、膜の格子定数を求めるため二結晶
X線回折装置により膜と基板の(444)回折ピークプロフ
ァイルを調べた。膜と基板のピークの分離から格子定数
差は0.006Aと0.05%程度で膜と基板の格子定数は一致し
ていた。(1)、(2)及び(3)式から期待される格子定数が
一致するAl組成は1.68であるが、実際には膜形成時の基
板温度と室温間の熱収縮効果や膜の組成ずれ等により上
記の組成で一致したものである。
[0040] The film was formed by composition of a lattice constant 12.496A (111) 2 inches φ substrate Ce 1.50 Lu 0.75 Yb 0.75 Fe 4. using a target of 45 Al 0.55 O x normal frequency sputtering. Substrate temperature 500 ° C, Argon flow rate 9.9sccm, Oxygen flow rate 0.
02sccm, sputter pressure 4.0Pa, electrode plate current density 3m
A / cm 2 (RF incident power 320W, reflected power 75W), film thickness 10μ
It was m. The composition of the obtained film was Ce 1.49 Lu 0.76 Yb 0.75 Fe.
Since it was 4.40 Al 0.54 O y , no warp, crack, peeling of the film or the like was observed. Further, in order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer. From the separation of the peaks of the film and substrate, the difference in lattice constant was 0.006A, which was about 0.05%, and the lattice constants of the film and substrate were in agreement. The Al composition where the lattice constants expected from Eqs. (1), (2), and (3) match is 1.68. As a result, the above compositions are the same.

【0041】[0041]

【実施例12】本実施例は Fe の Al 置換及び Ce2.5
よる置換の場合の例である。
[Embodiment 12] This embodiment is an example in the case of Al substitution of Fe and substitution of Ce 2.5 .

【0042】格子定数12.496Aの(111) 2インチφ基板上
に組成 Ce2.50Lu0.50Fe2.74Al2. 26Oxのターゲットを用
いて通常の高周波スパッタ法により膜形成を行った。基
板温度500℃、アルゴン流量9.9Sccm、酸素流量 0sccm、
スパッタ圧力4.0Pa、電極プレート電流密度 3mA/cm2(R.
F.入射パワー320W、反射パワー75W)、膜厚1μmとし
た。得られた膜の組成は Ce2.49Lu0.51Fe2.51Al2.27Oy
であり、反り、クラック、膜の剥離等は見られなかっ
た。また、膜の格子定数を求めるため二結晶X線回折装
置により膜と基板の(444)回折ピークプロファイルを調
べた。膜と基板のピークの分離から格子定数差は0.042A
と0.34%程度で膜と基板の格子定数は一致していた。
(1)、(2)及び(3)式から期待される格子定数が一致する
Al組成は4.68であるが、実際には膜形成時の基板温度と
室温間の熱収縮効果や膜の組成ずれ等により上記の組成
で一致したものである。
[0042] The film was formed by the lattice constants 12.496A (111) 2 inches φ composition on a substrate Ce 2.50 Lu 0.50 Fe 2.74 Al 2. using a target of 26 O x normal frequency sputtering. Substrate temperature 500 ℃, Argon flow rate 9.9Sccm, Oxygen flow rate 0sccm,
Sputtering pressure 4.0Pa, Electrode plate current density 3mA / cm 2 (R.
F. Incident power 320 W, reflection power 75 W), and film thickness 1 μm. The composition of the obtained film is Ce 2.49 Lu 0.51 Fe 2.51 Al 2.27 O y
No warpage, cracks, film peeling, etc. were observed. Further, in order to obtain the lattice constant of the film, the (444) diffraction peak profile of the film and the substrate was examined by a double crystal X-ray diffractometer. The lattice constant difference is 0.042A from the separation of the peaks of the film and substrate.
And the lattice constants of the film and the substrate were about 0.34%.
The lattice constants expected from Eqs. (1), (2), and (3) match.
Although the Al composition is 4.68, the above composition is actually the same due to the heat shrinkage effect between the substrate temperature and the room temperature during film formation, the film composition shift, and the like.

【0043】[0043]

【発明の効果】以上述べてきたように、Ce置換YIGを用
いた磁気光学薄膜の作製において、薄膜の構成を本発明
構成の薄膜とすることによって、従来技術の有していた
課題を解決して、基板と薄膜間の格子定数差を±0.5%
以内に制御し、基板と薄膜間の応力を軽減し、かつ高い
磁気光学効果を有する構成のガーネット薄膜を提供する
ことができた。
As described above, in the production of the magneto-optical thin film using Ce-substituted YIG, the problem of the prior art was solved by using the thin film of the present invention as the structure of the thin film. , The lattice constant difference between the substrate and the thin film is ± 0.5%
It was possible to provide a garnet thin film having a structure in which the stress between the substrate and the thin film was controlled within a range and which had a high magneto-optical effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】格子定数が12.383、12.439、12.496、12.509で
あるガーネット基板上に基板格子定数と整合を取りなが
ら各種の Ce 置換量を有する薄膜を作製するために必要
な Al 及び Ga 置換量を計算した結果を示す図。
[Fig.1] Calculation of Al and Ga substitution amounts required to form thin films with various Ce substitution amounts on the garnet substrate with lattice constants of 12.383, 12.439, 12.496 and 12.509 while matching the substrate lattice constant. The figure which shows the result.

【図2】上記基板上に基板格子定数と整合を取りながら
各種の Ce 置換量を有する薄膜を作製するために必要な
Lu 置換量を計算した結果を示す図。
[Fig. 2] Necessary for producing thin films having various Ce substitution amounts on the above substrate while matching the substrate lattice constant.
The figure which shows the result of having calculated the amount of Lu substitution.

【図3】上記基板上に基板格子定数と整合を取りながら
各種の Ce 置換量を有する薄膜を作製するために必要な
Yb 置換量を計算した結果を示す図。
[Fig. 3] Necessary for producing thin films having various Ce substitution amounts on the above substrate while matching the substrate lattice constant.
The figure which shows the result of having calculated the Yb substitution amount.

【図4】上記基板上に基板格子定数と整合を取りながら
各種の Ce 置換量を有する薄膜を作製するために必要な
Tm 置換量を計算した結果を示す図。
FIG. 4 Necessary for producing thin films having various Ce substitution amounts on the above substrate while matching the substrate lattice constant.
The figure which shows the result of having calculated Tm substitution amount.

【図5】上記基板上に基板格子定数と整合を取りながら
各種の Ce 置換量を有する薄膜を作製するために必要な
Er 置換量を計算した結果を示す図。
FIG. 5: Necessary for producing thin films having various Ce substitution amounts on the above substrate while matching the substrate lattice constant.
The figure which shows the result of having calculated the Er substitution amount.

【図6】上記基板上に基板格子定数と整合を取りながら
各種の Ce 置換量を有する薄膜を作製するために必要な
Dy 置換量を計算した結果を示す図。
FIG. 6 is necessary for producing thin films having various Ce substitution amounts on the above substrate while matching the substrate lattice constant.
The figure which shows the result of having calculated the Dy substitution amount.

【図7】上記基板上に基板格子定数と整合を取りながら
各種の Ce 置換量を有する薄膜を作製するために必要な
Tb 置換量を計算した結果を示す図。
FIG. 7: Necessary for producing thin films having various Ce substitution amounts on the above substrate while matching the substrate lattice constant.
The figure which shows the result of having calculated the Tb substitution amount.

【図8】上記基板上に基板格子定数と整合を取りながら
各種の Ce 置換量を有する薄膜を作製するために必要な
Gd 置換量を計算した結果を示す図。
FIG. 8: Necessary for producing thin films with various Ce substitution amounts on the above substrate while matching the substrate lattice constant
The figure which shows the result of having calculated Gd substitution amount.

【図9】上記基板上に基板格子定数と整合を取りながら
各種の Ce 置換量を有する薄膜を作製するために必要な
Eu 置換量を計算した結果を示す図。
FIG. 9: Necessary to prepare thin films having various Ce substitution amounts on the above substrate while matching the substrate lattice constant.
The figure which shows the result of having calculated the substitution amount of Eu.

【図10】ガーネット基板上に各種の Ce 含有量を有す
る薄膜を基板格子定数と整合を取りながら作製するため
に必要な Al、Ga及び Lu、Yb、Tm、Er、Y 置換量を基板
格子定数12.383Aについて計算した結果を示す図。
FIG. 10: Substrate lattice constants of Al, Ga and Lu, Yb, Tm, Er, Y substitutions necessary for producing thin films having various Ce contents on a garnet substrate while matching the substrate lattice constants. The figure which shows the result calculated about 12.383A.

【図11】ガーネット基板上に各種の Ce 含有量を有す
る薄膜を基板格子定数と整合を取りながら作製するため
に必要な Al、Ga及び Lu、Yb、Tm、Er、Y 置換量を基板
格子定数12.439Aについて計算した結果を示す図。
FIG. 11: Substrate lattice constants of Al, Ga and Lu, Yb, Tm, Er, Y substitutions necessary for producing thin films having various Ce contents on a garnet substrate while matching with the substrate lattice constants. The figure which shows the result calculated about 12.439A.

【図12】ガーネット基板上に各種の Ce 含有量を有す
る薄膜を基板格子定数と整合を取りながら作製するため
に必要な Al、Ga及び Lu、Yb、Tm、Er、Y 置換量を基板
格子定数12.496Aについて計算した結果を示す図。
FIG. 12: Substrate lattice constants of Al, Ga and Lu, Yb, Tm, Er, Y substitutions necessary for producing thin films having various Ce contents on a garnet substrate while matching the substrate lattice constants. The figure which shows the result calculated about 12.496A.

【図13】ガーネット基板上に各種の Ce 含有量を有す
る薄膜を基板格子定数と整合を取りながら作製するため
に必要な Al、Ga及び Lu、Yb、Tm、Er、Y 置換量を基板
格子定数12.509Aについて計算した結果を示す図。
FIG. 13: Substrate lattice constants of Al, Ga and Lu, Yb, Tm, Er, Y substitutions necessary for producing thin films having various Ce contents on a garnet substrate while matching the substrate lattice constants. The figure which shows the result calculated about 12.509A.

【図14】従来技術における薄膜形成後の試料について
反りの測定を行った場合の結果を示す図。
FIG. 14 is a diagram showing a result when warpage was measured for a sample after a thin film was formed in the conventional technique.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガーネット構造を有する結晶基板上に形成
するセリウム置換イットリウム鉄ガーネット薄膜におい
て、鉄の一部または全てをアルミニウム、ガリウムまた
はアルミニウムとガリウムの両者で置換することにより
基板と薄膜の格子定数を整合させたことを特徴とするガ
ーネット薄膜。
1. A cerium-substituted yttrium iron garnet thin film formed on a crystal substrate having a garnet structure, wherein a part or all of iron is replaced by aluminum, gallium, or both aluminum and gallium to obtain a lattice constant between the substrate and the thin film. A garnet thin film characterized by matching.
【請求項2】ガーネット構造を有する結晶基板上に形成
するセリウム置換イットリウム鉄ガーネット薄膜におい
て、イットリウムの一部をルテチウム、イッテルビウ
ム、ツリウム、エルビウム、ジスプロシウム、テルビウ
ム、ガドリニウム、ユウロピウムの中から選ばれる一種
あるいは数種の元素で置換することにより基板と薄膜の
格子定数を整合させたことを特徴とするガーネット薄
膜。
2. In a cerium-substituted yttrium iron garnet thin film formed on a crystal substrate having a garnet structure, a part of yttrium is selected from the group consisting of lutetium, ytterbium, thulium, erbium, dysprosium, terbium, gadolinium and europium. A garnet thin film characterized in that the lattice constants of the substrate and the thin film are matched by substituting with several kinds of elements.
【請求項3】ガーネット構造を有する結晶基板上に形成
するセリウム鉄ガーネット薄膜において、鉄の一部をア
ルミニウム、ガリウムまたはその両者で置換し、かつ、
セリウムの一部をルテチウム、イッテルビウム、ツリウ
ム、エルビウム、ジスプロシウム、テルビウム、ガドリ
ニウム、ユウロピウムの中から選ばれる一種あるいは数
種の元素で置換することにより基板と薄膜の格子定数を
整合させたことを特徴とするガーネット薄膜。
3. A cerium-iron garnet thin film formed on a crystal substrate having a garnet structure, wherein iron is partially replaced by aluminum, gallium or both, and
Characterized by substituting part of cerium with one or several elements selected from lutetium, ytterbium, thulium, erbium, dysprosium, terbium, gadolinium, and europium to match the lattice constants of the substrate and the thin film. Garnet thin film.
JP14708892A 1992-06-08 1992-06-08 Garnet thin film Pending JPH05343227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14708892A JPH05343227A (en) 1992-06-08 1992-06-08 Garnet thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14708892A JPH05343227A (en) 1992-06-08 1992-06-08 Garnet thin film

Publications (1)

Publication Number Publication Date
JPH05343227A true JPH05343227A (en) 1993-12-24

Family

ID=15422202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14708892A Pending JPH05343227A (en) 1992-06-08 1992-06-08 Garnet thin film

Country Status (1)

Country Link
JP (1) JPH05343227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105714379A (en) * 2016-02-26 2016-06-29 电子科技大学 Preparation method for directly growing highly-doped yttrium iron garnet film on silicon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105714379A (en) * 2016-02-26 2016-06-29 电子科技大学 Preparation method for directly growing highly-doped yttrium iron garnet film on silicon
CN105714379B (en) * 2016-02-26 2018-07-27 电子科技大学 The preparation method of highly doped yttrium iron garnet film is directly grown on a kind of silicon

Similar Documents

Publication Publication Date Title
Sreenivas et al. Characterization of Pb (Zr, Ti) O3 thin films deposited from multielement metal targets
Krupanidhi et al. RF planar magnetron sputtering and characterization of ferroelectric Pb (Zr, Ti) O3 films
US4981714A (en) Method of producing ferroelectric LiNb1-31 x Tax O3 0<x<1) thin film by activated evaporation
US3887451A (en) Method for sputtering garnet compound layer
Krumme et al. Bismuth iron garnet films prepared by rf magnetron sputtering
JPH05343227A (en) Garnet thin film
JP2004269305A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
US20060150893A1 (en) Substrate for forming magnetic garnet single-crystal film, process for producing the same, optical device and process for producing the same
JPH0692796A (en) Production of thin film by epitaxial growth
Krumme et al. Magnetoelastic and optoelastic coupling in (111)‐and (110)‐oriented bismuth‐iron garnet films prepared by sputter epitaxy
JPS6124213A (en) Method of forming bismuth substituted ferry magnetic garnet film
Boyer et al. Properties of ion beam deposited Pb1− x La x (Zr y Ti z) 1− x/4O3
JPH02258700A (en) Ferroelectric thin film and production thereof
US5320881A (en) Fabrication of ferrite films using laser deposition
JPH0354454B2 (en)
Volz et al. Preparation and properties of thin ferroelectric films of PLZT
JPH06263596A (en) Garnet single crystal film
US3437577A (en) Method of fabricating uniform rare earth iron garnet thin films by sputtering
JPH0377158B2 (en)
JPS6065511A (en) Manufacture of single crystal of magnetic oxide
JPH0558251B2 (en)
JP2868166B2 (en) Garnet crystal film and method of manufacturing the same
JPS62138396A (en) Magnetic garnet material for magneto-optical element
JP2598409B2 (en) Method for producing oxide magnetic thin film
JPH0549638B2 (en)