JPH05341152A - Device for connecting optical fiber to quartz waveguide type optical component - Google Patents

Device for connecting optical fiber to quartz waveguide type optical component

Info

Publication number
JPH05341152A
JPH05341152A JP4152284A JP15228492A JPH05341152A JP H05341152 A JPH05341152 A JP H05341152A JP 4152284 A JP4152284 A JP 4152284A JP 15228492 A JP15228492 A JP 15228492A JP H05341152 A JPH05341152 A JP H05341152A
Authority
JP
Japan
Prior art keywords
waveguide type
optical fiber
carbon dioxide
optical component
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4152284A
Other languages
Japanese (ja)
Other versions
JP2833350B2 (en
Inventor
Kenichi Morosawa
健一 諸沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP4152284A priority Critical patent/JP2833350B2/en
Publication of JPH05341152A publication Critical patent/JPH05341152A/en
Application granted granted Critical
Publication of JP2833350B2 publication Critical patent/JP2833350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To provide a connecting device for an optical fiber and a quartz waveguide type optical component, by which accurate positioning of optical axes can efficiently be achieved without stopping the propagation of a carbon dioxide laser beam at all. CONSTITUTION:In a connecting device which connects an optical fiber 33 to a quartz waveguide type optical component 34 by using a carbon dioxide laser beam 21b, a window 30 allowing transmission of the carbon dioxide laser beam 21b therethrough and reflecting visible rays from a connecting portion 25 for observation of the connecting portion 25 is provided while being tilted on the optical axis of the carbon dioxide laser beam 21b passing above the connecting portion 25 and an image pickup device 29 for monitoring positioning of the optical axis of the optical fiber 33 relative to that of the waveguide type optical component 34 is provided on the optical axis of reflection of the window 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭酸ガスレーザ光を用
いて光ファイバと石英系導波路型光部品とを接続する接
続装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting device for connecting an optical fiber and a silica-based waveguide type optical component using carbon dioxide laser light.

【0002】[0002]

【従来の技術】石英系導波路型光部品は、光通信時代の
ニーズに対応し得る量産化が可能で、石英系光ファイバ
と融着接続することにより低損失の永久接続ができるた
め、光波長合分波器や光スターカプラ等の受動素子の開
発が盛んに行われている。
2. Description of the Related Art A silica-based waveguide type optical component can be mass-produced to meet the needs of the optical communication era, and a low loss permanent connection can be achieved by fusion splicing with a silica-based optical fiber. Passive devices such as wavelength multiplexers / demultiplexers and optical star couplers are being actively developed.

【0003】一般に、石英系導波路型光部品と石英系光
ファイバとの融着接続には、炭酸ガスレーザ光が用いら
れている。炭酸ガスレーザ光(以下レーザ光)は波長が
10.6μmで、石英系材料に効率良く吸収されるた
め、融着接続用熱源として最適である。しかも、炭酸ガ
スレーザ光はレンズで集光することにより微小なスポッ
トとして石英系材料の任意の部位に照射して選択的に溶
融させることが可能である。
In general, carbon dioxide laser light is used for fusion splicing of a silica-based waveguide type optical component and a silica-based optical fiber. The carbon dioxide gas laser light (hereinafter referred to as laser light) has a wavelength of 10.6 μm and is efficiently absorbed by the silica-based material, so that it is optimal as a heat source for fusion splicing. Moreover, by collecting the carbon dioxide gas laser light with a lens, it is possible to irradiate an arbitrary portion of the silica-based material as a minute spot and selectively melt it.

【0004】石英系導波路型光部品を用いたモジュール
の製造段階では、図3に示すように金属パッケージ1の
中に固定された導波路型光部品2の端面に、光ファイバ
3のコア4及びクラッド5を露出させて突き合わせ、上
方よりレンズ6で集光されたレーザ光7を、矢印P1
向に接続部8に照射し、コア4と導波路型光部品2のコ
ア9とを融着接続すると共に、クラッド4と導波路型光
部品2のクラッド10とを融着接続する方法が一般的で
ある。尚、図3は導波路型光部品と光ファイバとの融着
接続の様子を示す図である。
At the stage of manufacturing a module using a silica-based waveguide type optical component, the core 4 of the optical fiber 3 is attached to the end face of the waveguide type optical component 2 fixed in the metal package 1 as shown in FIG. Also, the clad 5 is exposed and abutted, and the laser light 7 condensed by the lens 6 is irradiated from above to the connecting portion 8 in the direction of the arrow P 1 to fuse the core 4 and the core 9 of the waveguide type optical component 2. A general method is that the clad 4 and the clad 10 of the waveguide type optical component 2 are fusion-spliced together. Incidentally, FIG. 3 is a view showing a state of fusion splicing between the waveguide type optical component and the optical fiber.

【0005】ところで、導波路型光部品2及び光ファイ
バ3の融着接続を行うときは、両部品2、3の光軸が一
致してないと接続損失が増大するので、光軸を一致させ
ることが重要である。
By the way, when the waveguide type optical component 2 and the optical fiber 3 are fusion-spliced, if the optical axes of the two components 2 and 3 do not match, the connection loss increases. This is very important.

【0006】一方、波長1.3μm帯及び1.5μm帯
の長距離光通信にはコア径9μmのシングルモード光フ
ァイバが多用されており、光ファイバ3内の信号を合分
波するガラス導波路型光部品には8μm×8μmの矩形
状のコアを有するものが用いられている。すなわち外径
9μm程度のコアどうしを正確に位置合わせして融着接
続しなければ、接続部で過剰な光パワーの損失が生じ、
反射戻り光や散乱光の増加を招き、伝送特性が著しく劣
化してしまう。
On the other hand, a single mode optical fiber having a core diameter of 9 μm is often used for long-distance optical communication in the wavelength band of 1.3 μm and 1.5 μm, and a glass waveguide for multiplexing / demultiplexing signals in the optical fiber 3 is used. A mold optical component having a rectangular core of 8 μm × 8 μm is used. That is, unless the cores having an outer diameter of about 9 μm are accurately aligned and fusion-spliced, excessive optical power loss occurs at the connection portion,
The reflected return light and scattered light are increased, and the transmission characteristics are significantly deteriorated.

【0007】そこでこのような接続部の軸ずれによる特
性劣化を防止するためには、融着接続前に導波路型光部
品2の光軸と光ファイバ3の光軸とを厳密に合わせるこ
とが要求される。
Therefore, in order to prevent the characteristic deterioration due to the axis shift of such a connecting portion, the optical axis of the waveguide type optical component 2 and the optical axis of the optical fiber 3 should be strictly aligned before the fusion splicing. Required.

【0008】一般に光軸の調整には、導波路型光部品2
又は光ファイバ3の一方からモニター用のレーザ光を入
射し、他方で受光したときにそのレーザ光のパワーが最
大となるように位置合わせを行う方法が用いられてい
る。
Generally, the waveguide type optical component 2 is used to adjust the optical axis.
Alternatively, a method is used in which laser light for monitoring is incident from one side of the optical fiber 3 and is aligned so that the power of the laser beam becomes maximum when the other side receives the laser beam.

【0009】[0009]

【発明が解決しようとする課題】ところが、コア4、9
の光軸合わせを行う最初の状態では各々のコア4、9が
全く同軸上に存在しないため、接続部8の上方または側
方より目視により観察しておおよその軸を合わせ(粗
調)、端面に適当なギャップを設けた状態で光ファイバ
3を上下及び左右に動かして光信号をひろうことが行わ
れている。これら導波路型光部品2及び光ファイバ3の
接続部8は数100μm程度の大きさしかないため、肉
眼での観察は不可能であり、通常は顕微鏡11を使って
拡大しながら位置合わせしている。
However, the cores 4 and 9 are to be solved.
In the first state where the optical axes are aligned, since the cores 4 and 9 do not exist at all on the same axis, the axes are roughly aligned (coarse adjustment) by visually observing from above or from the side of the connecting portion 8. It has been practiced to move the optical fiber 3 up and down and to the left and right with an appropriate gap provided between the optical fiber 3 and the optical signal. Since the connecting portion 8 between the waveguide type optical component 2 and the optical fiber 3 has a size of only about several hundreds of μm, it cannot be observed with the naked eye, and normally the microscope 11 is used for alignment while enlarging. There is.

【0010】また、炭酸ガスレーザ光を用いた接続装置
はレーザ光7を接続部8に向かって上方から照射してお
り、このレーザ光7を顕微鏡の光軸に沿って接合部8に
照射すれば観察しやすいが、炭酸ガスレーザ光は石英系
材料に対する吸収係数が大きいため、顕微鏡11に用い
られているレンズ(石英系)等を透過させることはでき
ない。
Further, the connecting device using the carbon dioxide laser light irradiates the laser light 7 toward the connecting portion 8 from above, and if the laser light 7 is applied to the joining portion 8 along the optical axis of the microscope. Although it is easy to observe, carbon dioxide laser light cannot pass through a lens (quartz) used in the microscope 11 because it has a large absorption coefficient for the quartz material.

【0011】このため、図4(a)や図4(b)に示す
ように接続部8を観察する場合は顕微鏡11をレーザ光
7の光軸からはずし、斜め方向から観察しなければなら
なかった。その結果、導波路型光部品2の光軸と光ファ
イバ3の光軸とを目視により粗調する場合、上下左右方
向を正確に判別することができず長時間を費やしてい
た。尚、図4(a)及び図4(b)は従来の接続部付近
の観察の様子を示す図である。
Therefore, when observing the connecting portion 8 as shown in FIGS. 4A and 4B, the microscope 11 must be removed from the optical axis of the laser beam 7 and observed obliquely. It was As a result, when the optical axis of the waveguide type optical component 2 and the optical axis of the optical fiber 3 are roughly adjusted by visual observation, it is not possible to accurately determine the vertical and horizontal directions, and it takes a long time. 4 (a) and 4 (b) are diagrams showing the conventional observation of the vicinity of the connecting portion.

【0012】また、斜めから見た映像で炭酸ガスレーザ
光7の照射位置を決める場合、接続部8の高さが変わる
と、正確な照射位置が分からなくなるという問題があ
り、作業性や位置精度にも問題があった。
Further, when the irradiation position of the carbon dioxide laser light 7 is determined by the image viewed obliquely, if the height of the connecting portion 8 changes, there is a problem that the accurate irradiation position cannot be known, and workability and position accuracy are reduced. Also had a problem.

【0013】そこで、本発明の目的は、上記課題を解決
し、光軸の正確な位置合わせが効率的に行え、しかも炭
酸ガスレーザ光の進行を全く妨げない光ファイバと石英
系導波路型光部品との接続装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems, to perform accurate alignment of the optical axis efficiently, and to prevent the progress of carbon dioxide laser light at all, and an optical fiber and a silica-based waveguide type optical component. It is to provide a connection device with.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に本発明は、炭酸ガスレーザ光を用いて、光ファイバと
石英系導波路型光部品とを接続する接続装置において、
接続部上方の炭酸ガスレーザ光の光軸上に、炭酸ガスレ
ーザ光を透過すると共に、接続部を観察すべく接続部か
らの可視光を反射するウインドーを傾斜して設け、ウイ
ンドーの反射光軸上に、光ファイバの光軸と石英系導波
路型光部品の光軸との位置合わせをモニタするための撮
像装置を設けたものである。
In order to achieve the above object, the present invention provides a connection device for connecting an optical fiber and a silica-based waveguide type optical component by using carbon dioxide laser light,
On the optical axis of the carbon dioxide laser light above the connection part, a window that transmits the carbon dioxide laser light and reflects the visible light from the connection part to observe the connection part is installed at an inclination, and on the reflection optical axis of the window. An image pickup device for monitoring the alignment between the optical axis of the optical fiber and the optical axis of the silica-based waveguide type optical component is provided.

【0015】[0015]

【作用】上記構成によれば、炭酸ガスレーザ光の光軸上
に、炭酸ガスレーザ光を透過するウインドーを傾斜して
設けたので、炭酸ガスレーザ光の接続部への照射を全く
妨げず、ウインドーが接続部からの可視光を撮像手段へ
反射し、この反射光を撮像手段によりモニタするので、
光ファイバの光軸と石英系導波路型光部品の光軸との正
確な位置関係を把握することができる。
According to the above construction, since the window for transmitting the carbon dioxide gas laser beam is provided on the optical axis of the carbon dioxide gas laser beam in an inclined manner, the irradiation of the carbon dioxide gas laser beam to the connecting portion is not obstructed at all, and the window is connected. Since the visible light from the section is reflected to the image pickup means and this reflected light is monitored by the image pickup means,
It is possible to grasp the exact positional relationship between the optical axis of the optical fiber and the optical axis of the silica-based waveguide type optical component.

【0016】[0016]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0017】図1は本発明の光ファイバと石英系導波路
型光部品との接続装置(以下接続装置)の一実施例の概
念図である。
FIG. 1 is a conceptual diagram of one embodiment of a connecting device (hereinafter referred to as a connecting device) for connecting an optical fiber and a silica-based waveguide type optical component of the present invention.

【0018】同図において、接続装置は、炭酸ガスレー
ザ光(以下レーザ光)21aを出射する炭酸ガスレーザ
22と、炭酸ガスレーザ22の光軸上に配置されレーザ
光21aの出射時間を制御するシャッタ23と、シャッ
タ23の前方(図の右側)に配置されレーザ光21aの
照射パワーを制御するアッテネータ24と、アッテネー
タ24の前方に傾斜して配置されレーザ光21aを接続
部25側(図の下方)に反射するミラー26と、ミラー
26の反射光軸上に配置されレーザ光21aを集光する
レンズ27と、レンズ27の出射側に傾斜して配置され
集光されたレーザ光21bを、低損失で透過させると共
に接続部25からの可視光を撮像装置29側へ反射する
ウインドー30と、ウインドー30で反射した可視光2
8の光軸上に配置された顕微鏡31と、顕微鏡31の出
射側に配置され可視光28を撮影するカメラ32と、カ
メラ32に接続され接続部25付近の様子、特に光ファ
イバ33の光軸と導波路型光部品34との光軸の位置合
わせの様子を可視画像として拡大表示するモニタ35と
で構成されている。
In the figure, the connecting device comprises a carbon dioxide gas laser 22 for emitting a carbon dioxide gas laser beam (hereinafter referred to as laser beam) 21a, and a shutter 23 arranged on the optical axis of the carbon dioxide gas laser 22 for controlling the emission time of the laser beam 21a. , An attenuator 24 arranged in front of the shutter 23 (right side in the figure) for controlling the irradiation power of the laser beam 21a, and a laser beam 21a inclined in front of the attenuator 24 to the connecting portion 25 side (lower side in the figure). The mirror 26 that reflects light, the lens 27 that is arranged on the reflection optical axis of the mirror 26 and collects the laser light 21a, and the laser light 21b that is arranged obliquely on the emitting side of the lens 27 and that is collected are collected with low loss. A window 30 that transmits and reflects visible light from the connecting portion 25 toward the imaging device 29, and visible light 2 reflected by the window 30.
8, a microscope 31 arranged on the optical axis of 8, a camera 32 arranged on the emitting side of the microscope 31 for photographing the visible light 28, a state near the connecting portion 25 connected to the camera 32, and particularly the optical axis of the optical fiber 33. And a monitor 35 for enlarging and displaying as a visible image the state of alignment of the optical axes of the waveguide type optical component 34.

【0019】レンズ27には例えばZnSeからなり焦
点距離約20インチのものを用いた。
The lens 27 is made of ZnSe and has a focal length of about 20 inches.

【0020】ウインドー30は、厚さ約1mm、直径約
3.5インチの円板状でゲルマニウム又はシリコンから
なっており、レーザ光の光軸に対して約45°の角度で
固定されている。
The window 30 is a disc-like member having a thickness of about 1 mm and a diameter of about 3.5 inches, made of germanium or silicon, and fixed at an angle of about 45 ° with respect to the optical axis of the laser beam.

【0021】レーザ光21aのパワーは、アッテネータ
24によって接続に最適となるように微調整でき、また
シャッタ23によって照射時間を設定し、過剰溶融を防
止できるようになっている。
The power of the laser beam 21a can be finely adjusted by the attenuator 24 to be optimum for connection, and the irradiation time can be set by the shutter 23 to prevent excessive melting.

【0022】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0023】レーザ光21bの光軸上に、レーザ光21
bを透過するウインドー30を設けたので、レーザ光2
1bの接続部25への照射を全く妨げず、ウインドー3
0が接続部25からの可視光28を撮像装置29へ反射
し、この反射した可視光28を撮像装置29により図2
に示すような画像を可視表示するので、光ファイバ33
の光軸及び導波路型光部品34の光軸の左右の位置関係
が把握でき、光ファイバ33に波長約1.31μmのモ
ニタ光を矢印P2 方向に入射し、導波路型光部品34の
他端にコア径約50μmの受光用マルチモード光ファイ
バを置いて、モニタ35を見ながら光ファイバ33と導
波路型光部品34の左右の位置を合わせ、後に光ファイ
バ33を上下方向に移動させることにより、光ファイバ
33からのモニタ光を導波路型光部品34に容易に結合
させることができる。位置合わせ終了後はレーザ光のパ
ワーを所定の値に設定し、照射すれば、溶融を観察しな
がら接続できる。なお、図2は図1に示した装置により
得られる接続部付近の画像である。
The laser beam 21b is placed on the optical axis of the laser beam 21b.
Since the window 30 for transmitting b is provided, the laser light 2
Irradiation to the connection part 25 of 1b is not obstructed at all, and the window 3
2 reflects the visible light 28 from the connecting portion 25 to the image pickup device 29, and the reflected visible light 28 is reflected by the image pickup device 29.
Since the image as shown in FIG.
Of the optical axis and the optical axis of the waveguide type optical component 34 can be grasped, and a monitor light having a wavelength of about 1.31 μm is incident on the optical fiber 33 in the direction of arrow P 2 and A light receiving multi-mode optical fiber having a core diameter of about 50 μm is placed at the other end, the left and right positions of the optical fiber 33 and the waveguide type optical component 34 are aligned while observing the monitor 35, and the optical fiber 33 is moved vertically afterwards. As a result, the monitor light from the optical fiber 33 can be easily coupled to the waveguide type optical component 34. After the alignment is completed, the power of the laser beam is set to a predetermined value, and irradiation is performed, so that the connection can be performed while observing the melting. Note that FIG. 2 is an image near the connection portion obtained by the device shown in FIG.

【0024】以上において本実施例によれば、接続部2
5上方からレンズ27により集光された炭酸ガスレーザ
光21bの光軸上に、炭酸ガスレーザ光21bを透過す
ると共に、接続部25からの可視光を反射するウインド
ー30を設け、ウインドー30の反射光軸上に、光ファ
イバ33の光軸と導波路型光部品34の光軸との位置合
わせをモニタするための撮像装置29を設けたので、光
軸の正確な位置合わせが効率的に行え、しかも炭酸ガス
レーザ光21bの進行を全く妨げないで光ファイバ33
と石英系導波路型光部品34との接続を行うことができ
る。
In the above, according to this embodiment, the connecting portion 2
On the optical axis of the carbon dioxide gas laser light 21b collected by the lens 27 from above, a window 30 is provided which transmits the carbon dioxide gas laser light 21b and reflects visible light from the connecting portion 25, and the reflection optical axis of the window 30 is provided. Since the imaging device 29 for monitoring the alignment between the optical axis of the optical fiber 33 and the optical axis of the waveguide type optical component 34 is provided on the upper side, the accurate alignment of the optical axis can be efficiently performed, and The optical fiber 33 does not hinder the progress of the carbon dioxide gas laser light 21b at all.
Can be connected to the silica-based waveguide type optical component 34.

【0025】[0025]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0026】(1) 炭酸ガスレーザ光の進行を妨げること
なく接合部を真上から見たモニタ画像情報を得ることが
できる。
(1) It is possible to obtain monitor image information when the junction is viewed from directly above without hindering the progress of carbon dioxide laser light.

【0027】(2) 融着接続すべく光ファイバと導波路型
光部品との左右の位置関係が正確に把握できるため、左
右の位置を目視で合わせ、上下を移動させるだけで光軸
の粗調が可能である。
(2) Since the left-right positional relationship between the optical fiber and the waveguide-type optical component to be fusion-spliced can be accurately grasped, the left-right positions can be visually aligned and the optical axis roughened by simply moving the optical axis vertically. It is possible to adjust.

【0028】(3) 接続部1か所当たりの所要時間を短縮
することができ、生産工数及びコストの大幅削減が可能
である。
(3) It is possible to shorten the time required for one connection portion, and it is possible to significantly reduce the production man-hours and costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ファイバと石英系導波路型光部品と
の接続装置の一実施例の概念図である。
FIG. 1 is a conceptual diagram of an embodiment of a connecting device between an optical fiber and a silica-based waveguide type optical component of the present invention.

【図2】図1に示した装置により得られる接続部付近の
画像である。
FIG. 2 is an image near a connection portion obtained by the device shown in FIG.

【図3】従来の導波路型光部品と光ファイバとの融着接
続の様子を示す図である。
FIG. 3 is a view showing a state of fusion splicing between a conventional waveguide type optical component and an optical fiber.

【図4】(a)及び(b)は従来の接続部付近の観察の
様子を示す図である。
FIG. 4A and FIG. 4B are views showing a state of observation in the vicinity of a conventional connection portion.

【符号の説明】[Explanation of symbols]

21a、21b 炭酸ガスレーザ光 22 炭酸ガスレーザ 23 シャッタ 24 アッテネータ 25 接続部 26 ミラー 27 レンズ 28 可視光 29 撮像装置 30 ウインドー 31 顕微鏡 32 カメラ 33 光ファイバ 34 導波路型光部品 35 モニタ 21a, 21b Carbon dioxide laser light 22 Carbon dioxide laser 23 Shutter 24 Attenuator 25 Connection part 26 Mirror 27 Lens 28 Visible light 29 Imaging device 30 Window 31 Microscope 32 Camera 33 Optical fiber 34 Waveguide type optical component 35 Monitor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // G02B 6/255 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area // G02B 6/255

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭酸ガスレーザ光を用いて、光ファイバ
と石英系導波路型光部品とを接続する接続装置におい
て、接続部上方の炭酸ガスレーザ光の光軸上に、該炭酸
ガスレーザ光を透過すると共に、前記接続部を観察すべ
く前記接続部からの可視光を反射するウインドーを傾斜
して設け、該ウインドーの反射光軸上に、前記光ファイ
バの光軸と前記石英系導波路型光部品の光軸との位置合
わせをモニタするための撮像装置を設けたことを特徴と
する光ファイバと石英系導波路型光部品との接続装置。
1. In a connecting device for connecting an optical fiber and a silica-based waveguide type optical component using carbon dioxide laser light, the carbon dioxide laser light is transmitted on the optical axis of the carbon dioxide laser light above the connecting portion. At the same time, a window for reflecting visible light from the connecting portion is provided so as to observe the connecting portion, and the optical axis of the optical fiber and the silica-based waveguide type optical component are provided on the reflection optical axis of the window. An apparatus for connecting an optical fiber and a silica-based waveguide type optical component, which is provided with an image pickup device for monitoring the alignment with the optical axis of the.
【請求項2】 前記ウインドーがゲルマニウムまたはシ
リコンを有することを特徴とする請求項1に記載の光フ
ァイバと石英系導波路型光部品との接続装置。
2. The connection device between an optical fiber and a silica-based waveguide type optical component according to claim 1, wherein the window has germanium or silicon.
JP4152284A 1992-06-11 1992-06-11 Device and method for connecting optical fiber and silica-based waveguide optical component Expired - Fee Related JP2833350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152284A JP2833350B2 (en) 1992-06-11 1992-06-11 Device and method for connecting optical fiber and silica-based waveguide optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152284A JP2833350B2 (en) 1992-06-11 1992-06-11 Device and method for connecting optical fiber and silica-based waveguide optical component

Publications (2)

Publication Number Publication Date
JPH05341152A true JPH05341152A (en) 1993-12-24
JP2833350B2 JP2833350B2 (en) 1998-12-09

Family

ID=15537160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152284A Expired - Fee Related JP2833350B2 (en) 1992-06-11 1992-06-11 Device and method for connecting optical fiber and silica-based waveguide optical component

Country Status (1)

Country Link
JP (1) JP2833350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136855A1 (en) * 2000-03-23 2001-09-26 Corning Incorporated Method and apparatus for splicing optical fibers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360087A (en) * 1989-07-27 1991-03-15 Fujitsu Ltd Driving circuit for semiconductor laser
JPH03102304A (en) * 1989-09-18 1991-04-26 Sumitomo Electric Ind Ltd Axis aligning method for optical fiber
JPH0470607A (en) * 1990-07-06 1992-03-05 Hitachi Cable Ltd Method and device for fusion splicing connection between optical waveguide and optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360087A (en) * 1989-07-27 1991-03-15 Fujitsu Ltd Driving circuit for semiconductor laser
JPH03102304A (en) * 1989-09-18 1991-04-26 Sumitomo Electric Ind Ltd Axis aligning method for optical fiber
JPH0470607A (en) * 1990-07-06 1992-03-05 Hitachi Cable Ltd Method and device for fusion splicing connection between optical waveguide and optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136855A1 (en) * 2000-03-23 2001-09-26 Corning Incorporated Method and apparatus for splicing optical fibers
US6612754B2 (en) 2000-03-23 2003-09-02 Corning Incorporated Method and apparatus for splicing optical fibers

Also Published As

Publication number Publication date
JP2833350B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US8107782B2 (en) Microstructuring optical wave guide devices with femtosecond optical pulses
US7400799B2 (en) Optical device and fabrication method and apparatus for the same
EP0697117B1 (en) Controlled splicing of optical fibers
US6984077B2 (en) System for joining polarization-maintaining optical fiber waveguides
JPH07202351A (en) 2 direction optical communication, transmission for signal transmission and receiving module
JPS62237408A (en) Transmitting receiving module for bidirectional communication network and manufacture thereof
JP2009522594A (en) Core alignment for fusion splicing of optical fibers
US7080947B2 (en) Fusion-bonded optical component, a method for manufacturing the fusion-bonded optical component, and manufacturing equipment for the same
JP2002098762A (en) Electro-optical distance measuring instrument
JP2006209085A (en) Fabrication method and fabrication apparatus for optical device, and optical device
JP3654904B2 (en) Connecting optical fiber with twin core and fiber with single core
EP0174428B1 (en) Apparatus for fusion splicing optical fibers
JPH08304630A (en) Optical fiber attenuator
JP2833350B2 (en) Device and method for connecting optical fiber and silica-based waveguide optical component
US6633706B2 (en) Method for aligning optical fibers with a waveguide element
JP2000111756A (en) Device for aligning optical fiber block and plane optical waveguide element and its controlling method
JPH0235284B2 (en)
US7706652B2 (en) Optical waveguide device, optical module and method of aligning optical axes thereof
EP3571537A1 (en) System and method for attaching optical fibers to chips
JP3022132B2 (en) Fusion splicing method between silica glass waveguide element and optical fiber
JPH05341153A (en) Laser multiconductor fusion connecting device
JP2003526114A (en) Single mode fiber on-line attenuator and method of manufacturing the same
JPH05346517A (en) Laser fusion splicing device and method
JPH0943447A (en) Fusion splicing device for optical fibers
JPH0862438A (en) Optical waveguide and its manufacture

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees