JP2833350B2 - Device and method for connecting optical fiber and silica-based waveguide optical component - Google Patents

Device and method for connecting optical fiber and silica-based waveguide optical component

Info

Publication number
JP2833350B2
JP2833350B2 JP4152284A JP15228492A JP2833350B2 JP 2833350 B2 JP2833350 B2 JP 2833350B2 JP 4152284 A JP4152284 A JP 4152284A JP 15228492 A JP15228492 A JP 15228492A JP 2833350 B2 JP2833350 B2 JP 2833350B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
optical
silica
optical fiber
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4152284A
Other languages
Japanese (ja)
Other versions
JPH05341152A (en
Inventor
健一 諸沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP4152284A priority Critical patent/JP2833350B2/en
Publication of JPH05341152A publication Critical patent/JPH05341152A/en
Application granted granted Critical
Publication of JP2833350B2 publication Critical patent/JP2833350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭酸ガスレーザ光を用
いて光ファイバと石英系導波路型光部品とを接続する接
続装置及び接続方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection device and a connection method for connecting an optical fiber and a silica-based waveguide type optical component using a carbon dioxide laser beam.

【0002】[0002]

【従来の技術】石英系導波路型光部品は、光通信時代の
ニーズに対応し得る量産化が可能で、石英系光ファイバ
と融着接続することにより低損失の永久接続ができるた
め、光波長合分波器や光スターカプラ等の受動素子の開
発が盛んに行われている。
2. Description of the Related Art Silica-based waveguide optical components can be mass-produced to meet the needs of the optical communication era, and low-loss permanent connection can be achieved by fusion splicing with a silica-based optical fiber. 2. Description of the Related Art Passive elements such as a wavelength multiplexer / demultiplexer and an optical star coupler have been actively developed.

【0003】一般に、石英系導波路型光部品と石英系光
ファイバとの融着接続には、炭酸ガスレーザ光が用いら
れている。炭酸ガスレーザ光(以下レーザ光)は波長が
10.6μmで、石英系材料に効率良く吸収されるた
め、融着接続用熱源として最適である。しかも、炭酸ガ
スレーザ光はレンズで集光することにより微小なスポッ
トとして石英系材料の任意の部位に照射して選択的に溶
融させることが可能である。
Generally, carbon dioxide laser light is used for fusion splicing between a silica-based waveguide optical component and a silica-based optical fiber. Carbon dioxide laser light (hereinafter, laser light) has a wavelength of 10.6 μm and is efficiently absorbed by a quartz-based material, so that it is optimal as a heat source for fusion splicing. In addition, the carbon dioxide laser light can be selectively melted by irradiating an arbitrary portion of the quartz-based material as a minute spot by condensing the laser beam with a lens.

【0004】石英系導波路型光部品を用いたモジュール
の製造段階では、図3に示すように金属パッケージ1の
中に固定された導波路型光部品2の端面に、光ファイバ
3のコア4及びクラッド5を露出させて突き合わせ、上
方よりレンズ6で集光されたレーザ光7を、矢印P1
向に接続部8に照射し、コア4と導波路型光部品2のコ
ア9とを融着接続すると共に、クラッド4と導波路型光
部品2のクラッド10とを融着接続する方法が一般的で
ある。尚、図3は導波路型光部品と光ファイバとの融着
接続の様子を示す図である。
At the stage of manufacturing a module using a silica-based waveguide optical component, the core 4 of the optical fiber 3 is attached to the end face of the waveguide optical component 2 fixed in a metal package 1 as shown in FIG. and butt to expose the cladding 5, the laser beam 7 condensed by the lens 6 from the upper side, by irradiating the connecting portion 8 in the arrow P 1 direction and a core 9 of the core 4 and the waveguide type optical component 2 fusion In general, the clad 4 and the clad 10 of the waveguide-type optical component 2 are fusion-spliced together with the spliced connection. FIG. 3 is a view showing a state of fusion splicing of a waveguide type optical component and an optical fiber.

【0005】ところで、導波路型光部品2及び光ファイ
バ3の融着接続を行うときは、両部品2、3の光軸が一
致してないと接続損失が増大するので、光軸を一致させ
ることが重要である。
By the way, when the optical component 2 and the optical fiber 3 are fusion spliced, if the optical axes of the two components 2 and 3 do not coincide, the connection loss increases. This is very important.

【0006】一方、波長1.3μm帯及び1.5μm帯
の長距離光通信にはコア径9μmのシングルモード光フ
ァイバが多用されており、光ファイバ3内の信号を合分
波するガラス導波路型光部品には8μm×8μmの矩形
状のコアを有するものが用いられている。すなわち外径
9μm程度のコアどうしを正確に位置合わせして融着接
続しなければ、接続部で過剰な光パワーの損失が生じ、
反射戻り光や散乱光の増加を招き、伝送特性が著しく劣
化してしまう。
On the other hand, single-mode optical fibers having a core diameter of 9 μm are frequently used for long-distance optical communication in the 1.3 μm and 1.5 μm wavelength bands, and a glass waveguide for multiplexing and demultiplexing signals in the optical fiber 3. As the mold optical component, one having a rectangular core of 8 μm × 8 μm is used. That is, unless the cores having an outer diameter of about 9 μm are accurately aligned and fusion-spliced, an excessive loss of optical power occurs at the joint,
Reflected return light and scattered light are increased, and transmission characteristics are significantly deteriorated.

【0007】そこでこのような接続部の軸ずれによる特
性劣化を防止するためには、融着接続前に導波路型光部
品2の光軸と光ファイバ3の光軸とを厳密に合わせるこ
とが要求される。
Therefore, in order to prevent the characteristic deterioration due to the misalignment of the connecting portion, the optical axis of the waveguide type optical component 2 and the optical axis of the optical fiber 3 must be strictly aligned before fusion splicing. Required.

【0008】一般に光軸の調整には、導波路型光部品2
又は光ファイバ3の一方からモニター用のレーザ光を入
射し、他方で受光したときにそのレーザ光のパワーが最
大となるように位置合わせを行う方法が用いられてい
る。
In general, for adjusting the optical axis, a waveguide type optical component 2 is used.
Alternatively, a method is used in which a laser beam for monitoring is incident on one of the optical fibers 3 and the laser beam is aligned so that the power of the laser beam is maximized when the laser beam is received on the other side.

【0009】[0009]

【発明が解決しようとする課題】ところが、コア4、9
の光軸合わせを行う最初の状態では各々のコア4、9が
全く同軸上に存在しないため、接続部8の上方または側
方より目視により観察しておおよその軸を合わせ(粗
調)、端面に適当なギャップを設けた状態で光ファイバ
3を上下及び左右に動かして光信号をひろうことが行わ
れている。これら導波路型光部品2及び光ファイバ3の
接続部8は数100μm程度の大きさしかないため、肉
眼での観察は不可能であり、通常は顕微鏡11を使って
拡大しながら位置合わせしている。
However, the cores 4, 9
In the first state where the optical axis alignment is performed, since the cores 4 and 9 are not coaxial at all, the axes are roughly adjusted (coarse adjustment) by visually observing from above or from the side of the connection portion 8, and the end face is adjusted. The optical signal is moved by moving the optical fiber 3 up and down and left and right with an appropriate gap provided. Since the connecting portion 8 of the waveguide type optical component 2 and the optical fiber 3 has a size of only about several 100 μm, it cannot be observed with the naked eye, and is usually positioned while enlarging using the microscope 11. I have.

【0010】また、炭酸ガスレーザ光を用いた接続装置
はレーザ光7を接続部8に向かって上方から照射してお
り、このレーザ光7を顕微鏡の光軸に沿って接合部8に
照射すれば観察しやすいが、炭酸ガスレーザ光は石英系
材料に対する吸収係数が大きいため、顕微鏡11に用い
られているレンズ(石英系)等を透過させることはでき
ない。
A connecting device using a carbon dioxide laser beam irradiates a laser beam 7 from above toward a connecting portion 8. If the laser beam 7 is radiated to the joining portion 8 along the optical axis of the microscope, Although it is easy to observe, the carbon dioxide laser light cannot transmit through a lens (quartz) used for the microscope 11 or the like because the absorption coefficient of the carbon dioxide laser light is large for the quartz-based material.

【0011】このため、図4(a)や図4(b)に示す
ように接続部8を観察する場合は顕微鏡11をレーザ光
7の光軸からはずし、斜め方向から観察しなければなら
なかった。その結果、導波路型光部品2の光軸と光ファ
イバ3の光軸とを目視により粗調する場合、上下左右方
向を正確に判別することができず長時間を費やしてい
た。尚、図4(a)及び図4(b)は従来の接続部付近
の観察の様子を示す図である。
For this reason, when observing the connection portion 8 as shown in FIGS. 4A and 4B, the microscope 11 must be removed from the optical axis of the laser beam 7 and observed obliquely. Was. As a result, when coarsely adjusting the optical axis of the waveguide type optical component 2 and the optical axis of the optical fiber 3 visually, it is not possible to accurately determine the up, down, left and right directions, and a long time has been spent. 4 (a) and 4 (b) are views showing a state of observation near a conventional connection portion.

【0012】また、斜めから見た映像で炭酸ガスレーザ
光7の照射位置を決める場合、接続部8の高さが変わる
と、正確な照射位置が分からなくなるという問題があ
り、作業性や位置精度にも問題があった。
When the irradiation position of the carbon dioxide gas laser beam 7 is determined based on an image viewed obliquely, if the height of the connecting portion 8 changes, the accurate irradiation position cannot be determined. There was also a problem.

【0013】そこで、本発明の目的は、上記課題を解決
し、光軸の正確な位置合わせが効率的に行え、しかも炭
酸ガスレーザ光の進行を全く妨げない光ファイバと石英
系導波路型光部品との接続装置及び接続方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, to efficiently perform accurate alignment of an optical axis, and to prevent an optical fiber and a quartz-based waveguide type optical component from impeding the progress of carbon dioxide laser light at all. It is to provide a connection device及beauty method of connecting.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に本発明は、炭酸ガスレーザ光を用いて、光ファイバと
石英系導波路型光部品とを接続する接続装置において、
接続部上方の炭酸ガスレーザ光の光軸上であって炭酸ガ
スレーザ光を集光するレンズと前記接続部の間に、炭酸
ガスレーザ光を透過すると共に、接続部を観察すべく接
続部からの可視光を反射するウインドーを傾斜して設
け、ウインドーの反射光軸上に、光ファイバの光軸と石
英系導波路型光部品の光軸との位置合わせをモニタする
ための撮像装置を設けたものである。また、本発明は、
炭酸ガスレーザ光を用いて、光ファイバと石英系導波路
型光部品とを接続する接続方法において、前記炭酸ガス
レーザ光を透過すると共に前記光ファイバと前記石英系
導波路型光部品との接続部からの可視光を反射するウイ
ンドーを、前記接続部上方の前記炭酸ガスレーザの光軸
であって炭酸ガスレーザ光を集光するレンズと前記接
続部の間に傾斜して配置し、前記ウインドーを介して前
記接続部に前記炭酸ガスレーザ光を照射すると共に、前
記ウインドーによって反射された接続部からの可視光を
モニタしながら前記光ファイバの光軸と前記石英系導波
路型光部品の光軸との位置合わせを行うことにある。
According to the present invention, there is provided a connecting apparatus for connecting an optical fiber and a silica-based waveguide type optical component using a carbon dioxide laser beam.
Carbon dioxide gas even on the optical axis of the connection portion above the carbon dioxide laser light
A window for transmitting carbon dioxide gas laser light and reflecting visible light from the connection portion for observing the connection portion between the lens for condensing the laser beam and the connection portion, and providing a reflected optical axis of the window. An imaging device for monitoring the alignment between the optical axis of the optical fiber and the optical axis of the silica-based waveguide optical component is provided above. Also, the present invention
In a connection method for connecting an optical fiber and a silica-based waveguide type optical component using a carbon dioxide gas laser beam, a connection method between the optical fiber and the silica-based waveguide type optical component while transmitting the carbon dioxide laser beam is provided. The window that reflects visible light of the above is connected to a lens on the optical axis of the carbon dioxide gas laser above the connection part and that focuses the carbon dioxide laser light.
It is disposed at an angle between the connecting portions, and while irradiating the connecting portion with the carbon dioxide laser beam through the window, and monitoring the visible light from the connecting portion reflected by the window, the light of the optical fiber is monitored. An object of the present invention is to perform alignment between an axis and an optical axis of the silica-based waveguide optical component.

【0015】[0015]

【作用】上記構成によれば、炭酸ガスレーザ光の光軸上
に、炭酸ガスレーザ光を透過するウインドーを傾斜して
設けたので、炭酸ガスレーザ光の接続部への照射を全く
妨げず、ウインドーが接続部からの可視光を撮像手段へ
反射し、この反射光を撮像手段によりモニタするので、
光ファイバの光軸と石英系導波路型光部品の光軸との正
確な位置関係を把握することができる。
According to the above construction, since the window for transmitting the carbon dioxide laser light is inclined on the optical axis of the carbon dioxide laser light, the irradiation of the carbon dioxide laser light to the connecting portion is not hindered at all, and the window is connected. Since the visible light from the unit is reflected to the imaging means and the reflected light is monitored by the imaging means,
An accurate positional relationship between the optical axis of the optical fiber and the optical axis of the silica-based waveguide optical component can be ascertained.

【0016】[0016]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0017】図1は本発明の光ファイバと石英系導波路
型光部品との接続装置(以下接続装置)の一実施例の概
念図である。
FIG. 1 is a conceptual diagram of one embodiment of a connecting device (hereinafter referred to as a connecting device) for connecting an optical fiber and a silica-based waveguide type optical component according to the present invention.

【0018】同図において、接続装置は、炭酸ガスレー
ザ光(以下レーザ光)21aを出射する炭酸ガスレーザ
22と、炭酸ガスレーザ22の光軸上に配置されレーザ
光21aの出射時間を制御するシャッタ23と、シャッ
タ23の前方(図の右側)に配置されレーザ光21aの
照射パワーを制御するアッテネータ24と、アッテネー
タ24の前方に傾斜して配置されレーザ光21aを接続
部25側(図の下方)に反射するミラー26と、ミラー
26の反射光軸上に配置されレーザ光21aを集光する
レンズ27と、レンズ27の出射側に傾斜して配置され
集光されたレーザ光21bを、低損失で透過させると共
に接続部25からの可視光を撮像装置29側へ反射する
ウインドー30と、ウインドー30で反射した可視光2
8の光軸上に配置された顕微鏡31と、顕微鏡31の出
射側に配置され可視光28を撮影するカメラ32と、カ
メラ32に接続され接続部25付近の様子、特に光ファ
イバ33の光軸と導波路型光部品34との光軸の位置合
わせの様子を可視画像として拡大表示するモニタ35と
で構成されている。
Referring to FIG. 1, a connecting device includes a carbon dioxide laser 22 for emitting a carbon dioxide laser beam (hereinafter referred to as a laser beam) 21a, a shutter 23 disposed on the optical axis of the carbon dioxide laser 22 and controlling the emission time of the laser beam 21a. An attenuator 24 disposed in front of the shutter 23 (right side in the figure) to control the irradiation power of the laser light 21a; The mirror 26 that reflects the light, the lens 27 that is arranged on the reflection optical axis of the mirror 26 and condenses the laser light 21a, and the condensed laser light 21b that is arranged obliquely on the emission side of the lens 27 are formed with low loss. A window 30 for transmitting the visible light from the connection unit 25 and reflecting the visible light from the connection unit 25 toward the imaging device 29;
8, a microscope 32 disposed on the emission side of the microscope 31 for photographing visible light 28, a microscope 32 connected to the camera 32, and a state near the connection portion 25, particularly, an optical axis of the optical fiber 33. And a monitor 35 for enlarging and displaying the state of alignment of the optical axis with the waveguide type optical component 34 as a visible image.

【0019】レンズ27には例えばZnSeからなり焦
点距離約20インチのものを用いた。
The lens 27 is made of, for example, ZnSe and has a focal length of about 20 inches.

【0020】ウインドー30は、厚さ約1mm、直径約
3.5インチの円板状でゲルマニウム又はシリコンから
なっており、レーザ光の光軸に対して約45°の角度で
固定されている。
The window 30 is a disc having a thickness of about 1 mm and a diameter of about 3.5 inches, made of germanium or silicon, and fixed at an angle of about 45 ° with respect to the optical axis of the laser beam.

【0021】レーザ光21aのパワーは、アッテネータ
24によって接続に最適となるように微調整でき、また
シャッタ23によって照射時間を設定し、過剰溶融を防
止できるようになっている。
The power of the laser beam 21a can be finely adjusted by an attenuator 24 so as to be optimal for connection, and the irradiation time is set by a shutter 23 to prevent excessive melting.

【0022】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0023】レーザ光21bの光軸上に、レーザ光21
bを透過するウインドー30を設けたので、レーザ光2
1bの接続部25への照射を全く妨げず、ウインドー3
0が接続部25からの可視光28を撮像装置29へ反射
し、この反射した可視光28を撮像装置29により図2
に示すような画像を可視表示するので、光ファイバ33
の光軸及び導波路型光部品34の光軸の左右の位置関係
が把握でき、光ファイバ33に波長約1.31μmのモ
ニタ光を矢印P2 方向に入射し、導波路型光部品34の
他端にコア径約50μmの受光用マルチモード光ファイ
バを置いて、モニタ35を見ながら光ファイバ33と導
波路型光部品34の左右の位置を合わせ、後に光ファイ
バ33を上下方向に移動させることにより、光ファイバ
33からのモニタ光を導波路型光部品34に容易に結合
させることができる。位置合わせ終了後はレーザ光のパ
ワーを所定の値に設定し、照射すれば、溶融を観察しな
がら接続できる。なお、図2は図1に示した装置により
得られる接続部付近の画像である。
The laser light 21b is placed on the optical axis of the laser light 21b.
b, the window 30 for transmitting the laser light 2
Irradiation of the connection portion 1b at the connection portion 25 is not hindered at all, and the window 3
0 reflects the visible light 28 from the connection portion 25 to the imaging device 29, and the reflected visible light 28 is reflected by the imaging device 29 in FIG.
Since the image shown in FIG.
The positional relationship between the right and left optical axes of the optical axis and the optical waveguide component 34 can be grasped, the optical fiber 33 enters the monitor light having a wavelength of about 1.31μm in the arrow P 2 direction, the waveguide type optical component 34 A multimode optical fiber for light reception with a core diameter of about 50 μm is placed at the other end, the left and right positions of the optical fiber 33 and the waveguide type optical component 34 are adjusted while watching the monitor 35, and the optical fiber 33 is later moved up and down. Thus, the monitor light from the optical fiber 33 can be easily coupled to the waveguide type optical component 34. After the alignment is completed, the power of the laser beam is set to a predetermined value, and irradiation can be performed while observing the melting. FIG. 2 is an image near the connection portion obtained by the apparatus shown in FIG.

【0024】以上において本実施例によれば、接続部2
5上方からレンズ27により集光された炭酸ガスレーザ
光21bの光軸上に、炭酸ガスレーザ光21bを透過す
ると共に、接続部25からの可視光を反射するウインド
ー30を設け、ウインドー30の反射光軸上に、光ファ
イバ33の光軸と導波路型光部品34の光軸との位置合
わせをモニタするための撮像装置29を設けたので、光
軸の正確な位置合わせが効率的に行え、しかも炭酸ガス
レーザ光21bの進行を全く妨げないで光ファイバ33
と石英系導波路型光部品34との接続を行うことができ
る。
As described above, according to the present embodiment, the connecting portion 2
5 A window 30 that transmits the carbon dioxide laser beam 21b and reflects the visible light from the connection portion 25 is provided on the optical axis of the carbon dioxide laser beam 21b collected by the lens 27 from above, and the reflected optical axis of the window 30 is provided. Since the imaging device 29 for monitoring the alignment between the optical axis of the optical fiber 33 and the optical axis of the waveguide-type optical component 34 is provided on the upper side, accurate alignment of the optical axis can be efficiently performed, and The optical fiber 33 does not hinder the progress of the carbon dioxide laser light 21b at all.
And the silica-based waveguide type optical component 34 can be connected.

【0025】[0025]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0026】(1) 炭酸ガスレーザ光の進行を妨げること
なく接合部を真上から見たモニタ画像情報を得ることが
できる。
(1) It is possible to obtain monitor image information in which the joint is viewed from directly above without hindering the progress of the carbon dioxide laser light.

【0027】(2) 融着接続すべく光ファイバと導波路型
光部品との左右の位置関係が正確に把握できるため、左
右の位置を目視で合わせ、上下を移動させるだけで光軸
の粗調が可能である。
(2) Since the right and left positional relationship between the optical fiber and the waveguide type optical component can be accurately grasped for fusion splicing, the left and right positions can be visually adjusted and the optical axis can be roughly moved only by moving up and down. Keying is possible.

【0028】(3) 接続部1か所当たりの所要時間を短縮
することができ、生産工数及びコストの大幅削減が可能
である。
(3) The required time per connection portion can be reduced, and the number of production steps and cost can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ファイバと石英系導波路型光部品と
の接続装置の一実施例の概念図である。
FIG. 1 is a conceptual diagram of an embodiment of a connection device for connecting an optical fiber and a silica-based waveguide type optical component according to the present invention.

【図2】図1に示した装置により得られる接続部付近の
画像である。
FIG. 2 is an image near a connection portion obtained by the apparatus shown in FIG. 1;

【図3】従来の導波路型光部品と光ファイバとの融着接
続の様子を示す図である。
FIG. 3 is a view showing a state of fusion splicing of a conventional waveguide type optical component and an optical fiber.

【図4】(a)及び(b)は従来の接続部付近の観察の
様子を示す図である。
FIGS. 4A and 4B are views showing a state of observation near a conventional connection portion.

【符号の説明】[Explanation of symbols]

21a、21b 炭酸ガスレーザ光 22 炭酸ガスレーザ 23 シャッタ 24 アッテネータ 25 接続部 26 ミラー 27 レンズ 28 可視光 29 撮像装置 30 ウインドー 31 顕微鏡 32 カメラ 33 光ファイバ 34 導波路型光部品 35 モニタ 21a, 21b Carbon dioxide gas laser beam 22 Carbon dioxide gas laser 23 Shutter 24 Attenuator 25 Connection part 26 Mirror 27 Lens 28 Visible light 29 Imaging device 30 Window 31 Microscope 32 Camera 33 Optical fiber 34 Waveguide type optical component 35 Monitor

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭酸ガスレーザ光を用いて、光ファイバと
石英系導波路型光部品とを接続する接続装置において、
接続部上方の炭酸ガスレーザ光の光軸上であって炭酸ガ
スレーザ光を集光するレンズと前記接続部の間に、該炭
酸ガスレーザ光を透過すると共に、前記接続部を観察す
べく前記接続部からの可視光を反射するウインドーを傾
斜して設け、該ウインドーの反射光軸上に、前記光ファ
イバの光軸と前記石英系導波路型光部品の光軸との位置
合わせをモニタするための撮像装置を設けたことを特徴
とする光ファイバと石英系導波路型光部品との接続装
置。
1. A connecting device for connecting an optical fiber and a silica-based waveguide type optical component using a carbon dioxide laser beam,
Carbon dioxide gas even on the optical axis of the connection portion above the carbon dioxide laser light
A window for transmitting the carbon dioxide gas laser beam and reflecting visible light from the connection portion for observing the connection portion between the lens for condensing the laser beam and the connection portion; An imaging device for monitoring the alignment between the optical axis of the optical fiber and the optical axis of the silica-based waveguide type optical component on the reflected optical axis of the optical fiber and the silica-based waveguide. Connection device for waveguide type optical components.
【請求項2】炭酸ガスレーザ光を用いて、光ファイバと
石英系導波路型光部品とを接続する接続方法において、
前記炭酸ガスレーザ光を透過すると共に前記光ファイバ
と前記石英系導波路型光部品との接続部からの可視光を
反射するウインドーを、前記接続部上方の前記炭酸ガス
レーザの光軸上であって炭酸ガスレーザ光を集光するレ
ンズと前記接続部の間に傾斜して配置し、前記ウインド
ーを介して前記接続部に前記炭酸ガスレーザ光を照射す
ると共に、前記ウインドーによって反射された接続部か
らの可視光をモニタしながら前記光ファイバの光軸と前
記石英系導波路型光部品の光軸との位置合わせを行うこ
とを特徴とする光ファイバと石英系導波路型光部品との
接続方法。
2. A connecting method for connecting an optical fiber and a silica-based waveguide type optical component using a carbon dioxide laser beam,
The window for reflecting visible light, an on the optical axis of the carbon dioxide laser of the connecting portions above carbonate from the connection portion between the optical fiber and the silica-based waveguide optical components as well as transmitting the carbon dioxide laser light A laser that focuses gas laser light
The connecting portion is inclined and disposed between the lens and the connecting portion, the connecting portion is irradiated with the carbon dioxide laser beam through the window, and the light is monitored while monitoring the visible light from the connecting portion reflected by the window. A method for connecting an optical fiber and a silica-based waveguide optical component, wherein the optical axis of the fiber is aligned with the optical axis of the silica-based waveguide optical component.
JP4152284A 1992-06-11 1992-06-11 Device and method for connecting optical fiber and silica-based waveguide optical component Expired - Fee Related JP2833350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152284A JP2833350B2 (en) 1992-06-11 1992-06-11 Device and method for connecting optical fiber and silica-based waveguide optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152284A JP2833350B2 (en) 1992-06-11 1992-06-11 Device and method for connecting optical fiber and silica-based waveguide optical component

Publications (2)

Publication Number Publication Date
JPH05341152A JPH05341152A (en) 1993-12-24
JP2833350B2 true JP2833350B2 (en) 1998-12-09

Family

ID=15537160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152284A Expired - Fee Related JP2833350B2 (en) 1992-06-11 1992-06-11 Device and method for connecting optical fiber and silica-based waveguide optical component

Country Status (1)

Country Link
JP (1) JP2833350B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136855A1 (en) 2000-03-23 2001-09-26 Corning Incorporated Method and apparatus for splicing optical fibers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360087A (en) * 1989-07-27 1991-03-15 Fujitsu Ltd Driving circuit for semiconductor laser
JP2783392B2 (en) * 1989-09-18 1998-08-06 住友電気工業株式会社 Optical fiber alignment method
JP2958060B2 (en) * 1990-07-06 1999-10-06 日立電線株式会社 Fusion splicing method of optical waveguide and optical fiber

Also Published As

Publication number Publication date
JPH05341152A (en) 1993-12-24

Similar Documents

Publication Publication Date Title
US7400799B2 (en) Optical device and fabrication method and apparatus for the same
US6430337B1 (en) Optical alignment system
US20040258370A1 (en) System for joining polarization-maintaining optical fiber waveguides
EP1395862A2 (en) Tapered lensed fiber for focusing and condenser applications
JP2002098762A (en) Electro-optical distance measuring instrument
US20240012204A1 (en) System and method for attaching optical fibers to chips
US20220244461A1 (en) Fiber exit element
US9566752B2 (en) Methods of forming a TIR optical fiber lens
US6820445B2 (en) Attachment of optical elements
US7181111B2 (en) Apparatus for splicing optical fibers
JP3654904B2 (en) Connecting optical fiber with twin core and fiber with single core
JP2833350B2 (en) Device and method for connecting optical fiber and silica-based waveguide optical component
US7224864B2 (en) Method for connecting an optical fiber to a grin lens, and a method for producing optical filter modules and filter modules produced according to said method
JP2005241822A (en) Fused optical part, fused optical part manufacturing method, and fused optical part manufacturing device
US6445856B1 (en) Optical beam monitoring device
US6633706B2 (en) Method for aligning optical fibers with a waveguide element
US10976495B2 (en) System and method for attaching optical fibers to chips
JP3022132B2 (en) Fusion splicing method between silica glass waveguide element and optical fiber
JP4555269B2 (en) Fiber type coupler, light detection device, and laser module
JP2008286948A (en) Fusion splicing method
JP2902426B2 (en) Fusion splicing method between silica glass waveguide and optical fiber
JPH02113212A (en) Waveguide type optical module
JPH05341153A (en) Laser multiconductor fusion connecting device
Nauriyal Fiber to Chip Fusion Splicing for Low Loss Optical Coupling
WO2023141029A1 (en) Fiber array unit formation

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees