JP3022132B2 - Fusion splicing method between silica glass waveguide element and optical fiber - Google Patents

Fusion splicing method between silica glass waveguide element and optical fiber

Info

Publication number
JP3022132B2
JP3022132B2 JP1379194A JP1379194A JP3022132B2 JP 3022132 B2 JP3022132 B2 JP 3022132B2 JP 1379194 A JP1379194 A JP 1379194A JP 1379194 A JP1379194 A JP 1379194A JP 3022132 B2 JP3022132 B2 JP 3022132B2
Authority
JP
Japan
Prior art keywords
optical fiber
face
waveguide element
glass waveguide
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1379194A
Other languages
Japanese (ja)
Other versions
JPH07218757A (en
Inventor
嘉之 平本
達夫 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1379194A priority Critical patent/JP3022132B2/en
Publication of JPH07218757A publication Critical patent/JPH07218757A/en
Application granted granted Critical
Publication of JP3022132B2 publication Critical patent/JP3022132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は石英系ガラス導波路素子
と光ファイバとの融着接続方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fusion splicing method between a silica glass waveguide device and an optical fiber.

【0002】[0002]

【従来の技術】近年、石英系の材料からなる石英系ガラ
ス導波路型光部品は、石英系ガラス導波路型素子(以
下、導波路素子という)と、石英系光ファイバ(以下、
光ファイバ)とを融着接続することにより、低損失かつ
永久接続が可能なため、光波長合分波器や光スターカプ
ラ等の受動的な光部品として開発が盛んに行われてい
る。
2. Description of the Related Art In recent years, quartz-based glass waveguide optical components made of a quartz-based material include a quartz-based glass waveguide element (hereinafter, referred to as a waveguide element) and a quartz-based optical fiber (hereinafter, referred to as a waveguide element).
Since a low loss and permanent connection can be achieved by fusion splicing with an optical fiber, an active optical component such as an optical wavelength multiplexer / demultiplexer or an optical star coupler has been actively developed.

【0003】この導波路素子と光ファイバとを融着接続
する方法としては種々提案されているが、図6及び図7
に示すようなCO2 レーザ光を融着熱源として用いた方
法が最も一般的である。これを具体的に説明すると、先
ず、金属パッケージ10b内に固定された導波路素子1
0と、コア5a、クラッド5bからなる光ファイバ5と
を微動台6,6を用いて突合わせ、結合損失が最小とな
るように光軸調整を行う。この光軸調整は、半導体レー
ザ1から出射したレーザ光をレンズ3を介して、光ファ
イバ5の一端に入射すると共に、この微動台6,6を用
いて導波路素子10の反対側から出射する光パワーが最
大となるように光パワーメータ14の指示値を見ながら
調整することで行われる。次に、この光ファイバ5の端
面をガラス導波路素子10の端面に約5μmの圧着量で
圧着し、CO2 レーザ8から出射したレーザ光をZn−
Seレンズ11を用いて集光した後、導波路素子10と
光ファイバ5との突合わせ部15にCO2 レーザ光P1
を、例えば照射時間約2sec、CO2 レーザパワー約
7W、接続部でのCO2 レーザ光のスポットサイズとし
ての約500μmの条件で照射して両者を融着接続する
ことになる。尚、図6中7,2はそれぞれミラー4,4
と共に、CO2 レーザビーム位置検出、光ファイバ5と
導波路素子10との光軸調整に用いられるHe−Neレ
ーザ、9はCO2 レーザ光の電力測定用のカロリーメー
タ、12,13及び20はそれぞれ導波路素子10から
出射する光のモニタに用いられるテレビカメラ、モニタ
ー、ハーフミラーである。
Various methods for fusion splicing the waveguide element and the optical fiber have been proposed.
The most common method uses a CO 2 laser beam as a heat source for fusion as shown in FIG. More specifically, first, the waveguide element 1 fixed in the metal package 10b will be described.
0 and the optical fiber 5 composed of the core 5a and the clad 5b are butted by using the fine adjustment tables 6 and 6, and the optical axis is adjusted so as to minimize the coupling loss. In this optical axis adjustment, the laser light emitted from the semiconductor laser 1 is incident on one end of the optical fiber 5 via the lens 3, and is emitted from the opposite side of the waveguide element 10 by using the fine movement tables 6 and 6. The adjustment is performed while watching the indicated value of the optical power meter 14 so that the optical power becomes maximum. Next, the end face of the optical fiber 5 is crimped to the end face of the glass waveguide element 10 with a crimp amount of about 5 μm, and the laser light emitted from the CO 2 laser 8 is Zn-
After focusing using the Se lens 11, the CO 2 laser light P 1 is applied to the butting portion 15 between the waveguide element 10 and the optical fiber 5.
Are irradiated under a condition of, for example, an irradiation time of about 2 sec, a CO 2 laser power of about 7 W, and a spot size of about 200 μm as a spot size of the CO 2 laser beam at the connection portion, and the two are fusion-spliced. In FIG. 6, reference numerals 7 and 2 denote mirrors 4 and 4, respectively.
He-Ne laser used for CO 2 laser beam position detection, optical axis adjustment of optical fiber 5 and waveguide element 10, 9 is a calorimeter for measuring power of CO 2 laser light, 12, 13 and 20 are A television camera, a monitor, and a half mirror used for monitoring light emitted from the waveguide element 10, respectively.

【0004】このようにCO2 レーザ光は石英系材料の
融着接続熱源として最適であり、その理由としては、そ
の波長が10.6μmで石英系材料に効率良く吸収され
ると共に、レンズで集光することができ、微小なスポッ
トとして石英系材料上の任意の部位に照射して選択的に
溶融させることができるからである。
As described above, the CO 2 laser beam is most suitable as a fusion splicing heat source for a quartz-based material because its wavelength is 10.6 μm, it is efficiently absorbed by the quartz-based material, and is collected by a lens. This is because light can be emitted and an arbitrary portion on the quartz-based material can be irradiated as a minute spot to be selectively melted.

【0005】[0005]

【発明が解決しようとする課題】ところで、このような
従来の融着接続方法では、光ファイバ5の突合わせ端面
を導波路素子10に圧着した状態でCO2 レーザ光P1
の加熱融着を開始するために、例えば光ファイバ5の突
合わせ端面が直角に切断されていなかったり、導波路素
子10の端面が直角研磨されていない等によって、両者
の突合せ面15に間隙が生じていると、突合せ面が均
一に溶融せず、融着後に融着内部に気泡が残ってしま
い、融着強度の低下や接続損失の増加が起こる。加熱
時間が短いと、間隙側の融着部が十分一体化せず、融着
強度を低下させるノッチが発生する。十分一体化させ
るために、加熱時間を長くすると、光ファイバ5のコア
5aの変形が起こり、接続損失が増大してしまう等の現
象が起こり、良好な融着接続が達成できない。
By the way, in such a conventional fusion splicing method, the CO 2 laser beam P 1 is applied while the butt end face of the optical fiber 5 is pressed against the waveguide element 10.
In order to start the heat fusion of the optical fiber 5, a gap is formed between the abutting surfaces 15 of the optical fibers 5 because, for example, the abutting end surfaces of the optical fibers 5 are not cut at right angles, or the end surfaces of the waveguide elements 10 are not ground at right angles. If this occurs, the butted surfaces will not be uniformly melted, and bubbles will remain inside the fusion after fusion, resulting in a decrease in fusion strength and an increase in connection loss. If the heating time is short, the fusion portion on the gap side is not sufficiently integrated, and a notch that reduces the fusion strength is generated. If the heating time is lengthened for sufficient integration, deformation of the core 5a of the optical fiber 5 occurs, and a phenomenon such as an increase in connection loss occurs, and good fusion splicing cannot be achieved.

【0006】一方、シングルモードのCO2 レーザ光を
融着熱源として用いた場合、このCO2 レーザ光はガウ
ス分布型のエネルギー分布となっており、この分布はZ
n−Seレンズ11を用いて集光しても殆ど変わらない
ことから、熱容量が大きく異なる導波路素子10と光フ
ァイバ5とを均一に溶融させることは困難であり、低損
失で高強度な融着接続を再現良く達成できない。すなわ
ち、図7に示すように、CO2 レーザ光P1 を導波路素
子10と光ファイバ5の突合わせ部15に上方から垂直
に照射すると、導波路素子10に比較して熱容量の小さ
い光ファイバ5側が過剰に溶融して光軸ずれや接続不良
を起こしてしまい、また、CO2 レーザ光P1 のスポッ
ト中心部のパワー密度が極めて大きいため、照射部と非
照射部の境界部の温度勾配が急激になり、照射時に大き
な熱応力が発生し、導波路素子10及び光ファイバ5の
耐久性を損なってしまう。このため、CO2 レーザ光P
1の焦点位置を故意にずらして、スポット径を大きくす
ると共にレーザパワーを上昇させることも考えられる
が、図示するように、複数の導波路10a…を備えた多
芯の導波路素子10の場合では、隣接する光ファイバ
(図示せず)にも悪影響を及ぼすことになり、同様に良
好な融着が行えないといった問題が生じてくる。
On the other hand, when a single-mode CO 2 laser beam is used as a fusion heat source, the CO 2 laser beam has a Gaussian distribution type energy distribution.
Even if the light is condensed using the n-Se lens 11, it hardly changes, so that it is difficult to uniformly melt the waveguide element 10 and the optical fiber 5 having greatly different heat capacities. Incoming connections cannot be achieved with good reproducibility. That is, as shown in FIG. 7, when the CO 2 laser beam P 1 is irradiated vertically from above onto the butting portion 15 of the waveguide element 10 and the optical fiber 5, the optical fiber having a smaller heat capacity than the waveguide element 10 is obtained. The 5th side melts excessively, causing optical axis shift and connection failure. Also, since the power density at the center of the spot of the CO 2 laser beam P 1 is extremely large, the temperature gradient at the boundary between the irradiated portion and the non-irradiated portion is increased. And a large thermal stress is generated at the time of irradiation, and the durability of the waveguide element 10 and the optical fiber 5 is impaired. Therefore, the CO 2 laser light P
Although it is conceivable to intentionally shift the focal position of 1 to increase the spot diameter and increase the laser power, as shown in the figure, in the case of a multi-core waveguide element 10 having a plurality of waveguides 10a. In this case, an adjacent optical fiber (not shown) is adversely affected, and similarly, there is a problem that good fusion cannot be performed.

【0007】そこで、本発明はこの問題点を有効に解決
するために案出されたものであり、その主な目的は導波
路素子と光ファイバとを低損失かつ高強度に融着接続す
ることができる新規な石英系ガラス導波路素子と光ファ
イバとの融着接続方法を提供するものである。
The present invention has been devised in order to effectively solve this problem, and its main purpose is to fusion splice a waveguide element and an optical fiber with low loss and high strength. It is intended to provide a novel method for fusion splicing a silica-based glass waveguide element and an optical fiber.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に第一の発明は、石英系ガラス導波路素子と光ファイバ
とを、両者の光軸がほぼ一致するように突合わせ調心し
た後、この突合わせ部に、集光されたCO2 レーザ光を
照射して、加熱し、両者を融着接続する方法において、
上記石英系ガラス導波路素子端面に光ファイバ端面を突
合わせる直前に、上記石英系ガラス導波路素子の端面と
光ファイバの端面間に、これを横断するように放電路を
形成したものであり、第二の発明は石英系ガラス導波路
素子の端面と光ファイバの端面とを、所定の間隔を隔て
て対向させると共に、両者の光軸が一致するように調心
した後、上記石英系ガラス導波路素子の端面側に、これ
を覆うように放電路を形成すると共に、その近傍にCO
2 レーザ光を照射して加熱し、その後、上記光ファイバ
の端面を上記放電路を通過させて溶融しつつ上記石英系
ガラス導波路の端面に突合わせ、その直後に、この放電
路を消去して上記石英系ガラス導波路素子の端面と光フ
ァイバの端面とを一体的に融着接続するものである。
According to a first aspect of the present invention, a quartz glass waveguide device and an optical fiber are butt-aligned so that their optical axes are substantially coincident with each other. In this method, the butt portion is irradiated with a focused CO 2 laser beam, heated, and fusion spliced.
Immediately before abutting the optical fiber end face to the quartz glass waveguide element end face, between the end face of the quartz glass waveguide element and the end face of the optical fiber, a discharge path was formed so as to cross the end face, According to a second aspect of the present invention, the end face of the silica glass waveguide element and the end face of the optical fiber are opposed to each other at a predetermined interval, and are aligned so that their optical axes coincide with each other. A discharge path is formed on the end face side of the waveguide element so as to cover it, and CO
(2) Heat by irradiating laser light, then abut the end face of the optical fiber while passing through the discharge path and melting while abutting against the end face of the silica glass waveguide, and immediately thereafter, erase the discharge path. Thus, the end face of the silica glass waveguide element and the end face of the optical fiber are integrally fusion-spliced.

【0009】[0009]

【作用】第一及び第二の発明によれば、光ファイバを石
英系ガラス導波路素子に突合わせる直前に、石英系ガラ
ス導波路素子の端面と光ファイバの端面間に形成された
放電路内で、その端面が適度に溶融された後、石英系ガ
ラス導波路素子の端面に突合わされることになる。従っ
て、光ファイバの端面が直角に切断されていなかった
り、導波路素子端面が直角研磨されていない場合であっ
ても、光ファイバの端面が放電路内で溶融軟化すること
により、両者が良好に突合わされて融着されることとな
り、伝送の損失の増大及び融着強度の低下等の不都合を
未然に防止することができる。
According to the first and second aspects of the present invention, the discharge path formed between the end face of the silica glass waveguide element and the end face of the optical fiber immediately before the optical fiber is brought into contact with the silica glass waveguide element. Then, after the end face is appropriately melted, the end face is brought into contact with the end face of the quartz glass waveguide element. Therefore, even when the end face of the optical fiber is not cut at a right angle or the end face of the waveguide element is not polished at a right angle, the end face of the optical fiber melts and softens in the discharge path, so that both are good. Butts are fused together, so that inconveniences such as an increase in transmission loss and a decrease in fusion strength can be prevented.

【0010】[0010]

【実施例】以下、本発明の一実施例を添付図面を参照し
ながら説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0011】図1〜図3は第一及び第二の発明に係る融
着接続方法の一実施例を示したものであり、図1中、1
0は導波路が形成された導波路素子、16はこの導波路
素子10の端面15aに対向し、その端面16aがやや
斜めに切断された状態の光ファイバ、17,18は放電
電極、19は放電電極17,18間に発生した放電路、
1 は融着熱源であるCO2 レーザ光、11はこのCO
2 レーザ光P1 を集光して導波路素子10と光ファイバ
16との突合わせ面15近傍に照射するためのZn−S
eレンズである。
FIGS. 1 to 3 show one embodiment of the fusion splicing method according to the first and second inventions.
Numeral 0 denotes a waveguide element on which a waveguide is formed, 16 denotes an optical fiber in which the end face 16a faces the end face 15a of the waveguide element 10 and the end face 16a is slightly obliquely cut, 17 and 18 denote discharge electrodes, and 19 denotes a discharge electrode. A discharge path generated between the discharge electrodes 17 and 18,
P 1 is a CO 2 laser beam as a heat source for fusion, and 11 is a CO 2 laser beam.
Zn-S for irradiating two laser beams P 1 to abutting surface 15 near the waveguide element 10 and the optical fiber 16 is condensed
e lens.

【0012】そして、この光ファイバ16と導波路素子
10の融着接続は、先ず、前述したような従来装置を用
いて導波路素子10と光ファイバ16を調芯した後、両
者の端面15a,16aを所定の間隔を隔てて対向させ
る。次に、CO2 レーザ光P1 を導波路素子10の端面
15a上方に垂直に照射して導波路素子10を加熱する
と共に、放電電極17,18で突合わせ部15近傍にこ
れを覆うように放電路19を発生させた後、光ファイバ
16を導波路素子10側に移動させて、その端面16a
を導波路素子10の端面15a側に近接させる。そし
て、この光ファイバ16の端面16aが放電路19内に
入ると、図2に示すように、やや斜めに切断された状態
の端面16aが溶融軟化し始め、さらに、その状態で光
ファイバ16を前進させて導波路素子10の突合わせ端
面15aに突当て、その直後に放電を停止し、次いで、
図3に示すようにCO2 レーザ光P1 の熱によって光フ
ァイバ16と導波路素子10が溶融一体化した後、CO
2 レーザ光P1 の照射を停止し、両者の融着接続が完了
する。
The fusion splicing of the optical fiber 16 and the waveguide element 10 is performed by first aligning the waveguide element 10 and the optical fiber 16 using the above-described conventional device, and then aligning the end faces 15a, 15a of the two. 16a are opposed to each other at a predetermined interval. Next, the waveguide element 10 is heated by vertically irradiating the CO 2 laser beam P 1 above the end face 15 a of the waveguide element 10, and the discharge electrodes 17 and 18 cover the vicinity of the abutting portion 15. After generating the discharge path 19, the optical fiber 16 is moved to the waveguide element 10 side, and the end face 16a
Is brought closer to the end face 15a side of the waveguide element 10. Then, when the end face 16a of the optical fiber 16 enters the discharge path 19, as shown in FIG. 2, the end face 16a in a slightly obliquely cut state starts to melt and soften. It is advanced to abut against the butted end face 15a of the waveguide element 10, and immediately after that, the discharge is stopped.
As shown in FIG. 3, after the optical fiber 16 and the waveguide element 10 are fused and integrated by the heat of the CO 2 laser beam P 1 ,
The second irradiation of the laser light P 1 is stopped, both fusion splice is completed.

【0013】このように、本発明方法は導波路素子10
と光ファイバ16の突合わせ部15に、予め放電路19
を形成するようにしたため、光ファイバ16が導波路素
子端面に突当たる前に光ファイバ16あるいは導波路素
子10の端面が溶融軟化された状態で、両者が突合わさ
れることになる。従って、本実施例のように光ファイバ
端面16aが斜めに切断されている場合は勿論、導波路
素子10の端面15aが直角研磨されていない等の状態
であっても両者の突合せ部15に間隙が生ずることがな
くなり、融着強度の低下や空気の混入等による接続損失
の増大が未然に防止されることになる。また、短時間で
両者の融着が行われることから光ファイバのコアの変形
等による、接続損失の増大を未然に防止することができ
る。
As described above, the method of the present invention provides the waveguide element 10
The discharge path 19 is previously set in the butting portion 15 of the
Is formed, the optical fiber 16 or the end face of the waveguide element 10 is melted and softened before the optical fiber 16 abuts on the end face of the waveguide element. Therefore, not only when the end face 16a of the optical fiber is obliquely cut as in this embodiment, but also when the end face 15a of the waveguide element 10 is not polished at right angles, a gap is formed between the abutting portions 15 thereof. Does not occur, and an increase in connection loss due to a decrease in the fusion strength or the incorporation of air is prevented. In addition, since the two are fused in a short time, it is possible to prevent an increase in connection loss due to deformation of the core of the optical fiber or the like.

【0014】そして、このような本発明方法を用い、放
電電流値15A、放電時間2秒、CO2 レーザパワー2
W、レーザ光照射時間4秒の条件で単一モード光ファイ
バと導波路素子の融着接続を行った結果、試料数50に
対して平均接続損失0.18dBと従来技術の0.25
dBよりも若干低減することができた。一方、引張強度
においては従来技術が平均1Kgの強度であったのに対
し、本発明方法では平均1.8Kgと大巾に増加するこ
とができた。さらに、最低強度も従来180gであった
のに対し、本発明方法では1.1Kgと、非常に安定な
融着接続が行われていることがわかった。
Using the method of the present invention, a discharge current value of 15 A, a discharge time of 2 seconds, and a CO 2 laser power of 2
As a result of performing fusion splicing of the single mode optical fiber and the waveguide element under the condition of W and the laser beam irradiation time of 4 seconds, the average connection loss was 0.18 dB with respect to 50 samples and 0.25 of the prior art.
It was able to be slightly reduced from dB. On the other hand, the tensile strength of the conventional technique was 1 Kg on average, whereas the tensile strength of the method of the present invention was 1.8 Kg on average. Furthermore, while the minimum strength was conventionally 180 g, in the method of the present invention, 1.1 Kg was found, indicating that very stable fusion splicing was performed.

【0015】[0015]

【発明の効果】以上要するに本発明によれば、光ファ
イバを溶融した状態で導波路素子に突当てるため、短時
間で溶融一体化し、光ファイバ導波路素子の端面角度の
影響を受けずに融着できる。その結果、融着部の機械強
度が高く、かつ安定しているため、長期信頼性が向上す
る。また、加熱時間が短いため、コアの変形が起きず、
低損失な融着接続が可能となる上に、作業時間が短縮さ
れ、低コスト化が図れる。
In summary, according to the present invention, since the optical fiber is abutted against the waveguide element in a molten state, the optical fiber is melted and integrated in a short time, and is fused without being affected by the end face angle of the optical fiber waveguide element. I can wear it. As a result, the mechanical strength of the fused portion is high and stable, so that long-term reliability is improved. Also, since the heating time is short, the core does not deform,
In addition to enabling low-loss fusion splicing, the working time can be shortened and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一及び第二の発明に係る一実施例を示す側面
図である。
FIG. 1 is a side view showing one embodiment according to the first and second inventions.

【図2】第一及び第二の発明に係る一実施例を示す側面
図である。
FIG. 2 is a side view showing one embodiment according to the first and second inventions.

【図3】第一及び第二の発明に係る一実施例を示す側面
図である。
FIG. 3 is a side view showing one embodiment according to the first and second inventions.

【図4】従来の石英系ガラス導波路素子と光ファイバと
の融着接続方法の一例を示す説明図である。
FIG. 4 is an explanatory view showing an example of a conventional fusion splicing method between a silica-based glass waveguide element and an optical fiber.

【図5】従来の石英系ガラス導波路素子と光ファイバと
の融着接続部付近の一例を示す一部破断斜視図である。
FIG. 5 is a partially broken perspective view showing an example of the vicinity of a fusion spliced portion between a conventional silica glass waveguide element and an optical fiber.

【符号の説明】[Explanation of symbols]

5,16 光ファイバ 10 石英系ガラス導波路素子 15 突合わせ部 15a 石英系ガラス導波路素子端面 16a 光ファイバ端面 19 放電路 P CO2 レーザ光5, 16 Optical fiber 10 Silica-based glass waveguide element 15 Butted portion 15a End face of silica-based glass waveguide element 16a End face of optical fiber 19 Discharge path P CO 2 laser beam

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 6/30 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G02B 6/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】石英系ガラス導波路素子と光ファイバと
を、両者の光軸がほぼ一致するように突合わせ調心した
後、この突合わせ部に、集光されたCO2 レーザ光を照
射して、加熱し、両者を融着接続する方法において、上
記石英系ガラス導波路素子端面に光ファイバ端面を突合
わせる直前に、上記石英系ガラス導波路素子の端面と光
ファイバの端面間に、これを横断するように放電路を形
成したことを特徴とする石英系ガラス導波路素子と光フ
ァイバとの融着接続方法。
1. A quartz glass waveguide device and an optical fiber are butt-aligned so that their optical axes are substantially coincident with each other, and the butt portion is irradiated with a focused CO 2 laser beam. Then, heating, in a method of fusion splicing the two, just before butting the optical fiber end face to the quartz glass waveguide element end face, between the end face of the quartz glass waveguide element and the end face of the optical fiber, A fusion splicing method between a silica glass waveguide element and an optical fiber, characterized in that a discharge path is formed so as to cross the fiber.
【請求項2】石英系ガラス導波路素子の端面と光ファイ
バの端面とを、所定の間隔を隔てて対向させると共に、
両者の光軸が一致するように調心した後、上記石英系ガ
ラス導波路素子の端面側に、これを覆うように放電路を
形成すると共に、その近傍にCO2 レーザ光を照射して
加熱し、その後、上記光ファイバの端面を上記放電路を
通過させて溶融しつつ上記石英系ガラス導波路の端面に
突合わせ、その直後に、この放電路を消去して上記石英
系ガラス導波路素子の端面と光ファイバの端面とを一体
的に融着接続することを特徴とする石英系ガラス導波路
素子と光ファイバとの融着接続方法。
2. An end face of a silica glass waveguide element and an end face of an optical fiber are opposed to each other at a predetermined interval, and
After the two optical axes are aligned, a discharge path is formed on the end face side of the quartz glass waveguide element so as to cover it, and the vicinity thereof is irradiated with CO 2 laser light and heated. Then, the end face of the optical fiber passes through the discharge path and is melted and abuts against the end face of the silica glass waveguide. Immediately thereafter, the discharge path is erased and the silica glass waveguide element is removed. Wherein the end face of the optical fiber and the end face of the optical fiber are integrally fusion-spliced.
JP1379194A 1994-02-07 1994-02-07 Fusion splicing method between silica glass waveguide element and optical fiber Expired - Fee Related JP3022132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1379194A JP3022132B2 (en) 1994-02-07 1994-02-07 Fusion splicing method between silica glass waveguide element and optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1379194A JP3022132B2 (en) 1994-02-07 1994-02-07 Fusion splicing method between silica glass waveguide element and optical fiber

Publications (2)

Publication Number Publication Date
JPH07218757A JPH07218757A (en) 1995-08-18
JP3022132B2 true JP3022132B2 (en) 2000-03-15

Family

ID=11843080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1379194A Expired - Fee Related JP3022132B2 (en) 1994-02-07 1994-02-07 Fusion splicing method between silica glass waveguide element and optical fiber

Country Status (1)

Country Link
JP (1) JP3022132B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367417A1 (en) * 2002-05-23 2003-12-03 Corning Incorporated Optical fiber alignment technique
BR112017009825A2 (en) * 2014-11-12 2017-12-26 Nanoprecision Products Inc laser polishing method of a connectorized optical fiber and a connectorized optical fiber formed therewith

Also Published As

Publication number Publication date
JPH07218757A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
JP2911932B2 (en) Optical waveguide connection
JP3615735B2 (en) Manufacture of collimators using optical fibers welded and connected to optical elements of considerable cross section
US7400799B2 (en) Optical device and fabrication method and apparatus for the same
US6822190B2 (en) Optical fiber or waveguide lens
US4263495A (en) Method of splicing optical fibers by CO2 -laser
JPH067207B2 (en) Splice method and splice device
JP4729394B2 (en) Optical component manufacturing method and apparatus, and optical component
US5897803A (en) Optical fiber attenuator made by fusion splicing offset fiber ends with extended heating after fusing
JP3661790B2 (en) Use of lasers for fusion splicing of optical components with significantly different cross-sectional areas.
JP3022132B2 (en) Fusion splicing method between silica glass waveguide element and optical fiber
JP2005017702A (en) Optical connector and its connecting structure
JP2958060B2 (en) Fusion splicing method of optical waveguide and optical fiber
JP2902426B2 (en) Fusion splicing method between silica glass waveguide and optical fiber
JP2004264843A (en) Optical fiber with optical function element, and method and device for manufacturing same
JPH0862448A (en) Fusing and connecting method for quartz glass waveguide element and optical fiber
JP2008286948A (en) Fusion splicing method
JPS60111208A (en) Formation of microlens on end surface of optical fiber
JPH02251916A (en) Method for connecting quartz-based optical waveguide circuit and optical fiber
JPS5857722B2 (en) fiber optic connector
JP3607642B2 (en) Optical fiber fusion splicer
JPH0875949A (en) Fusion splicing method for glass waveguide and optical fiber and fusion splicing device
JP2833350B2 (en) Device and method for connecting optical fiber and silica-based waveguide optical component
JPH05134137A (en) Structure of mount for mounting fiber fused connection type quartz waveguide device
JPH05341151A (en) Method for connecting optical component to optical fiber
JPH0233105A (en) Optical waveguide and manufacture of the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees