JPH05343085A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPH05343085A
JPH05343085A JP4170027A JP17002792A JPH05343085A JP H05343085 A JPH05343085 A JP H05343085A JP 4170027 A JP4170027 A JP 4170027A JP 17002792 A JP17002792 A JP 17002792A JP H05343085 A JPH05343085 A JP H05343085A
Authority
JP
Japan
Prior art keywords
methanol
fuel cell
fuel
refrigerant
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4170027A
Other languages
Japanese (ja)
Other versions
JP3263129B2 (en
Inventor
Takafumi Okamoto
隆文 岡本
Manabu Tanaka
学 田中
Ichiro Baba
一郎 馬場
Hideo Kato
英男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP17002792A priority Critical patent/JP3263129B2/en
Publication of JPH05343085A publication Critical patent/JPH05343085A/en
Application granted granted Critical
Publication of JP3263129B2 publication Critical patent/JP3263129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable stable power generation, and reduce a volume in a caburetor by using methanol solution as refrigerant and fuel of a fuel cell. CONSTITUTION:In a refrigerant supply passage 02, refrigerant methanol being fuel and water to be used to decompose and reform this are collected in a refrigerant collecting supply pipe 27 from a methanol tank 11 and a water tank 21 respectively through booster pumps 13 and 23, and are introduced in fuel cells 30 being stacked in a cell stack 03 as methanol solution. The methanol solution sealed up on the cell stack 03 side is circulated in a refrigerant circulating circuit 04 by means of a refrigerant circulating pump 43. In a fuel gas moving circuit 05, fuel hydrogen coming out from the discharge side 32 of the cell stack 03 flows into a reformer 52. On the other hand, the methanol and the water being advanced to a fuel replenishing passage 06 from a branch point 61 of the refrigerant circulating circuit 04 enter a methanol carburetor 63, and are evaporated, and flow into the reformer 52, and are reformed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池の冷却媒体と
してメタノール、またはメタノールと水との混合溶液を
用いた燃料電池システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system using methanol or a mixed solution of methanol and water as a cooling medium for a fuel cell.

【0002】[0002]

【従来の技術】従来、燃料電池システムにおいては、燃
料によって燃料電池を冷却するという手段を用いたもの
は無く、またメタノール気化器の加熱は電熱ヒータによ
り行っていた。
2. Description of the Related Art Conventionally, no fuel cell system uses a means for cooling a fuel cell with fuel, and a methanol vaporizer is heated by an electric heater.

【0003】[0003]

【発明が解決しようとする課題】従来の燃料電池システ
ムでは、水冷却によって燃料電池の作動温度を安定化さ
せており、冷却水の循環およびクーリングシステムなど
の補機類が必要であった。このため、燃料電池システム
が軽量・コンパクトにはならなかった。また、気化器の
加熱を電熱ヒータに依存することは、電力の無駄な消費
であるばかりか、改質器との一体化が不可能なため嵩張
るという欠点も有している。
In the conventional fuel cell system, the operating temperature of the fuel cell is stabilized by water cooling, and auxiliary equipment such as a cooling water circulation and cooling system is required. For this reason, the fuel cell system has not become lightweight and compact. In addition, depending on the electric heater for heating the vaporizer not only consumes electric power wastefully, but also has a drawback that it is bulky because it cannot be integrated with the reformer.

【0004】本発明は、このような従来技術の問題点を
背景になされたもので、メタノール燃料を冷却として用
いて、燃料電池の作動温度を一定にすることにより安定
した発電を可能にするととともに、気化器の加熱に燃料
電池の排熱をメタノールを媒介として有効利用して気化
器の体積を減少させ改質器と一体化した燃料電池システ
ムを提供することを目的とする。
The present invention has been made against the background of such problems of the prior art, and enables stable power generation by using methanol fuel as a cooling and keeping the operating temperature of the fuel cell constant. An object of the present invention is to provide a fuel cell system in which exhaust heat of a fuel cell is effectively used for heating the vaporizer by using methanol as a medium to reduce the volume of the vaporizer and to be integrated with a reformer.

【0005】[0005]

【課題を解決するための手段】本発明は、メタノール溶
液を燃料電池の冷却媒体および燃料として用いることを
特徴とする燃料電池システムを提供するものである。
SUMMARY OF THE INVENTION The present invention provides a fuel cell system characterized by using a methanol solution as a cooling medium and a fuel for a fuel cell.

【0006】また、本発明は、メタノール溶液をメタノ
ールの沸騰圧力以上の圧力で燃料電池内に存在させる冷
媒封じ込め手段を備え、燃料電池スタックの供給側に接
続される冷媒供給路と、燃料電池スタックの排出側と供
給側とを結び、メタノール気化器内部熱交換器を備えた
冷媒循環回路と、その冷媒循環回路から分岐し、メタノ
ール気化器を備えてメタノール改質器に接続される燃料
補充路とを備えて構成することを特徴とする燃料電池シ
ステムを提供するものである。さらに、本発明は、前記
冷媒封じ込め手段が、冷媒供給路に流量コントローラ、
昇圧ポンプおよび逆止弁を連設してなる燃料電池システ
ムを提供するものである。
Further, the present invention comprises a refrigerant containment means for allowing a methanol solution to exist in the fuel cell at a pressure higher than the boiling pressure of methanol, and a refrigerant supply path connected to the supply side of the fuel cell stack, and a fuel cell stack. A refrigerant circulation circuit that connects the exhaust side and the supply side of the methanol vaporizer with an internal heat exchanger of the methanol vaporizer, and a fuel replenishing path that branches from the refrigerant circulation circuit and is connected to the methanol reformer with the methanol vaporizer. The present invention provides a fuel cell system comprising: Furthermore, in the present invention, the refrigerant confining means has a flow rate controller in the refrigerant supply path,
A fuel cell system in which a booster pump and a check valve are connected in series.

【0007】[0007]

【作用】このように構成してあるので、本発明の燃料電
池システムでは、メタノール溶液(メタノール、あるい
はメタノールと水との混合溶液)を、冷媒供給路から燃
料電池スタックに供給して封じ込め、その燃料電池スタ
ックを含めての冷媒循環回路により該メタノール溶液を
メタノール沸騰圧力以上の圧力で燃料電池内に存在させ
るとともに、流量を変化調節して発電作動温度を一定に
維持させる。さらに、その回路中に設けた気化器内部熱
交換器により、前記回路から分岐した燃料補充路中の気
化器を加熱する。一方、燃料電池スタックから排出され
た燃料のH2 は、H2 O(および場合により存在するC
2 )を伴って燃料ガス移動回路によりメタノール改質
器へ流入する。なお、途中で燃料電池から排出された未
利用のH2 を改質器内で燃焼させるためにO2 を補充す
るための空気を空気補充管から合流させる。メタノール
改質器において、気化器で蒸発したメタノール、水蒸気
から生成したH2 (CO2、未反応H2 O)が燃料電池
スタックへ流入する。なお、前記改質器で燃焼した未利
用のH2 はH2 Oとなり、H2 OとCO2 が外部へ排出
される。
With this configuration, in the fuel cell system of the present invention, a methanol solution (methanol or a mixed solution of methanol and water) is supplied from the refrigerant supply path to the fuel cell stack to be contained therein. By means of the refrigerant circulation circuit including the fuel cell stack, the methanol solution is allowed to exist in the fuel cell at a pressure higher than the boiling temperature of methanol, and the flow rate is adjusted to be maintained so that the power generation operating temperature is kept constant. Further, the carburetor internal heat exchanger provided in the circuit heats the carburetor in the fuel replenishment path branched from the circuit. On the other hand, the H 2 of the fuel discharged from the fuel cell stack is H 2 O (and C
O 2 ) flows into the methanol reformer through the fuel gas transfer circuit. In addition, in order to burn unused H 2 discharged from the fuel cell in the reformer in the middle of the reforming, air for replenishing O 2 is joined from the air replenishing pipe. In the methanol reformer, methanol evaporated in the vaporizer and H 2 (CO 2 , unreacted H 2 O) generated from water vapor flow into the fuel cell stack. The unused H 2 burned in the reformer becomes H 2 O, and H 2 O and CO 2 are discharged to the outside.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。この実施例に用いた固体高分子電解質膜型燃料電
池(PEM−FC)からなる燃料電池システム01(以
下「燃料電池システム」という)は、図1に示すよう
に、冷媒供給路02と、固体高分子電解質膜型燃料電池
スタック03(以下「セルスタック」という)と、冷媒
循環回路04と、燃料ガス移動回路05と、燃料補充路
06と、水・炭酸ガス排出路07とから主要構成されて
いる。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a fuel cell system 01 (hereinafter referred to as “fuel cell system”) including a solid polymer electrolyte membrane fuel cell (PEM-FC) used in this example has a refrigerant supply path 02 and a solid state. The polymer electrolyte membrane fuel cell stack 03 (hereinafter referred to as “cell stack”), a refrigerant circulation circuit 04, a fuel gas transfer circuit 05, a fuel replenishment passage 06, and a water / carbon dioxide discharge passage 07 are mainly constituted. ing.

【0009】冷媒供給路02では、冷却媒体としてのメ
タノールMとイオン交換樹脂25を通過する水Wとをそ
れぞれのメタノールタンク11、水タンク21から流量
コントローラ12、22、昇圧ポンプ13、23および
逆止弁14、24を冷媒封じ込め手段としたメタノール
供給管10、水供給管20とが配設されている。前記両
供給管10、20は、冷媒集合供給管27に合流してセ
ルスタック03の供給側31に連結されている。
In the refrigerant supply path 02, the methanol M as a cooling medium and the water W passing through the ion exchange resin 25 are respectively supplied from the methanol tank 11 and the water tank 21 to the flow rate controllers 12 and 22, the booster pumps 13 and 23, and the reverse pump. A methanol supply pipe 10 and a water supply pipe 20 that use the stop valves 14 and 24 as a means for containing a refrigerant are provided. Both of the supply pipes 10 and 20 merge with the coolant collecting supply pipe 27 and are connected to the supply side 31 of the cell stack 03.

【0010】一方、セルスタック03の排出側32に接
続され、圧力計41を有する冷媒環流管40は、メタノ
ール気化器63の内部熱交換器42、冷媒循環ポンプ4
3およびラジエータ44を通り、前記冷媒集合供給管2
7に接続合流しセルスタック03へ戻り冷媒循環回路0
4を構成している。燃料ガス移動街路05では、メタノ
ール改質器52内で改質された燃料ガス(H2 、C
2 、H2 O)が燃料ガス管50の中を燃料ガス供給ポ
ンプ53によって移動し、燃料電池スタック03の燃料
ガス導入側31に入り、燃料電池の発電で利用されなか
った未利用のH2 、CO2 、H2 Oが排出側32から出
て改質器52へ向かう。改質器52に入る前に、空気補
充管51を合流させ、未利用H2を燃焼させるための酸
化剤(O2 )を空気として取込み、改質器内で未利用H
2の燃焼を行わせることにより改質器の温度の保持を図
る。燃料補充路06は、冷媒環流管40における前記内
部熱交換器42の直後に位置する分岐点61から分か
れ、流量コントローラ62、メタノール気化器63を経
てメタノール改質器52に導かれている。また、水・炭
酸ガス排出路70は、前記改質器52から前記気化器6
3の他の内部熱交換器71を形成して外気へ開口したも
のである。
On the other hand, the refrigerant circulation pipe 40, which is connected to the discharge side 32 of the cell stack 03 and has the pressure gauge 41, includes the internal heat exchanger 42 of the methanol vaporizer 63 and the refrigerant circulation pump 4.
3 and the radiator 44, and the refrigerant collecting supply pipe 2
7 is merged and returned to the cell stack 03. Refrigerant circulation circuit 0
Make up 4. In the fuel gas moving street 05, the fuel gas (H 2 , C) reformed in the methanol reformer 52 is
O 2 , H 2 O) moves in the fuel gas pipe 50 by the fuel gas supply pump 53, enters the fuel gas introduction side 31 of the fuel cell stack 03, and unused H that has not been used in the power generation of the fuel cell. 2 , CO 2 , and H 2 O flow out from the discharge side 32 toward the reformer 52. Before entering the reformer 52, the air replenishment pipe 51 is merged and the oxidant (O 2 ) for burning the unused H 2 is taken in as air, and the unused H 2 is consumed in the reformer.
The temperature of the reformer is maintained by performing the combustion of 2 . The fuel replenishment passage 06 is branched from a branch point 61 located immediately after the internal heat exchanger 42 in the refrigerant circulation pipe 40, and is led to the methanol reformer 52 via a flow rate controller 62 and a methanol vaporizer 63. In addition, the water / carbon dioxide gas discharge passage 70 is connected to the vaporizer 6 from the reformer 52.
Another internal heat exchanger 71 of No. 3 is formed and opened to the outside air.

【0011】次に、上記構成となっている燃料電池シス
テム01の作用について述べる。メタノールの気化に要
する熱量(気化潜熱)の確保は、メタノール改質器52
設計上の重要なポイントであるが、そのための熱量は、
次の方法によって燃料電池30から得る。 メタノール溶液を、メタノールの気化熱を蓄積するた
め沸騰圧力以上の圧力で燃料電池内(冷却用セパレータ
内や冷却板内など)に存在させる。これには、冷媒供給
路02における流量コントローラ12、22、昇圧ポン
プ13、23および逆止弁14、24によって封じ込め
るなどの手段を用いる。 メタノール溶液は、沸騰圧力以上の圧力で可変流動さ
せ(循環流動でも良い)、燃料電池内の熱交換量を可変
させることによりセルスタック03の温度の一定化を図
る。すなわち、燃料電池30の作動温度を一定にする。 メタノール溶液の余剰蓄熱量は、メタノール気化器6
3の加温に利用する。
Next, the operation of the fuel cell system 01 having the above structure will be described. The amount of heat required for vaporizing methanol (latent heat of vaporization) is secured by the methanol reformer 52.
Although it is an important point in design, the amount of heat for that is
Obtained from the fuel cell 30 by the following method. The methanol solution is allowed to exist in the fuel cell (such as the cooling separator or the cooling plate) at a pressure higher than the boiling pressure in order to accumulate the heat of vaporization of methanol. For this purpose, a means such as containing the flow rate controllers 12 and 22, the booster pumps 13 and 23 and the check valves 14 and 24 in the refrigerant supply path 02 is used. The methanol solution is variably flown at a pressure higher than the boiling pressure (circulation flow may be used), and the amount of heat exchange in the fuel cell is changed to make the temperature of the cell stack 03 constant. That is, the operating temperature of the fuel cell 30 is kept constant. The surplus heat storage amount of the methanol solution is the methanol vaporizer 6
Used for heating 3.

【0012】ところで、冷媒供給路02において、燃料
ともなる冷媒のメタノールMとこれを分解して改質させ
るのに用いる水Wとを、メタノールタンク11および水
タンク21からそれぞれの流量コントローラ12、2
2、昇圧ポンプ13、23、逆止弁14、24を経由し
て冷媒集合供給管27に集めて合流させメタノール溶液
にして供給側31からセルスタック03内に多数積層さ
れた燃料電池30のセパレータや冷却板(共に不図示)
内に導き入れる。ただし、水Wは、流量コントローラ2
2に入るに先立ってイオン交換樹脂25を通過させる。
この場合、メタノール溶液は、セルスタック03内に封
じ込められる。その混合比率は燃料電池システム01の
運転状態によって変わるが、H2 O/CH3 OH>1の
比率は得られる。(CH3 OH+H2 O→CO2 +3H
2 、H2 O過剰でないと未反応CH3 OHが残る)。
By the way, in the refrigerant supply path 02, the methanol M, which is a refrigerant that also serves as a fuel, and the water W used for decomposing and reforming the methanol M are supplied from the methanol tank 11 and the water tank 21 to the respective flow rate controllers 12, 2 respectively.
2, separators of the fuel cell 30 that are stacked in the cell stack 03 from the supply side 31 by collecting the refrigerant collecting and supplying pipes 27 via the booster pumps 13 and 23 and the check valves 14 and 24 to merge them into a methanol solution. And cooling plate (both not shown)
Lead in. However, the water W is the flow rate controller 2
Prior to entering 2, the ion exchange resin 25 is passed through.
In this case, the methanol solution is contained in the cell stack 03. The mixing ratio varies depending on the operating state of the fuel cell system 01, but a ratio of H 2 O / CH 3 OH> 1 can be obtained. (CH 3 OH + H 2 O → CO 2 + 3H
2 , unreacted CH 3 OH remains unless H 2 O is in excess).

【0013】そして、前記冷媒封じ込め手段によってセ
ルスタック03側に封じ込められたメタノール溶液は、
沸騰圧力以上の圧力で冷媒循環ポンプ43により冷媒循
環回路04内を循環する。この際、セルスタック03の
作動温度を所定温度範囲内に維持するため循環量を変化
させてセルスタック03内の熱交換量を変化させる。冷
媒溶液の循環量が少ないとセルスタック03内の冷媒溶
液温度は上昇する。従って、セルスタック03から冷媒
溶液への温熱移動が遅くなり、そのためセルスタック温
度の低下する速度は遅くなる。すなわち、冷媒溶液によ
る温度の低下する速度と燃料電池30の発電に伴う発熱
による温度が上昇する速度とのバランスによって温度の
上昇するか、下降するかの温度変化の速度が決まる。
The methanol solution contained on the cell stack 03 side by the refrigerant containing means is
The refrigerant circulation pump 43 circulates in the refrigerant circulation circuit 04 at a pressure equal to or higher than the boiling pressure. At this time, in order to maintain the operating temperature of the cell stack 03 within a predetermined temperature range, the circulation amount is changed to change the heat exchange amount in the cell stack 03. If the circulation amount of the refrigerant solution is small, the temperature of the refrigerant solution in the cell stack 03 will rise. Therefore, the heat transfer from the cell stack 03 to the refrigerant solution is slowed, and the cell stack temperature is slowed down at a low rate. That is, the rate of temperature change whether the temperature rises or falls is determined by the balance between the rate at which the temperature of the refrigerant solution decreases and the rate at which the temperature of the fuel cell 30 increases due to heat generation.

【0014】今、熱交換量を△Tとすれば、 △T=高温部の温度−低温部の温度 となり、次の状況が出現する。 循環量大→△T大→熱交換量大→冷却大 循環量小→△T小→熱交換量小→冷却小 冷媒溶液の余剰熱量は、メタノール溶液の圧力計測値と
温度計測値とにより判断し、気化器内部熱交換器71お
よびラジエータ(放熱板)への供給量(循環量)を調節
し処理する。なお、メタノール気化器63の加熱による
放熱に加えてメタノール改質用の燃料供給に伴う改質器
52への高温メタノール供給量によっても冷媒循環回路
04内の温度が低下しない場合には上記の処理が必要と
なる。
Now, assuming that the heat exchange amount is ΔT, ΔT = temperature of high temperature portion−temperature of low temperature portion, and the following situation appears. Large amount of circulation → Large amount of Δ → Large amount of heat exchange → Large amount of cooling Small amount of circulation → Small amount of △ T → Small amount of heat exchange → Small amount of cooling The excess heat amount of the refrigerant solution is judged by the pressure measurement value and the temperature measurement value of the methanol solution. Then, the supply amount (circulation amount) to the vaporizer internal heat exchanger 71 and the radiator (radiating plate) is adjusted and processed. In addition, when the temperature in the refrigerant circulation circuit 04 does not decrease due to the amount of high-temperature methanol supplied to the reformer 52 accompanying the supply of the fuel for reforming methanol in addition to the heat radiation by heating the methanol vaporizer 63, the above-described processing is performed. Is required.

【0015】燃料ガス移動回路05においては、セルス
タック03の排出側32から出た燃料の水素H2 には、
水H2 Oと炭酸ガスCO2 を含み前記改質器52へ流入
するが、途中で空気補充管51から改質器内温度を燃料
電池未利用H2 の燃焼によって補うためにH2 燃焼用酸
素O2 を補充する空気Aを吸入合流させる。一方、冷媒
循環回路04の分岐点61から燃料補充路06へ進んだ
メタノールCH3 OHと水H2 Oとは、流量コントロー
ラ62を通ってメタノール気化器63に入り、気化器内
部熱交換器42、71によって加熱され蒸発して改質器
52へ流入し改質される。なお、この際、燃料としてメ
タノール溶液は冷媒循環回路04の内圧力によって燃料
補充路06へ進み、流量コントローラ62によりメタノ
ール溶液の必要量を改質器52へ圧送入する。この必要
量は、燃料電池30からの取得電流値により消費水素量
が分かるので判定することができる。燃料利用率を決め
ると、改質に必要なメタノールMの量が算出される。
In the fuel gas transfer circuit 05, the hydrogen H 2 of the fuel discharged from the discharge side 32 of the cell stack 03 is
It flows into the water between H 2 O and the reformer 52 includes a carbon dioxide CO 2, but the way for H 2 combusting the reformer temperature from the air replenishing pipe 51 in order to compensate the combustion of the fuel cell unused H 2 Air A, which supplements oxygen O 2 , is suction-merged. On the other hand, the methanol CH 3 OH and water H 2 O that have proceeded from the branch point 61 of the refrigerant circulation circuit 04 to the fuel replenishment path 06 enter the methanol vaporizer 63 through the flow rate controller 62, and enter the vaporizer internal heat exchanger 42. , 71 to evaporate and flow into the reformer 52 for reforming. At this time, the methanol solution as the fuel advances to the fuel replenishment path 06 by the internal pressure of the refrigerant circulation circuit 04, and the flow controller 62 pressure-feeds the required amount of the methanol solution to the reformer 52. This required amount can be determined because the amount of hydrogen consumed is known from the current value obtained from the fuel cell 30. When the fuel utilization rate is determined, the amount of methanol M required for reforming is calculated.

【0016】この場合、燃料電池への負荷が増大するか
減少するか、あるいは一定なのかは、取得電流の時間的
変化量で判定し、それに対応する熱エネルギー量(メタ
ノール改質を保持する)とガス利用率とから最適必要量
が割り出される。改質器52からはCO2 とH2 Oとを
伴ってH2 が燃料供給ポンプ53によりセルスタック0
3の供給側31に入る。
In this case, whether the load on the fuel cell increases, decreases, or is constant is determined by the time change amount of the acquired current, and the corresponding heat energy amount (retaining methanol reforming). The optimum required amount can be calculated from the gas utilization rate and the gas utilization rate. The cell stack by CO 2 and H 2 O and H 2 is the fuel supply pump 53 with a from reformer 52 0
3 into supply side 31.

【0017】水・炭酸ガス排出路07は、前記改質器5
2内で燃料電池未利用H2 を燃焼後、H2 OとCO2
して外気へ放出するが、これに先立ってその余剰熱量を
気化器内部熱交換器71に与えメタノールの気化に寄与
させる。
The water / carbon dioxide discharge passage 07 is provided with the reformer 5
After the unused H 2 of the fuel cell is burned in 2 , the H 2 O and CO 2 are released to the outside air, but prior to this, the surplus heat amount is given to the internal heat exchanger 71 of the vaporizer to contribute to the vaporization of methanol.

【0018】なお、本発明の燃料電池システム01で
は、メタノールを燃料電池冷却媒体としてだけではな
く、寒冷地あるいは冬期において、燃料電池の起動用加
熱媒体と不凍冷却剤とを兼ねさせることができる。
In the fuel cell system 01 of the present invention, not only methanol can be used as the fuel cell cooling medium, but it can also serve as the heating medium for starting the fuel cell and the antifreeze coolant in cold regions or in winter. ..

【0019】以上、本発明の実施例を説明したが、本発
明はこの実施例に必ずしも限定されることはなく、要旨
を逸脱しない範囲での設計変更などがあっても本発明に
含まれる。
Although the embodiment of the present invention has been described above, the present invention is not necessarily limited to this embodiment, and even if there are design changes and the like without departing from the scope of the invention, the present invention is included.

【0020】[0020]

【発明の効果】本発明の燃料電池システムは、このよう
にセルスタック内に冷却媒体を封じ込め、冷媒循環回路
により循環させるとともに、メタノール溶液をメタノー
ルの沸騰圧力以上の圧力で燃料電池内に存在させ、また
メタノール溶液の余剰蓄熱量をメタノール気化器の加温
に利用する構成としたため、燃料電池の作動温度を一定
にすることにより安定した発電を可能にするとととも
に、気化器の加温に燃料電池の排熱を有効利用して気化
器の体積を減少させ改質器と一体化することができ、さ
らに、メタノールを燃料電池冷却媒体としてだけではな
く、寒冷地あるいは冬期において、燃料電池の起動用加
熱媒体と不凍冷却剤とを兼ねさせることができた。
According to the fuel cell system of the present invention, the cooling medium is thus contained in the cell stack and circulated by the refrigerant circulation circuit, and the methanol solution is allowed to exist in the fuel cell at a pressure higher than the boiling pressure of methanol. Moreover, since the surplus heat storage amount of the methanol solution is used for heating the methanol vaporizer, stable power generation is made possible by keeping the operating temperature of the fuel cell constant, and the fuel cell is used for heating the vaporizer. It is possible to reduce the volume of the vaporizer and integrate it with the reformer by making effective use of the exhaust heat from the fuel cell, and to use methanol not only as a fuel cell cooling medium but also for starting the fuel cell in cold regions or in winter. The heating medium and the antifreeze coolant could both be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の燃料電池システムを示すシス
テム系統図である。
FIG. 1 is a system diagram showing a fuel cell system according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

01 燃料電池システム 02 冷媒供給路 03 高分子固体電解質膜型燃料電池スタック 04 冷媒循環回路 05 燃料ガス移動回路 06 燃料補充路 12 流量コントローラ 13 昇圧ポンプ 14 逆止弁 22 流量コントローラ 23 昇圧ポンプ 24 逆止弁 30 燃料電池 31 供給側 32 排出側 42 気化器内部熱交換器 51 空気補充管 52 メタノール改質器 63 メタノール気化器 M メタノール 01 Fuel Cell System 02 Refrigerant Supply Path 03 Polymer Solid Electrolyte Membrane Fuel Cell Stack 04 Refrigerant Circulation Circuit 05 Fuel Gas Transfer Circuit 06 Fuel Replenishing Path 12 Flow Controller 13 Boost Pump 14 Check Valve 22 Flow Controller 23 Boost Pump 24 Check Valve 30 Fuel cell 31 Supply side 32 Discharge side 42 Vaporizer internal heat exchanger 51 Air replenishment pipe 52 Methanol reformer 63 Methanol vaporizer M Methanol

フロントページの続き (72)発明者 加藤 英男 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内Front Page Continuation (72) Inventor Hideo Kato 1-4-1 Chuo 1-4-1 Wako-shi, Saitama Stock Company Honda R & D Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 メタノール溶液を燃料電池の冷却媒体お
よび燃料として用いることを特徴とする燃料電池システ
ム。
1. A fuel cell system comprising a methanol solution as a cooling medium and a fuel for a fuel cell.
【請求項2】 メタノール溶液をメタノールの沸騰圧力
以上の圧力で燃料電池内に存在させる冷媒封じ込め手段
を備え、燃料電池スタックの供給側に接続される冷媒供
給路と、燃料電池スタックの排出側と供給側とを結び、
メタノール気化器内部熱交換器を備えた冷媒循環回路
と、その冷媒循環回路から分岐し、メタノール気化器を
備えてメタノール改質器に接続される燃料補充路とを備
えて構成することを特徴とする燃料電池システム。
2. A refrigerant supply path connected to the supply side of the fuel cell stack, and a discharge side of the fuel cell stack, comprising a refrigerant containment means for allowing the methanol solution to exist in the fuel cell at a pressure equal to or higher than the boiling pressure of methanol. Connect with the supply side,
A refrigerant circulation circuit including a heat exchanger inside the methanol vaporizer, and a fuel replenishing path branched from the refrigerant circulation circuit and connected to the methanol reformer including the methanol vaporizer, characterized in that Fuel cell system.
【請求項3】 冷媒封じ込め手段は、冷媒供給路に流量
コントローラ、昇圧ポンプおよび逆止弁を連設してなる
請求項2に記載の燃料電池システム。
3. The fuel cell system according to claim 2, wherein the refrigerant confinement means comprises a flow rate controller, a booster pump, and a check valve connected to the refrigerant supply path.
JP17002792A 1992-06-05 1992-06-05 Fuel cell system Expired - Fee Related JP3263129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17002792A JP3263129B2 (en) 1992-06-05 1992-06-05 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17002792A JP3263129B2 (en) 1992-06-05 1992-06-05 Fuel cell system

Publications (2)

Publication Number Publication Date
JPH05343085A true JPH05343085A (en) 1993-12-24
JP3263129B2 JP3263129B2 (en) 2002-03-04

Family

ID=15897249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17002792A Expired - Fee Related JP3263129B2 (en) 1992-06-05 1992-06-05 Fuel cell system

Country Status (1)

Country Link
JP (1) JP3263129B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038223A1 (en) * 1998-01-21 1999-07-29 Forschungszentrum Jülich GmbH Method and device for operating a direct methanol fuel cell with gaseous fuel
WO2005088751A1 (en) * 2004-03-10 2005-09-22 Nec Corporation Fuel container for fuel cell, fuel cell using same, and method for operating fuel cell
JP2005317430A (en) * 2004-04-30 2005-11-10 Seiko Instruments Inc Cooling system and electronic equipment
KR100589408B1 (en) * 2004-04-29 2006-06-14 삼성에스디아이 주식회사 Fuel cell system
CN1309112C (en) * 2003-03-31 2007-04-04 株式会社东芝 Fuel cell system
DE10392693B4 (en) * 2002-05-22 2012-12-13 General Motors Llc ( N. D. Ges. D. Staates Delaware ) Method for cooling a fuel cell and fuel cell and cooling system
CN109473698A (en) * 2019-01-08 2019-03-15 中氢新能技术有限公司 A kind of methanol recapitalization fuel cell heat utilization method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038223A1 (en) * 1998-01-21 1999-07-29 Forschungszentrum Jülich GmbH Method and device for operating a direct methanol fuel cell with gaseous fuel
DE10392693B4 (en) * 2002-05-22 2012-12-13 General Motors Llc ( N. D. Ges. D. Staates Delaware ) Method for cooling a fuel cell and fuel cell and cooling system
CN1309112C (en) * 2003-03-31 2007-04-04 株式会社东芝 Fuel cell system
WO2005088751A1 (en) * 2004-03-10 2005-09-22 Nec Corporation Fuel container for fuel cell, fuel cell using same, and method for operating fuel cell
JPWO2005088751A1 (en) * 2004-03-10 2008-01-31 日本電気株式会社 FUEL CELL FUEL CONTAINER, FUEL CELL USING THE SAME, AND METHOD OF OPERATING FUEL CELL
JP4894512B2 (en) * 2004-03-10 2012-03-14 日本電気株式会社 FUEL CELL FUEL CONTAINER, FUEL CELL USING THE SAME, AND METHOD OF OPERATING FUEL CELL
KR100589408B1 (en) * 2004-04-29 2006-06-14 삼성에스디아이 주식회사 Fuel cell system
US7534512B2 (en) 2004-04-29 2009-05-19 Samsung Sdi Co., Ltd. Fuel cell system
US7985509B2 (en) 2004-04-29 2011-07-26 Samsung Sdi Co., Ltd. Fuel cell system
JP2005317430A (en) * 2004-04-30 2005-11-10 Seiko Instruments Inc Cooling system and electronic equipment
CN109473698A (en) * 2019-01-08 2019-03-15 中氢新能技术有限公司 A kind of methanol recapitalization fuel cell heat utilization method
CN109473698B (en) * 2019-01-08 2023-05-30 中氢新能技术有限公司 Heat utilization method of methanol reforming fuel cell

Also Published As

Publication number Publication date
JP3263129B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
US6699612B2 (en) Fuel cell power plant having a reduced free water volume
JP4482057B2 (en) Polymer electrolyte fuel cell system
JP3722019B2 (en) Fuel cell system
US7279243B2 (en) Temperature zones in a solid oxide fuel cell auxiliary power unit
US6663993B2 (en) Cooling device for a fuel cell
CN100379065C (en) Fuel-cell generating system capable of starting and operating in low-temperature environment
CA2403125C (en) Solid polymer fuel cell
JP3823181B2 (en) Fuel cell power generation system and waste heat recirculation cooling system for power generation system
CN109935855B (en) Operation method of reforming fuel cell system
JP2005310464A (en) Fuel cell system
CN109962260A (en) A kind of methanol fuel-cell system
JP4464594B2 (en) Fuel cell power generation system
JPH06504158A (en) Method and device for replenishing hydrogen consumed by a fuel cell
US7037610B2 (en) Humidification of reactant streams in fuel cells
RU2443040C2 (en) Fuel elements system
EP1284515A2 (en) Generating system for a fuel cell, and heat waste recirculating and cooling system of said generating system
US20040001984A1 (en) Fuel cell cooling system for low coolant flow rate
JP3263129B2 (en) Fuel cell system
CN116072918B (en) Marine proton exchange membrane hydrogen fuel cell cogeneration system
JPH10321246A (en) Fuel cell system
EP1231659A2 (en) Method and device for controlling temperature in several zones of a solid oxide fuel cell auxiliary power unit
JP2002117876A (en) Cooling device of fuel cell
JPS6139369A (en) Fuel cell power generation plant
JPH0828228B2 (en) Fuel cell generator
Hovland et al. Water and heat balance in a fuel cell vehicle with a sodium borohydride hydrogen fuel processor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees