JPH05343220A - Manufacture of sintered compact of soft ferrite for high frequency - Google Patents

Manufacture of sintered compact of soft ferrite for high frequency

Info

Publication number
JPH05343220A
JPH05343220A JP4150656A JP15065692A JPH05343220A JP H05343220 A JPH05343220 A JP H05343220A JP 4150656 A JP4150656 A JP 4150656A JP 15065692 A JP15065692 A JP 15065692A JP H05343220 A JPH05343220 A JP H05343220A
Authority
JP
Japan
Prior art keywords
ferrite
oxide
sintered body
mixing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4150656A
Other languages
Japanese (ja)
Other versions
JP3287010B2 (en
Inventor
Junji Omori
惇二 大森
Shoichi Osada
昭一 長田
Yoshitaka Yamana
芳隆 山名
Kaoru Ito
薫 伊藤
Norimasa Sasaki
教真 佐々木
Shinya Naruki
紳也 成木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15065692A priority Critical patent/JP3287010B2/en
Publication of JPH05343220A publication Critical patent/JPH05343220A/en
Application granted granted Critical
Publication of JP3287010B2 publication Critical patent/JP3287010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain homogenous raw material powder for ferrite by mixing constituents to be mainly contained in the crystal grains, out of trace constituents, with a chloride solution by specified ratios in the form of chlorides, or mixing impalpable powder after oxidizing roasting before heat treatment for growing it to specified size. CONSTITUTION:Concerning to a manufacturing method for sintered compacts of ferrite whose main constituents are iron oxide, a manganese oxide, and a zinc oxide, a solution wherein major constituents to constitute the ferrite are contained by specified ratios in the form of a solution of chlorides is sprayed in a spray roasting furnace, and mixed oxide powder is obtained by thermal decomposition. Then with this powder, trace elements to be mainly contained in the crystal grains of the sintered compacts of ferrite are mixed in the form of oxides needed. After that, heat treatment is performed at 400-1,100 deg.C, and required amounts of trace elements to be to exist in the crystal grain boundary are added in the form of oxides. After that, raw material powder for soft ferrite obtained by mixing and grinding is formed into grains, molded, and burned. Consequently, it becomes possible to obtain sintered compacts of soft ferrite with less power loss at a high-frequency region and with high saturation magnetic flux density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パワートランス等の磁
心材等に用いられる高周波用低電力損失特性を有し、且
つ焼結密度の高いMn−Zn系フェライト製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Mn-Zn ferrite having high power and low power loss characteristics for use in magnetic core materials such as power transformers and having a high sintering density.

【0002】[0002]

【従来の技術】従来、スイッチング電源等に用いられる
パワートランスは、小型化が要求され、このため動作周
波数も100KHz程度から500KHz程度の高周波
領域に、拡がりつつある。この高周波化の動向に対し
て、従来の100KHz程度で使用されている材料を5
00KHz程度の高周波領域に用いた時の、パワートラ
ンスの電力損失は無視できない大きさとなる。この問題
を解決するため種々の解決法が提案されてきた。一般に
電力損失のうち、高周波領域で特に問題となる渦電流損
失は、焼結体の結晶粒径及び動作周波数の二乗等に比例
し、焼結体の電気抵抗率等に反比例することが良く知ら
れている(磁気工学の基礎II,太田恵造著,共立出
版)。
2. Description of the Related Art Conventionally, a power transformer used for a switching power supply or the like has been required to be downsized, and therefore the operating frequency is expanding to a high frequency region of about 100 KHz to about 500 KHz. In response to this trend toward higher frequencies, 5
When used in a high frequency region of about 00 KHz, the power loss of the power transformer becomes a size that cannot be ignored. Various solutions have been proposed to solve this problem. It is well known that the eddy current loss, which is a particular problem in the high frequency region of the power loss, is proportional to the crystal grain size of the sintered body and the square of the operating frequency, and inversely proportional to the electrical resistivity of the sintered body. (Basics of Magnetic Engineering II, Keizo Ota, Kyoritsu Shuppan).

【0003】また、高周波領域の電力損失を軽減させる
には、(イ)焼結体の電気抵抗率を大きくすること、
(ロ)焼結体の結晶粒径を可能な限り小さくすることに
集約される。(イ)に関しては、結晶粒界に電気抵抗を
高める成分を優先的に析出させ、目的を達成することが
よく知られている。例えばSiO2 及びCaO等の微量
添加物は結晶粒界に濃縮し、粒界抵抗による渦電流損失
防止に寄与することが良く知られている(電子材料シリ
ーズフェライト平賀他丸善刊,P39〜48)。また微
量添加物でもTiO2 , SnO2 等は主として結晶粒内
に濃縮し、粒内抵抗を上げ、渦電流損失を防止し、結果
として電力損失を下げることも良く知られている。(w
ith フェライト TDK 編 日刊工業新聞社,P
82,83)更にCoOについてもその磁気特性から、
微量の添加で結晶粒内に入りソフトフェライトコアの温
度特性等に影響を及ぼすことも良く知られている。
In order to reduce the power loss in the high frequency region, (a) increase the electrical resistivity of the sintered body,
(B) It is focused on reducing the crystal grain size of the sintered body as much as possible. With regard to (a), it is well known to preferentially precipitate a component that increases electric resistance at the crystal grain boundaries to achieve the purpose. For example, it is well known that a trace amount of additives such as SiO 2 and CaO is concentrated at the crystal grain boundaries and contributes to the prevention of eddy current loss due to the grain boundary resistance (Electronic Material Series Ferrite Hiraga et al. Maruzen, P39-48). .. It is also well known that even with a small amount of additive, TiO 2 , SnO 2, etc. are mainly concentrated in the crystal grains to increase the intragranular resistance, prevent eddy current loss, and consequently reduce power loss. (W
ith ferrite TDK, Nikkan Kogyo Shimbun, P
82, 83) Furthermore, due to the magnetic characteristics of CoO,
It is well known that the addition of a trace amount of particles enters the crystal grains and affects the temperature characteristics of the soft ferrite core.

【0004】近年前述した動作周波数が高くなるにつ
れ、(ロ)についても検討が加られてきた。例えば特願
平1−224265号に見られるように焼結を促す副成
分を添加し、焼結温度を低下させ焼結密度が高く且つ焼
結粒の成長も抑えて、微細な焼結体結晶粒径を確保し、
電力損失の少ないMn−Znフェライトの製法を提案し
ている。しかし、これら上記フェライトであっても電力
損失の低減に十分とは言えない。電力損失を追求するた
め、焼結体結晶粒径の成長抑制の為、添加物を多量に使
用したり、焼成温度を低めるために結晶の健全性に影響
を及ぼし飽和磁束密度の低下や残留磁束密度の増大を招
いた。100KHzから500KHzの広い周波数領域
で適用可能で、且つトランスに実装した場合の評価が良
好な低損失のフェライトが要求されている。
In recent years, as the above-mentioned operating frequency becomes higher, consideration has also been given to (b). For example, as shown in Japanese Patent Application No. 1-2224265, a sub-component that promotes sintering is added to lower the sintering temperature to increase the sintered density and suppress the growth of sintered grains, and thus a fine sintered crystal Secure particle size,
A method for producing Mn-Zn ferrite with less power loss is proposed. However, even the above ferrites are not sufficient to reduce power loss. To pursue power loss, suppress the growth of the sintered crystal grain size, use a large amount of additives, and lower the firing temperature, which affects the soundness of the crystal and reduces the saturation magnetic flux density and residual magnetic flux. This caused an increase in density. There is a demand for a low-loss ferrite that can be applied in a wide frequency range of 100 KHz to 500 KHz and that has good evaluation when mounted on a transformer.

【0005】[0005]

【発明が解決しようとする課題】従来、Mn−Znフェ
ライト原料としてはFe23 ,Mn34 ,ZnO等
を主成分源とし、及びSiO2 , CaO等の副成分源
(これらの粒径は数ミクロンから数百ミクロンもある
が)とし、これらを混合粉砕し、900℃〜1100℃
程度の温度で仮焼したものが用いられた。その後所定の
粒径の焼結体原料としての仮焼粉を得るため、ボールミ
ル等で長時間粉砕されるが、こうした作業は粒径分布の
悪化、不純物の混入等を引き起こし電力損失を悪化させ
る。こうした欠点を解消する為のソフトフェライト原料
の製造方法として、ソフトフェライトを構成する主要金
属成分の塩化物溶液を噴霧焙焼し、混合酸化物粉末を得
る方法において、亜鉛の偏差を少なくするために、焙焼
後所定の時間内に一定温度以下に急冷する等を特徴とす
る、混合酸化物フェライト原料粉の製造方法を開発し
た。
Conventionally, as a raw material of Mn-Zn ferrite, Fe 2 O 3 , Mn 3 O 4 , ZnO and the like have been used as a main component source, and auxiliary component sources such as SiO 2 and CaO (these particles are used). The diameter is from several microns to several hundreds of microns), and these are mixed and pulverized to 900 ℃ ~ 1100 ℃
The one that was calcined at about the same temperature was used. After that, it is ground for a long time by a ball mill or the like to obtain a calcined powder as a raw material of a sintered body having a predetermined particle size, but such work causes deterioration of the particle size distribution, mixing of impurities, etc., and power loss. As a method for producing a soft ferrite raw material for eliminating these drawbacks, in a method for obtaining a mixed oxide powder by spray roasting a chloride solution of a main metal component constituting soft ferrite, in order to reduce the deviation of zinc A method for producing a mixed oxide ferrite raw material powder has been developed, which is characterized by rapidly cooling to a certain temperature or less within a predetermined time after roasting.

【0006】然しこれらの方法で得られる混合酸化物フ
ェライト原料粉は微細にすぎ、得られるフェライト焼結
体を通常使用される100KHz程度の必要な特性に制
御するには十分ではなかった。ソフトフェライト焼結体
のSiO2 及びCaO等の微量添加物は結晶粒界に濃縮
し、粒界抵抗による渦電流損失防止に寄与する。例えば
SiO2 及びCaOを含むソフトフェライト焼結体のオ
ージェ分析結果は、強度比で、粒内のSiO2及びCa
O強度は1%に満たない。さらに、V,Nbも同様の特
性を示す。このように、所謂粒界形成元素は比較的容易
に結晶粒界に濃縮する。微量添加物でもTiO2 ,Sn
2 は主として結晶粒内に入り、粒内抵抗を上げ、渦電
流損失を防止するのは前述の通り良く知られている。例
えば、Tiを含む従来法で製造したソフトフェライト焼
結体のオージェ分析を実施すると、強度比で粒界にTi
2 強度は10〜20%となり、粒界形成元素に較べ目
的の場所に入り難い。
However, the mixed oxide ferrite raw material powder obtained by these methods was too fine, and it was not sufficient to control the obtained ferrite sintered body to a required characteristic of about 100 KHz which is usually used. Trace additives such as SiO 2 and CaO of the soft ferrite sintered body are concentrated in the crystal grain boundaries and contribute to the prevention of eddy current loss due to grain boundary resistance. For example, the Auger analysis result of the soft ferrite sintered body containing SiO 2 and CaO shows the strength ratio of SiO 2 and Ca in the grains.
O strength is less than 1%. Further, V and Nb also show similar characteristics. As described above, the so-called grain boundary forming element is relatively easily concentrated in the crystal grain boundaries. Even with a trace amount of additive, TiO 2 , Sn
It is well known that O 2 mainly enters the crystal grains to increase the intragranular resistance and prevent the eddy current loss. For example, when Auger analysis of a soft ferrite sintered body produced by a conventional method containing Ti is carried out, Ti is found in the grain boundaries at the strength ratio.
The O 2 strength is 10 to 20%, which is less likely to enter the intended place than the grain boundary forming element.

【0007】[0007]

【課題を解決するための手段】結晶粒内に入ることでソ
フトフェライト特性に影響を与える元素については、予
め塩化物溶液で所定の量を添加し焙焼炉で熱分解するこ
とで、より成分の均一な混合酸化物フェライト原料粉を
得ることが出来る。得られた粉体は0.05〜0.1μ
m程度で、この微細な粉体を適切に加熱熱処理し粉体粒
子径を成長させ、通常の粉体成形プロセスで処理可能な
粒子径にする。結晶粒内に入る微量元素を、塩化物の状
態で混合せずに、この加熱熱処理工程の前に、結晶粒内
に入る微量成分を酸化物の形で混合し、しかる後加熱し
適切に粉体粒子径を成長させても良い。
[Means for Solving the Problems] Regarding the elements that affect the soft ferrite properties by entering the inside of the crystal grains, a predetermined amount is added in advance with a chloride solution, and pyrolysis is performed in a roasting furnace to improve the composition. It is possible to obtain a uniform mixed oxide ferrite raw material powder. The obtained powder is 0.05-0.1μ
At about m, the fine powder is appropriately heat-treated to grow the powder particle size, and the particle size is set to a value that can be processed by a normal powder molding process. Before this heat treatment process, the trace elements that enter the crystal grains are mixed in the form of oxides without mixing in the chloride state, and the trace elements that enter the crystal grains are mixed in the form of oxide, which is then heated to a suitable powder. The body particle size may be grown.

【0008】本発明はこのように、ソフトフェライト結
晶内の成分を均質に含有し、且つ従来のソフトフェライ
ト焼結体用原料粉に較べ微細で粒径の揃った原料粉を提
供する。この原料粉を通常の焼結プロセスで5〜10μ
mの結晶粒径を持ち、焼結密度も4.95 g/cm2
を超える、ソフトフェライト焼結体を容易に製造出来
る。即ち、高周波領域で電力損失が少なく、かつその結
晶の健全さ故に飽和磁束密度等も良好で、所謂実装結果
の良好なソフトフェライト焼結体の製造方法の提供を目
的とする。
As described above, the present invention provides a raw material powder containing the components in the soft ferrite crystal homogeneously and having a finer and more uniform particle size than the conventional raw material powder for a soft ferrite sintered body. This raw material powder is 5-10μ in a normal sintering process.
It has a grain size of m and a sintered density of 4.95 g / cm 2.
It is possible to easily produce a soft ferrite sintered body that exceeds the above. That is, it is an object of the present invention to provide a method for manufacturing a soft ferrite sintered body which has a small power loss in a high frequency region, has a good saturation magnetic flux density due to the soundness of its crystal, and has a so-called good mounting result.

【0009】以下、本発明について詳細に説明する。こ
れらのソフトフェライト焼結体の主成分であるFe2
3 ,MnO,ZnOの含有量は 31モル% ≦ MnO ≦ 44 モル% 5モル% ≦ ZnO ≦ 14 モル% 51モル% ≦ Fe23 ≦ 55 モル% であることが望ましい。また副成分は 100ppm ≦ TiO2 ≦ 5000ppm 100ppm ≦ SnO2 ≦ 5000ppm 100ppm ≦ ZrO2 ≦ 2000ppm 80ppm ≦ SiO2 ≦ 400ppm 200ppm ≦ CaO ≦ 800ppm 等から選ばれる。
The present invention will be described in detail below. Fe 2 O which is the main component of these soft ferrite sintered bodies
3, MnO, ZnO content is desirably 31 mol% ≦ MnO ≦ 44 mol% 5 mol% ≦ ZnO ≦ 14 mol% 51 mol% ≦ Fe 2 O 3 ≦ 55 mol%. The subcomponents are selected from 100 ppm ≤ TiO 2 ≤ 5000 ppm 100 ppm ≤ SnO 2 ≤ 5000 ppm 100 ppm ≤ ZrO 2 ≤ 2000 ppm 80 ppm ≤ SiO 2 ≤ 400 ppm 200 ppm ≤ CaO ≤ 800 ppm.

【0010】[0010]

【実施例】【Example】

実施例1 まず塩化鉄,塩化亜鉛,及び塩化マンガンを含む三成分
混合40%溶液を製造し、次に800〜900℃に炉温
を制御した焙焼炉に、二流体噴霧ノズルで例えば150
μm程度の液滴径で噴霧し、酸化焙焼する。目標の三成
分組成を得るためには予め三成分混合40%塩化物溶液
中の、Fe,Mn,Zn等フェライトを構成する成分の
組成を、酸化焙焼後所定の成分組成になるよう調整し、
混合酸化物フェライト原料粉を製造した。この粉末のS
EM観察による平均粒径は0.06μmであった。この
微細な粉体に、主として結晶粒内に入ることによりソフ
トフェライト特性を規定するTiO2 等を添加し、しか
る後この粉体を800℃、5分の条件で加熱熱処理す
る。その後粒界形成元素SiO2 ,CaOを添加し混合
軽粉砕することで、ソフトフェライト焼結体の原料粉を
得た。当該原料粉をSEMで観察した粒径は0.5μm
程度であった。
Example 1 First, a 40% solution of a ternary mixture containing iron chloride, zinc chloride, and manganese chloride was produced, and then, in a roasting furnace in which the furnace temperature was controlled at 800 to 900 ° C., with a two-fluid spray nozzle, for example, 150
It is sprayed with a droplet diameter of about μm, and oxidized and roasted. In order to obtain the target three-component composition, the composition of the components composing the ferrite such as Fe, Mn, and Zn in the three-component mixed 40% chloride solution is adjusted in advance to a predetermined composition after oxidation roasting. ,
A mixed oxide ferrite raw material powder was produced. S of this powder
The average particle diameter by EM observation was 0.06 μm. To this fine powder, TiO 2 or the like, which mainly defines the soft ferrite characteristics by entering into the crystal grains, is added, and then the powder is heat-treated at 800 ° C. for 5 minutes. After that, grain boundary forming elements SiO 2 and CaO were added and mixed and lightly pulverized to obtain a raw material powder of a soft ferrite sintered body. The particle size of the raw material powder observed by SEM is 0.5 μm
It was about.

【0011】図1は、従来の原料粉と本発明の原料粉
を、粉砕エネルギーに対する粒径(ここでは比表面積)
で示す。本発明の原料粉は極めて容易に微粒子となり、
不純物の無い粒径分布の揃った粉体を得ることができ
る。次に、これらの粉末を造粒成形し、外形30mm,
内径18mm,高さ5mmトロイダル状のコアに成形し
た。この成形体を、焼結温度1150〜1300℃、4
時間、酸素を0.3〜5%含む窒素雰囲気で焼成させ
た。本発明によるフェライト原料粉を用いて得たフェラ
イト焼結体の結晶粒径は、平均粒径6μmと通常のこう
した処理で得られる従来法結晶粒径の10μm〜20μ
mに比較し微粒子である。反応性の良好な本発明原料粉
を用い、微粒子で且つ焼結密度の高い健全な焼結体を容
易に得ることが出来る。
FIG. 1 shows the particle size (specific surface area in this case) of the conventional raw material powder and the raw material powder of the present invention with respect to the grinding energy.
Indicate. The raw material powder of the present invention becomes fine particles very easily,
It is possible to obtain a powder having a uniform particle size distribution without impurities. Next, these powders are granulated to form an outer shape of 30 mm,
It was molded into a toroidal core having an inner diameter of 18 mm and a height of 5 mm. Sintering temperature of 1150 to 1300 ° C., 4
The firing was performed for a time in a nitrogen atmosphere containing 0.3 to 5% oxygen. The crystal grain size of the ferrite sintered body obtained by using the ferrite raw material powder according to the present invention is 6 μm in average grain size and 10 μm to 20 μm of the conventional crystal grain size obtained by such a usual treatment.
Fine particles compared to m. By using the raw material powder of the present invention having good reactivity, it is possible to easily obtain a fine sintered body having fine particles and high sintering density.

【0012】実施例2 実施例1と同様に、所定の成分比率で塩化鉄,塩化亜
鉛,及び塩化マンガンを含む三成分混合40%溶液を製
造する。さらに、チタンの塩化物をアルコール等に溶解
し上記混合溶液に必要量添加した後、実施例1と同様に
焙焼炉で熱分解し、Tiをも均質に含む混合酸化物フェ
ライト原料粉を製造した。次に、この混合フェライト粉
末を大気中で700℃、2時間熱処理を施し、粉末の粒
径を成長させた。その後副成分としてSiO2 ,CaO
を添加し、混合解砕装置で軽処理した。このときの粉体
粒径も0.5μmであった。次に、これらの粉末を造粒
成形し、実施例1と同様に成形し、焼成した。得られた
焼結体の結晶粒径も実施例1と同様であった。
Example 2 As in Example 1, a 40% ternary mixed solution containing iron chloride, zinc chloride, and manganese chloride in a predetermined ratio is prepared. Further, titanium chloride is dissolved in alcohol or the like and added in the required amount to the above mixed solution, and then pyrolyzed in a roasting furnace in the same manner as in Example 1 to produce a mixed oxide ferrite raw material powder that also uniformly contains Ti. did. Next, this mixed ferrite powder was heat-treated in the atmosphere at 700 ° C. for 2 hours to grow the particle size of the powder. After that, SiO 2 and CaO as sub-component
Was added and lightly treated with a mixing and disintegrating device. The particle size of the powder at this time was also 0.5 μm. Next, these powders were granulated, molded in the same manner as in Example 1, and fired. The crystal grain size of the obtained sintered body was similar to that in Example 1.

【0013】なお、従来法及び実施例1,2は次のよう
に調整された。構成成分は三方法共同一である。 従来法 ; Fe,Mn,Zn,Ti等主成分、副成
分を酸化物の状態で混合し通常の方法で調整 実施例1; Fe,Mn,Zn塩化物溶液で調整し酸
化焙焼を実施、Tiは上記焙焼粉に酸化物の状態で添加
し、その他の副成分は、熱処理後に酸化物の状態で添加 実施例2; Fe,Mn,Zn,Ti塩化物溶液で調
整し酸化焙焼を実施、その他の副成分は、熱処理後に酸
化物の状態で添加
The conventional method and Examples 1 and 2 were adjusted as follows. The components are one of three methods. Conventional method: Mixing main components such as Fe, Mn, Zn, and Ti in the state of oxides and adjusting by a normal method Example 1; Adjusting with Fe, Mn, Zn chloride solution and performing oxidation roasting, Ti is added to the above roasted powder in an oxide state, and other subcomponents are added in an oxide state after heat treatment. Example 2; Fe, Mn, Zn, Ti Chloride solution is used to adjust the oxidation roasting. Conducted, other subcomponents are added in the oxide state after heat treatment

【0014】図2は、100KHz200mTに於ける
電力損失値の温度依存性を示す。本発明によらずFe2
3 ,Mn3 4 , ZnOの他必要な原料粉を混合処理
する従来法の損失値と、実施例1,実施例2を比較す
る。実施例2は実施例1よりさらに1割を超える改善を
示した。図2に示す他、印加周波数を高めるにつれて従
来法と実施例の差は拡大するが、これは本発明による焼
結体結晶の特徴から得る特性である。さらに、同コアの
飽和磁束密度(B10)は548mT,残留磁束密度10
0mTと優れた特性を示す。当該コアこれに留まらず次
のような際立った特徴を有する。電源として実装された
場合は、サインウエーブではなく所謂第一象限での負荷
変動を受けることが多い。
FIG. 2 shows the temperature dependence of the power loss value at 100 KHz and 200 mT. Fe 2
Example 1 and Example 2 are compared with the loss value of the conventional method in which O 3 , Mn 3 O 4 , ZnO and other necessary raw material powders are mixed and treated. Example 2 showed more than 10% improvement over Example 1. In addition to the characteristics shown in FIG. 2, the difference between the conventional method and the embodiment widens as the applied frequency is increased, which is a characteristic obtained from the characteristics of the sintered crystal according to the present invention. Furthermore, the saturation magnetic flux density (B 10 ) of the core is 548 mT and the residual magnetic flux density is 10
It shows excellent characteristics of 0 mT. The core is not limited to this, and has the following outstanding features. When implemented as a power supply, it is often subject to load fluctuations in the so-called first quadrant rather than the sine wave.

【0015】評価用負荷として、所謂第一象限をシミュ
レートした矩形波を用いた場合の結果を図3に示す。こ
の場合測定の全周波数領域で、本発明のフェライトコア
が優れた特性を示す。ここでは電力損失評価測定をコア
の発熱量で代替している。因みに、本発明によるフェラ
イト原料粉末をトランス用コアに成形しトランスとして
の評価を行った結果を示す。所謂部分共振電源回路に組
み込み評価を実施した。
FIG. 3 shows the result when a rectangular wave simulating the so-called first quadrant is used as the evaluation load. In this case, the ferrite core of the present invention exhibits excellent characteristics in all frequency regions measured. Here, the power loss evaluation measurement is replaced by the calorific value of the core. Incidentally, the results obtained by molding the ferrite raw material powder according to the present invention into a transformer core and evaluating the transformer core are shown below. The evaluation was carried out by incorporating it in a so-called partial resonance power supply circuit.

【0016】図4は当該評価結果をコアの表面温度上昇
として示す。電力損失が少ない場合はコアの温度上昇は
少なくなるが、図3で得た電力損失の結果と同様に、本
発明によるコアが優れているのがわかる。このように、
本発明を適用することにより、100KHz程度から5
00KHz程度迄の周波数領域に同一コアで通用可能な
電源用ソフトフェライト焼結体を得た。
FIG. 4 shows the evaluation result as a rise in core surface temperature. When the power loss is small, the temperature rise of the core is small, but it can be seen that the core according to the present invention is superior as in the result of the power loss obtained in FIG. in this way,
By applying the present invention, from about 100 KHz to 5
A soft ferrite sintered body for a power source, which can be used with the same core in a frequency region up to about 00 KHz, was obtained.

【0017】[0017]

【発明の効果】以上述べたように本発明での構成する成
分組成は、従来法に較べ均質で、不純物の混入が少な
く、平均粒子径が小さく、粒度分布が良好で且つ粉体反
応性の良好なソフトフェライト焼結体の原料粉(所謂仮
焼粉)を容易に得ることが可能である。また、本発明に
よるソフトフェライト焼結体の原料粉を用い、焼結体の
結晶粒径を5〜10μmに極めて容易に制御することが
可能なことから、100KHzから500KHz程度ま
での周波数領域で優れた電力損失特性を示す高周波電源
用コアーを製造出来る。このように本発明は100KH
zから500KHz程度に対応する、スイッチング電源
用パワートランスの磁心及びその原料粉末製造方法を提
供することにある。
As described above, the composition of the constituents of the present invention is more uniform than the conventional method, less impurities are mixed, the average particle size is small, the particle size distribution is good, and the powder reactivity is high. It is possible to easily obtain a raw material powder (so-called calcined powder) of a good soft ferrite sintered body. Further, by using the raw material powder of the soft ferrite sintered body according to the present invention, it is possible to extremely easily control the crystal grain size of the sintered body to 5 to 10 μm, and therefore, it is excellent in the frequency range from 100 KHz to 500 KHz. It is possible to manufacture cores for high frequency power supplies that exhibit excellent power loss characteristics. Thus, the present invention is 100 KH
It is an object of the present invention to provide a magnetic core of a power transformer for a switching power supply and a method for producing a raw material powder thereof, which are compatible with z to about 500 KHz.

【図面の簡単な説明】[Brief description of drawings]

【図1】原料粉の粒径(比表面積)と粉砕エネルギーと
の関係を示す図、
FIG. 1 is a diagram showing a relationship between a particle size (specific surface area) of raw material powder and crushing energy,

【図2】本発明によるソフトフェライトコアの電力損失
(100KHz−200mT)を示す図、
FIG. 2 is a diagram showing power loss (100 KHz-200 mT) of a soft ferrite core according to the present invention,

【図3】負荷として矩形波を印加した場合の電力損失比
較(本発明と従来法)を示す図
FIG. 3 is a diagram showing a power loss comparison (the present invention and a conventional method) when a rectangular wave is applied as a load.

【図4】電源実装評価結果(コア表面温度上昇測定)を
示す図である。
FIG. 4 is a view showing a power supply mounting evaluation result (core surface temperature rise measurement).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 薫 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 佐々木 教真 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 成木 紳也 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kaoru Ito 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Kanagawa Prefecture, Advanced Technology Research Laboratories (72) Inventor, Kazuma Sasaki 1618, Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Address Nippon Steel Co., Ltd. Advanced Technology Research Laboratory (72) Inventor Shinya Nariki 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Co., Ltd. Advanced Technology Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化鉄、酸化マンガン、酸化亜鉛を主成
分とするフェライト焼結体の製造方法において、フェラ
イトを構成する主要成分を塩化物溶液の形で所定の割合
で混合した液を噴霧焙焼炉中に噴霧し、熱分解により得
られる混合酸化物粉末に、主としてフェライト焼結体の
結晶粒内に存在する微量元素を必要量酸化物の形で混合
した後400℃以上1100℃以下で熱処理した後フェ
ライト焼結体の結晶粒界に存在する微量元素を必要量酸
化物の形で添加し、その後混合解砕して得られるソフト
フェライト原料粉を造粒、成形、焼成することを特徴と
する高周波用ソフトフェライト焼結体の製造方法。
1. A method for producing a ferrite sintered body containing iron oxide, manganese oxide and zinc oxide as main components, wherein a liquid obtained by mixing main components constituting ferrite in a chloride solution at a predetermined ratio is spray roasted. After mixing in the required amount of trace elements present in the crystal grains of the ferrite sintered body in the form of oxide, in a mixed oxide powder obtained by spraying in a baking furnace and thermally decomposing, at 400 ° C or higher and 1100 ° C or lower. Characterized by adding the required amount of trace elements present in the crystal grain boundaries of the ferrite sintered body in the form of oxides after heat treatment, and then granulating, shaping and firing the soft ferrite raw material powder obtained by mixing and crushing And a method for manufacturing a high-frequency soft ferrite sintered body.
【請求項2】 酸化鉄、酸化マンガン、酸化亜鉛を主成
分とするフェライト焼結体の製造方法において、フェラ
イトを構成する主要成分を塩化物溶液の形で所定の割合
で混合し且つ主としてフェライト焼結体の結晶粒内に存
在する微量元素を必要量塩化物の形で混合した液を噴霧
焙焼炉中に噴霧し、熱分解により得られる、混合酸化物
粉末を400℃以上1100℃以下で熱処理した後、フ
ェライト焼結体の結晶粒界に存在する微量元素を必要量
酸化物の形で添加し、その後混合解砕して得られるソフ
トフェライト原料粉を造粒、成形、焼成することを特徴
とする高周波用ソフトフェライト焼結体の製造方法。
2. A method for producing a ferrite sintered body containing iron oxide, manganese oxide and zinc oxide as main components, wherein main components constituting ferrite are mixed in a chloride solution at a predetermined ratio and are mainly ferrite-fired. A mixed oxide powder obtained by pyrolyzing a liquid obtained by mixing a trace amount of trace elements existing in the crystal grains of the aggregate in the form of chloride in a spray roasting furnace to obtain a mixed oxide powder at 400 ° C or more and 1100 ° C or less. After the heat treatment, the necessary amount of trace elements existing in the crystal grain boundaries of the ferrite sintered body is added in the form of oxide, and then the soft ferrite raw material powder obtained by mixing and crushing is granulated, shaped and fired. A method for producing a characteristic high-frequency soft ferrite sintered body.
JP15065692A 1992-06-10 1992-06-10 Manufacturing method of soft ferrite sintered body for high frequency Expired - Fee Related JP3287010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15065692A JP3287010B2 (en) 1992-06-10 1992-06-10 Manufacturing method of soft ferrite sintered body for high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15065692A JP3287010B2 (en) 1992-06-10 1992-06-10 Manufacturing method of soft ferrite sintered body for high frequency

Publications (2)

Publication Number Publication Date
JPH05343220A true JPH05343220A (en) 1993-12-24
JP3287010B2 JP3287010B2 (en) 2002-05-27

Family

ID=15501621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15065692A Expired - Fee Related JP3287010B2 (en) 1992-06-10 1992-06-10 Manufacturing method of soft ferrite sintered body for high frequency

Country Status (1)

Country Link
JP (1) JP3287010B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277135A (en) * 2002-01-21 2003-10-02 Sanyo Electric Co Ltd Method for producing oxide magnetic material and oxide magnetic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277135A (en) * 2002-01-21 2003-10-02 Sanyo Electric Co Ltd Method for producing oxide magnetic material and oxide magnetic material

Also Published As

Publication number Publication date
JP3287010B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
US7294284B2 (en) Method for producing Mn-Zn ferrite
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
US6547984B2 (en) Mn-Zn ferrite and production process thereof
US7481946B2 (en) Method for producing ferrite material and ferrite material
EP0551907B1 (en) An oxide magnetic material
JP2000351625A (en) PRODUCTION OF Mn-Zn FERRITE
JP3108804B2 (en) Mn-Zn ferrite
JP3418827B2 (en) Mn-Zn ferrite and method for producing the same
JP2002167272A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
US20020093000A1 (en) Production process of Mn-Zn ferrite
JP3287010B2 (en) Manufacturing method of soft ferrite sintered body for high frequency
JPH06267729A (en) High frequency mn-zn ferrite magnetic material
US6461531B2 (en) Mn-Zn ferrite and production process thereof
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JPH08104563A (en) High magnetic permeability manganese-zinc ferrite and its production
JP3323701B2 (en) Method for producing zinc oxide based porcelain composition
CN115745592B (en) Broadband high-Tc high-permeability manganese zinc ferrite material and preparation method thereof
JPH07245210A (en) Low loss oxide magnetic material and its preparing method
JPH07211533A (en) Method of manufacturing oxide magnetic material
JP2004217519A (en) Method of regenerating manganese-zinc ferrite
JPH1022113A (en) Method for manufacturing low power loss oxide magnetic material
JPH06314608A (en) Low loss oxide magnetic material
JPH06349625A (en) High-magnetic permeability oxide magnetic material and manufacure thereof
JPH09237709A (en) Low loss oxide magnetic material and manufacture thereof
JP2004196658A (en) Manganese-zinc ferrite and method of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001107

LAPS Cancellation because of no payment of annual fees