JPH053419B2 - - Google Patents

Info

Publication number
JPH053419B2
JPH053419B2 JP24537884A JP24537884A JPH053419B2 JP H053419 B2 JPH053419 B2 JP H053419B2 JP 24537884 A JP24537884 A JP 24537884A JP 24537884 A JP24537884 A JP 24537884A JP H053419 B2 JPH053419 B2 JP H053419B2
Authority
JP
Japan
Prior art keywords
adhesive
glass
rod
block piece
large number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24537884A
Other languages
Japanese (ja)
Other versions
JPS61127640A (en
Inventor
Shuji Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP24537884A priority Critical patent/JPS61127640A/en
Publication of JPS61127640A publication Critical patent/JPS61127640A/en
Publication of JPH053419B2 publication Critical patent/JPH053419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は例えば光フアイバーと組合せて用いる
各種光デバイス内に設けるロツドレンズの製造方
法に関する。 (従来の技術) 光通信或いは光計測装置に組込む光スイツチ、
光分岐回路、光分波回路などには光源や光フアイ
バーからの光線を平行ビームに変換したり、平行
ビームを1点に集束するための分布屈折率ロツド
レンズ(商品名セルフオツクレンズ)を用いてい
る。上記ロツドレンズは両端面が平面であつて、
球面レンズと同様のレンズ作用を有し、斯るロツ
ドレンズの端面加工方法として従来から下記の方
法が知られている。 この方法はロツドレンズの素材である屈折率分
布をもつたガラス棒を多数本束にし、この束の周
囲を平滑なガラス板にて囲んでガラス板端縁部を
接着し、この後、ガラス板で囲まれる空間内に保
持されるガラス棒間の隙間に流動状態の接着剤、
例えばバルサムなどを流し込み、この接着剤を放
冷固化せしめた後、ガラス棒とガラス板とをスラ
イス状に切断して多数のロツドガラスの周囲をガ
ラス枠で囲んだブロツク片とし、このブロツク片
のままロツドガラスの両端面に砂摺り、研磨等を
施し、この後、ブロツク片を有機溶剤に浸漬して
ロツドガラス間の接着状態を解除して個々のロツ
ドガラスを得、而る後、個々のロツドガラスを蒸
着治具に取付け、蒸着槽にセツトし、ロツドガラ
ス両端面に無反射膜をコーテイングし、光の入射
面及び出射面の保護を図るとともに外光の反射を
なくし画像等の鮮明さを確保するようにしてい
る。 (発明が解決しようとする問題点) 上述した如く従来の方法にあつては、ガラス棒
同士を仮接着しているバルサムは蒸着温度に耐え
ることができないため、ブロツク片を作成するま
で、つまりガラス棒を所定寸法に切断してその端
面を研磨するまでの工程は、多数のガラス棒を同
時に処理できるのであるが、これ以降の工程、即
ち、所定寸法に切断されたロツドガラスの端面に
無反射膜を真空蒸着する工程及び、無反射膜を形
成した面を検査する工程、更にはロツドレンズを
包装する工程等は全てロツドレンズを個々に取扱
わなければならない。 その結果、先ず、無反射膜の成膜に手間がかか
り、検査・包装等も面倒で自動化しにくく、更に
ロツドレンズを個々に取扱うため、取扱い中にロ
ツドレンズ端面に傷を付けたり異物が付着する機
会が多く、製品歩留も低下する。 (問題点を解決するための手段) 上述した従来の問題点を解決すべく本発明は2
種類の接着剤を用いてロツドレンズの素材である
ガラス棒同士を仮接着するようにした。即ち、コ
ーテイングを蒸着する際の温度(約350℃)に軟
化することがない第1の接着剤と、溶剤(第1の
接着剤を溶かさない)にて溶ける第2の接着剤と
用いて多数のガラス棒を仮接着し、この状態で切
断・研磨等を施した後に、第2の接着剤のみを溶
出し、多数のロツドガラスをガラス枠で保持した
ブロツク片のままロツドガラスの端面にコーテイ
ングを真空蒸着するようにした。 (実施例) 以下に本発明の実施例を添付図面に従つて工程
順に説明する。 本発明方法の最初の工程は第1図に示す如く直
径が0.5〜5.0mm長さが50〜300mm程度の屈折率分
布ガラス棒1…を多数本俵積みして束ね、この束
の周囲を第2図に示す如く表面が平滑がガラス板
2…にて囲み、これらガラス板2…の端縁部を耐
熱性の瞬間接着剤にて接着し、ガラス板2…にて
囲まれる空間に多数のガラス棒1を密に保持した
組立体3を得る。 上記の如くして得られた組立体3をシリコーン
プライマー等の下地剤中に浸漬せしめた後、後述
する無反射膜の蒸着温度(約350℃)で軟化しな
い第1の接着剤溶液中に組立体3を浸漬する。こ
こで、第1の接着剤としてはシリコーンワニス溶
液(ワニス固形分40%、キシロール60%)の他
に、変性シリコーンワニス、シリコーン樹脂、変
性シリコーン樹脂、ポリイミドワニス、ポリイミ
ド樹脂、耐熱性エポキシワニス或いは耐熱性エポ
キシ樹脂等の溶液が挙げられる。 以上の如くして第1の接着剤溶液中に組立体3
を浸漬した後、組立体3を引き上げ、風乾した
後、焼付け(200℃で1時間)を行い、第3図に
示す如くガラス棒1…同士を隙間Sを残して第1
の接着剤4にて仮接着する。 そして、この後第4図に示す如く上記隙間Sに
有機溶剤に溶ける第2の接着剤5を充填する。こ
こで第2の接着剤としてはバルサムの他に松脂、
ワツクス、ロジン或いはパラフイン等が挙げられ
る。また、上記隙間Sを第2の接着剤5によつて
埋めることで、後の研磨工程において隙間が存在
するとこの隙間に切粉等が入り込み、ガラス棒1
を傷つけるおそれがない。 次に、第1の接着剤4及び第2の接着剤5によ
つて仮接着された多数のガラス棒1…を組立体3
ごと第5図に示す如くガラス棒の長さ方向に沿つ
て切断して、第6図に示すような多数のロツドガ
ラス6…をガラス棒7にて保持したブロツク片8
を得る。 而る後、ブロツク片8のままロツドガラス6…
の端面、即ち入射面及び出射面となる面に面取
り、砂摺り、研磨を施し、この作業が終了したな
らば、ブロツク片8を有機溶剤中に浸漬せしめ
る。この有機溶剤は前記第2の接着剤5のみを溶
かし、第1の接着剤4は溶かさないものを選定す
る。具体的には第2の接着剤5としてバルサム・
松脂類を用いた場合には、エタノール等のアルコ
ール類を用いるのが好ましく、ワツクス・ロジン
類を用いた場合には、トリクロルエチレン、ダイ
フロン等の塩素系溶剤を用いるのが好ましい。 そして、ブロツク8を有機溶剤中に浸漬するこ
とで、第2の接着剤5のみが溶出し、各ロツドガ
ラス6…は依然として第1の接着剤4にて仮接着
されたままの多孔状のブロツク片8が得られる。 そこで、上記多孔状のブロツク片8の両面、つ
まりロツドレンズの入射面及び出射面となる部分
を清拭した後、ブロツク片8を蒸着治具に嵌め込
み、蒸着槽にセツトする。そして約350℃の加熱
下においてロツドガラス6…の両端面に誘電体質
無反射膜をコーテイングし、目的とするロツドレ
ンズを得る。 次いで、上記ブロツク片8を第7図に示す如く
カゴ9内に入れ、第1の接着剤4を溶出し得る溶
剤10を満たした容器11中に浸漬する。ここで
第1の接着剤4を溶出する溶剤としては、第1の
接着剤4としてシリコーン類を用いた場合には、
金属アルコラートのセロソルブ溶液を用い、ポリ
イミド類を用いた場合にはエチレンジアミン或い
はヒドラジンなどを用い、またエポキシ類を用い
た場合にはZncl2、ZnBr2などの腐蝕性の無機溶
融塩を用いることが好ましい。 上記の如くしてブロツク片8を約1時間程、溶
剤中に浸漬することで各ロツドレンズ間を接着し
ている第1の接着剤4を溶出する。しかしながら
各ロンツドレンズはガラス枠7に保持されたまま
であるため、この状態のままブロツク片8の一面
つまり多数のロツドレンズの一端面を検査し、次
いでブロツク片8を裏返して多数のロツドレンズ
の他端面を同時に検査する。 而る後、ブロツク片8のまま包装するか、ガラ
ス枠7を取除き、ロツドレンズを個々に包装す
る。 ところで、当初より第1の接着剤4のみを用い
てガラス棒1…間の隙間Sを完全に埋めてガラス
棒1…を仮接着すれば、第2の接着剤の充填工程
及び溶出工程が不要となるのであるが、以下の理
由によつて最適とはいえない。 即ち、第8図は蒸着時間と到達真空度(ガス発
生量)との関係を示すグラフであり、図中●印は
本発明方法による場合を、×印はガラス棒1…間
の隙間Sを第1の接着剤のみで埋めた場合を示
し、本発明によれば、所定の真空度に達するまで
の時間が短い。これは、蒸着の際に高温且つ低圧
とするため、第1の接着剤の一部が気化してガス
を発生することに原因し、第1の接着剤の量が少
なければ発生するガスも少ないこととなる。そし
て、多量にガスが発生すると、ロツドレンズ端面
に付着し、面の汚れを招くため、ガスの発生は極
力抑えることが好ましい。そこでガラス棒1…間
は蒸着にあたつて必要とされる保持力を発揮する
のに十分なだけの第1の接着剤を用いて仮接着す
る。尚、第1の接着剤を充填していない隙間に第
2の接着剤を充填しておくのは、前記した如く切
粉の進入を防ぐためと切断・研磨の際の保持力を
確保するためである。 更に、実施例にあつては、第1の接着剤を取除
く手段として溶剤を用いたが、無反射膜の光学特
性を損なうことがない温度で酸素ガス等を用いて
第1の接着剤を分解するようにしてもよい。 (発明の効果) 上述した如く本発明方法によれば、多数のロツ
ドガラス端面に同時に無反射膜を形成することが
でき、また多数のロツドレンズ端面を同時に検査
できるため生産効率が大巾に向上し、またレンズ
端面の傷発生率を大巾に減少せしめることができ
る。 斯る効果を具体的数値をもつて表1及び表2に
示す。
(Industrial Application Field) The present invention relates to a method of manufacturing a rod lens provided in various optical devices used in combination with, for example, an optical fiber. (Prior art) Optical switch incorporated into optical communication or optical measurement equipment,
Optical branching circuits, optical demultiplexing circuits, etc. use distributed index rod lenses (trade name: self-occurring lenses) to convert the light rays from the light source or optical fiber into parallel beams, and to focus the parallel beams to a single point. There is. Both end surfaces of the rod lens mentioned above are flat,
The following method has been conventionally known as a method for processing the end face of such a rod lens, which has a lens effect similar to that of a spherical lens. This method involves bundling a large number of glass rods with a refractive index distribution, which are the materials for rod lenses, surrounding the bundle with smooth glass plates and gluing the edges of the glass plates. Adhesive in a fluid state in the gap between the glass rods held within the enclosed space;
For example, balsam or the like is poured in, the adhesive is allowed to cool and solidify, and then the glass rods and glass plates are cut into slices to form a block piece with a large number of glass rods surrounded by a glass frame. Sanding, polishing, etc. are performed on both end faces of the rod glass, and then the block pieces are immersed in an organic solvent to release the adhesion between the rod glasses to obtain individual rod glasses. The rod glass is attached to a fixture, set in a vapor deposition tank, and both end faces of the rod glass are coated with a non-reflective film to protect the light entrance and exit surfaces, eliminate reflections of external light, and ensure the clarity of images, etc. There is. (Problems to be Solved by the Invention) As mentioned above, in the conventional method, the balsam used to temporarily bond the glass rods together cannot withstand the deposition temperature. The process of cutting the rod into a predetermined size and polishing the end face can process many glass rods at the same time, but the process after this, that is, applying an anti-reflection coating to the end face of the rod glass cut to a predetermined size. The process of vacuum-depositing the anti-reflection film, the process of inspecting the surface on which the anti-reflection film is formed, and the process of packaging the rod lenses all require handling of the rod lenses individually. As a result, first of all, it takes time and effort to form the anti-reflection film, and inspection and packaging are also troublesome and difficult to automate.Furthermore, since each rod lens is handled individually, there is a chance that the end face of the rod lens may be scratched or foreign matter may adhere to it during handling. There is a lot of waste, and the product yield also decreases. (Means for solving the problems) In order to solve the above-mentioned conventional problems, the present invention has two features.
The glass rods, which are the raw materials for rod lenses, are temporarily glued together using a different type of adhesive. That is, a first adhesive that does not soften at the temperature at which the coating is deposited (approximately 350°C), and a second adhesive that melts in a solvent (which does not melt the first adhesive) are used. After temporarily gluing the glass rods together and performing cutting and polishing in this state, only the second adhesive is eluted and the coating is applied to the end face of the rod glass in a vacuum while the block piece holding the rod glass in the glass frame is still in place. I decided to use vapor deposition. (Example) Examples of the present invention will be described below in order of steps with reference to the accompanying drawings. As shown in Fig. 1, the first step of the method of the present invention is to stack and bundle a large number of gradient index glass rods 1 with a diameter of 0.5 to 5.0 mm and a length of 50 to 300 mm. As shown in Figure 2, the smooth surface is surrounded by glass plates 2..., the edges of these glass plates 2... are glued with a heat-resistant instant adhesive, and a large number of glass plates are placed in the space surrounded by the glass plates 2... An assembly 3 in which the glass rod 1 is tightly held is obtained. The assembly 3 obtained as described above is immersed in a base agent such as a silicone primer, and then assembled in a first adhesive solution that does not soften at the non-reflective film deposition temperature (approximately 350°C), which will be described later. Immerse solid 3. Here, as the first adhesive, in addition to silicone varnish solution (varnish solid content 40%, xylene 60%), modified silicone varnish, silicone resin, modified silicone resin, polyimide varnish, polyimide resin, heat-resistant epoxy varnish, or Examples include solutions such as heat-resistant epoxy resins. As described above, the assembly 3 is placed in the first adhesive solution.
After soaking, the assembly 3 was pulled up, air-dried, and then baked (at 200°C for 1 hour). As shown in Figure 3, the glass rods 1...
Temporarily adhere with adhesive 4. Thereafter, as shown in FIG. 4, the gap S is filled with a second adhesive 5 that is soluble in an organic solvent. Here, in addition to balsam, the second adhesive is pine resin,
Examples include wax, rosin, and paraffin. In addition, by filling the gap S with the second adhesive 5, if a gap exists in the later polishing process, chips etc. will enter the gap, and the glass rod 1
There is no risk of injury. Next, a large number of glass rods 1 temporarily bonded with the first adhesive 4 and the second adhesive 5 are assembled into an assembly 3.
A block piece 8 is obtained by cutting along the length of a glass rod as shown in FIG. 5 and holding a large number of rod glasses 6 with a glass rod 7 as shown in FIG.
get. After that, the block piece 8 remains as the rod glass 6...
The end faces of the block 8, that is, the faces that will become the entrance and exit faces, are chamfered, sanded, and polished, and after this work is completed, the block piece 8 is immersed in an organic solvent. This organic solvent is selected to dissolve only the second adhesive 5 but not the first adhesive 4. Specifically, balsam is used as the second adhesive 5.
When pine resins are used, it is preferable to use alcohols such as ethanol, and when waxes and rosins are used, it is preferable to use chlorinated solvents such as trichlorethylene and Daiflon. Then, by immersing the block 8 in an organic solvent, only the second adhesive 5 is eluted, and each rod glass 6 is still a porous block piece temporarily bonded with the first adhesive 4. 8 is obtained. Therefore, after wiping both sides of the porous block piece 8, that is, the portions that will become the entrance and exit surfaces of the rod lens, the block piece 8 is fitted into a vapor deposition jig and set in a vapor deposition tank. Then, a dielectric non-reflective film is coated on both end surfaces of the rod glass 6 under heating at about 350° C. to obtain the desired rod lens. Next, the block piece 8 is placed in a basket 9 as shown in FIG. 7, and immersed in a container 11 filled with a solvent 10 capable of dissolving the first adhesive 4. Here, as the solvent for dissolving the first adhesive 4, when silicone is used as the first adhesive 4,
It is preferable to use cellosolve solution of metal alcoholate, to use ethylenediamine or hydrazine when polyimide is used, and to use corrosive inorganic molten salt such as Zncl 2 or ZnBr 2 when epoxy is used. . By immersing the block piece 8 in the solvent for about one hour as described above, the first adhesive 4 bonding the rod lenses is eluted. However, each rod lens is still held in the glass frame 7, so one side of the block piece 8, that is, one end surface of many rod lenses, is inspected in this state, and then the block piece 8 is turned over and the other end surfaces of many rod lenses are inspected at the same time. inspect. Thereafter, either the block piece 8 is packaged, or the glass frame 7 is removed and the rod lenses are individually packaged. By the way, if the glass rods 1 are temporarily bonded by completely filling the gap S between the glass rods 1 using only the first adhesive 4 from the beginning, the filling process and elution process of the second adhesive are unnecessary. However, it cannot be said to be optimal for the following reasons. That is, FIG. 8 is a graph showing the relationship between the vapor deposition time and the ultimate degree of vacuum (gas generation amount). This shows the case of filling with only the first adhesive, and according to the present invention, it takes a short time to reach a predetermined degree of vacuum. This is because a portion of the first adhesive vaporizes and generates gas due to the high temperature and low pressure used during vapor deposition, and if the amount of the first adhesive is small, less gas is generated. That will happen. If a large amount of gas is generated, it will adhere to the end face of the rod lens and cause the surface to become dirty, so it is preferable to suppress the generation of gas as much as possible. Therefore, the glass rods 1 are temporarily bonded using enough first adhesive to exert the holding force required for vapor deposition. The reason why the second adhesive is filled in the gaps that are not filled with the first adhesive is to prevent chips from entering as described above and to ensure holding power during cutting and polishing. It is. Furthermore, in the examples, a solvent was used as a means for removing the first adhesive, but the first adhesive was removed using oxygen gas or the like at a temperature that does not impair the optical properties of the anti-reflection film. It may also be disassembled. (Effects of the Invention) As described above, according to the method of the present invention, an anti-reflection film can be formed on a large number of rod glass end faces at the same time, and a large number of rod lens end faces can be inspected simultaneously, so production efficiency is greatly improved. Furthermore, the incidence of scratches on the lens end face can be greatly reduced. Such effects are shown in Tables 1 and 2 with specific numerical values.

【表】【table】

【表】 これらの表から本発明の効果が裏付けらるとと
もに、ロツドレンズを作成した後でも、ブロツク
片の中で個々のロツドレンズがハニカム状に整列
しているため、後工程を自動化し易い等の効果も
発揮する。
[Table] These tables confirm the effects of the present invention, and even after making the rod lenses, the individual rod lenses are arranged in a honeycomb shape within the block piece, making it easy to automate the post-process. It is also effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロツドレンズの素材となるガラス棒を
束ねた状態の斜視図、第2図はガラス棒の束の周
囲をガラス板で囲んだ組立体の斜視図、第3図は
ガラス棒を第1の接着剤で仮接着した状態を示す
拡大図、第4図はガラス棒を第1の接着剤と第2
の接着剤にて仮接着した状態を示す拡大図、第5
図は切断された組立体の斜視図、第6図はブロツ
ク片の斜視図、第7図は第1の接着剤の溶出工程
を示す斜視図、第8図は蒸着時間と到達真空度と
の関係を示すグラフである。 尚、図面中、1はガラス棒、2はガラス板、3
は組立体、4は第1の接着剤、5は第2の接着
剤、6はロツドガラス、7はガラス枠、8はブロ
ツク片である。
Figure 1 is a perspective view of a bundle of glass rods that are the raw materials for rod lenses, Figure 2 is a perspective view of an assembly in which a bundle of glass rods is surrounded by a glass plate, and Figure 3 is a perspective view of a bundle of glass rods. Figure 4 is an enlarged view showing the state in which the glass rod is temporarily bonded with the first adhesive and the second adhesive.
Enlarged view showing temporary adhesion with adhesive, No. 5
The figure is a perspective view of the cut assembly, Figure 6 is a perspective view of the block piece, Figure 7 is a perspective view showing the first adhesive elution process, and Figure 8 is a graph showing the relationship between vapor deposition time and ultimate vacuum degree. It is a graph showing a relationship. In addition, in the drawing, 1 is a glass rod, 2 is a glass plate, 3
4 is an assembly, 4 is a first adhesive, 5 is a second adhesive, 6 is a rod glass, 7 is a glass frame, and 8 is a block piece.

Claims (1)

【特許請求の範囲】 1 多数のレンズ素材ガラス棒を束ね、このガラ
ス棒の束の周囲をガラス板にて保持する工程と、
前記ガラス板にて保持された多数のガラス棒同士
を耐熱性の第1の接着剤とこの第1の接着剤を溶
かさない溶剤に溶ける第2の接着剤にて仮接着す
る工程と、前記仮接着された多数のガラス棒をガ
ラス板ごとガラス棒の長さ方向に所定寸法で切断
し、多数のロツドガラスの周囲をガラス枠で囲ん
だブロツク片を作成するとともにブロツク片を構
成するロツドガラス端面を研磨する工程と、前記
ブロツク片を前記溶剤で処理して第2の接着剤を
溶出する工程と、第2の接着剤を溶出した後の多
孔状ブロツク片を構成するロツドガラス端面にコ
ーテイング膜を蒸着する工程と、上記多孔状ブロ
ツク片を溶剤処理して第1の接着剤を溶出し、ロ
ツドガラス同士の仮接着状態を解除する工程とを
備えたロツドレンズの製造方法。 2 前記多数のガラス棒同士を仮接着する工程
は、先ずガラス棒同士を耐熱性の第1の接着剤に
て隙間を残して仮接着し、この隙間に第1の接着
剤を溶かさない溶剤に溶ける第2の接着剤を充填
するようにしたことを特徴とする特許請求の範囲
第1項記載のロツドレンズの製造方法。
[Claims] 1. A step of bundling a large number of lens material glass rods and holding the periphery of the bundle of glass rods with a glass plate,
temporarily bonding a large number of glass rods held by the glass plate with a heat-resistant first adhesive and a second adhesive that dissolves in a solvent that does not dissolve the first adhesive; A large number of glued glass rods are cut into predetermined dimensions in the length direction of the glass rod together with the glass plates, and a block piece is created by surrounding the glass frame with a glass frame, and the end faces of the rod glass that make up the block piece are polished. a step of treating the block piece with the solvent to elute the second adhesive; and depositing a coating film on the end face of the rod glass constituting the porous block piece after the second adhesive has been eluted. and a step of treating the porous block piece with a solvent to dissolve the first adhesive and release the temporary adhesion between the rod glasses. 2. The step of temporarily bonding a large number of glass rods is first to temporarily bond the glass rods together with a heat-resistant first adhesive leaving a gap, and then filling this gap with a solvent that does not dissolve the first adhesive. 2. The method for manufacturing a rod lens according to claim 1, wherein the second adhesive is filled with a meltable second adhesive.
JP24537884A 1984-11-20 1984-11-20 Preparation of rod lens Granted JPS61127640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24537884A JPS61127640A (en) 1984-11-20 1984-11-20 Preparation of rod lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24537884A JPS61127640A (en) 1984-11-20 1984-11-20 Preparation of rod lens

Publications (2)

Publication Number Publication Date
JPS61127640A JPS61127640A (en) 1986-06-14
JPH053419B2 true JPH053419B2 (en) 1993-01-14

Family

ID=17132767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24537884A Granted JPS61127640A (en) 1984-11-20 1984-11-20 Preparation of rod lens

Country Status (1)

Country Link
JP (1) JPS61127640A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984958B2 (en) * 1991-07-26 1999-11-29 東京エレクトロン株式会社 Substrate single wafer detection system
US8391659B2 (en) * 2008-09-30 2013-03-05 Schott Corporation Method of coating and handling multiple optical components simultaneously
JP6198622B2 (en) * 2014-02-04 2017-09-20 クアーズテック株式会社 Silica ventilation

Also Published As

Publication number Publication date
JPS61127640A (en) 1986-06-14

Similar Documents

Publication Publication Date Title
KR930011821B1 (en) High strength optical fiber splice
CN100387964C (en) Method for making sample for testing spray coating pulling-resisting binding strength and clamp
CN105717577B (en) It is a kind of for optical coupled fiber array production method and coupling process, device
CN101935153A (en) Glass sheet with protected edge, edge protector and method for making glass sheet using same
JPH075347A (en) Method for capsule-sealing of optical component and capsule-sealed optical component
JPH053419B2 (en)
JPH0273390A (en) Thin-film hologram
JP2001221902A (en) Method of processing optical element
JP4273945B2 (en) Manufacturing method of composite prism
CN110451009B (en) Method for protecting diffraction grating
US5624611A (en) Replication of optically flat surfaces
CN116175840A (en) High-permeability glue sealing process
JPH08240739A (en) Method for connecting optical parts and optical parts
JPH0567379B2 (en)
CN116852242A (en) Polishing and film coating method for optical fiber end face
JP3847825B2 (en) Manufacturing method of optical transmitter array
US7253956B2 (en) Optical isolator element, a method for producing such an element, and an optical isolator using such an element
RU1398637C (en) Method of making diaphragms
JPH0660967B2 (en) Optical fiber all-in-one fusion splicing method
JPH02228606A (en) Production of optical film element
CN110261960A (en) The buffer protection method at the optical waveguide coupled end of silicon substrate in a kind of pair of COMS technique
JPS6358407A (en) Working method for optical fiber positioning member
JPH0429503B2 (en)
JPS60131504A (en) Formation of terminal of coated optical fiber
JPS6017709A (en) Reinformcing method of welding connection part of optical fiber