JPH0470607A - Method and device for fusion splicing connection between optical waveguide and optical fiber - Google Patents

Method and device for fusion splicing connection between optical waveguide and optical fiber

Info

Publication number
JPH0470607A
JPH0470607A JP2177580A JP17758090A JPH0470607A JP H0470607 A JPH0470607 A JP H0470607A JP 2177580 A JP2177580 A JP 2177580A JP 17758090 A JP17758090 A JP 17758090A JP H0470607 A JPH0470607 A JP H0470607A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
optical fiber
fusion splicing
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2177580A
Other languages
Japanese (ja)
Other versions
JP2958060B2 (en
Inventor
Masaaki Kurosawa
黒沢 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2177580A priority Critical patent/JP2958060B2/en
Publication of JPH0470607A publication Critical patent/JPH0470607A/en
Application granted granted Critical
Publication of JP2958060B2 publication Critical patent/JP2958060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize low loss and high reliability by irradiating the top surface of an abutting part with a laser beam in an elliptic spot shape and making the irradiated area on the side of the optical waveguide larger than the optical waveguide. CONSTITUTION:The top surface of the abutting part is irradiated with the laser beam in the elliptic spot shape 4 and the irradiated area on the side of the optical waveguide (b) is made larger than the optical fiber (a). Therefore, the optical waveguide (b) and optical waveguide (a) can be connected by fusion splicing with the large spot without any influence upon an adjacent optical fiber nor the optical waveguide. Further, the irradiated area on the side of the optical waveguide is larger than the optical fiber (a), so the optical waveguide side which is larger in heat capacity than the optical fiber (a) is heated more. Consequently, the highly reliable connection with the low loss is obtained.

Description

【発明の詳細な説明】 一産業上の利用分野2 本発明は、ガラス光導波路端面に尤ファイバを突き合わ
せた状態て、該突き合わせ部上面に(、:02レーザビ
ームを照射して光ファイバと光導波路を融着接続する方
法に関するらのて′ある。
Detailed Description of the Invention 1. Industrial Field of Application 2 The present invention is a method of connecting an optical fiber to an optical fiber by abutting an optical fiber against an end face of a glass optical waveguide, and irradiating the top surface of the abutting portion with a laser beam (,:02). There are some notes on how to fusion splice wave channels.

二従来の技術ニ 一般に、低損失な光ファイバを用いた高能率の光伝送方
式には、光の分岐・分波等のR能を有する素子が必要て
゛あり、いろいろと開発検討されている。特に、石英光
導波路型の光回路素子では、良好な光機能特性と共に光
ファイバとの結合か重要な検討課題であった。
2. Prior Art In general, high-efficiency optical transmission systems using low-loss optical fibers require elements having an R function for branching and demultiplexing light, and various developments and studies are being carried out. In particular, in the case of quartz optical waveguide type optical circuit elements, it is important to consider how to combine them with optical fibers as well as good optical functional characteristics.

従来、第5図に示すように、光ファイバaa同志の融着
接続に関しては、電気によるアーク放電Cを利用する方
法が主ぺである。しかし石英系平板状光導波路体と光フ
ァイバとの融着接続にアーク放電方法を用いる方法では
、接続させるべき部材の形状が互いに異形であり、お互
いの熱容量も相違することから、その融着接続に困難さ
があり、また放電領域でも問題かあった。
Conventionally, as shown in FIG. 5, the main method for fusion splicing optical fibers AA to each other is to utilize electric arc discharge C. However, in the method of using the arc discharge method for fusion splicing between a quartz-based flat optical waveguide body and an optical fiber, the shapes of the members to be connected are irregular and their heat capacities are also different, so the fusion splicing There were also difficulties in the discharge area.

そこで現在では、石英系平板状光導波路体と光ファイバ
との接続には、CO□レーザによる方式が検討されてい
る。
Therefore, currently, a method using a CO□ laser is being considered for connecting the quartz-based flat optical waveguide body and the optical fiber.

第3図にCo2レーザによる融着接続方法とその装置の
概略を示す。
FIG. 3 shows an outline of a fusion splicing method using a Co2 laser and its equipment.

先ず、光ファイバaと光導波路体1とを微動台上にセッ
トし、光ファイバaと光導波路すとの光軸合わせを行い
結合させた後、CO□レーザ光は目に見えないのでHe
−Neレーザ光を参照光としてCO2レーザの照射位置
に結合部を移動させる。その後、Co2レーザのビーム
光を集光レンズc″C″最適なスポット径に絞り、照射
して融着接続をする。このときの融着接続条件は、ビー
ムスポット径が約150μm 、 C02レーザ出力は
1.2wである。この方法を用いて第4図に示すような
円形のスポット形状で光導波FI?Ibと光ファイバa
を溶融させ、1本ずつ接続を行っている。
First, the optical fiber a and the optical waveguide body 1 are set on a fine movement table, and after the optical axes of the optical fiber a and the optical waveguide are aligned and coupled, the CO□ laser beam is invisible, so the He
The coupling portion is moved to the CO2 laser irradiation position using the -Ne laser beam as reference light. Thereafter, the beam light of the Co2 laser is focused to the optimum spot diameter by the condenser lens c''C'' and irradiated to perform fusion splicing. The fusion splicing conditions at this time were that the beam spot diameter was approximately 150 μm and the C02 laser output was 1.2 W. Using this method, optical waveguide FI can be created with a circular spot shape as shown in FIG. Ib and optical fiber a
are melted and connected one by one.

[発明が解決しようとする課題1 ところで、光導波路と光ファイバとの接続では、低損失
で高信頼性のある接続が望まれる。この高信頼性を得る
ためには、接合部かいかに高強度にM着接続されたかに
因って決定される。そこで接合部を高強度で接続するに
は、光導波路体と光ファイバの熱容量の違いを考慮しな
がら、光導波路体の接合部分を十分に溶融させることが
重要であり、そのためには、できるだけ大きなスポット
径を用いて広範囲を平均的に加熱する必要がある。
[Problem to be Solved by the Invention 1] Incidentally, in connection between an optical waveguide and an optical fiber, a connection with low loss and high reliability is desired. In order to obtain this high reliability, it is determined by how high the strength of the M-joint is made at the joint. Therefore, in order to connect the joint part with high strength, it is important to sufficiently melt the joint part of the optical waveguide body while taking into consideration the difference in heat capacity between the optical waveguide body and the optical fiber. It is necessary to averagely heat a wide range using the spot diameter.

しかし、多分岐・多分波素子の光導波路体では、その光
導波路間隔が250μmと設定されているので、隣接さ
れている光ファイバや光導波路を加熱・変形させるため
、スポット径にも上限で限界があった。
However, in the optical waveguide body of a multi-branch/multi-wavelength element, the spacing between the optical waveguides is set to 250 μm, so the spot diameter has an upper limit because it heats and deforms the adjacent optical fibers and optical waveguides. was there.

また、コア層上を被覆しているクラット層の膜質・膜厚
によって、CO2レーザ出力を変える度に、スポット径
を最適なものに合わせなければならない。現在のレーザ
出力1.2W付近では、膜厚が厚くなるほど、また膜質
の溶融点が低くなるほど、クラット層が穴を形成して、
低損な接続かできない。
Furthermore, depending on the quality and thickness of the crat layer covering the core layer, the spot diameter must be adjusted to an optimum value each time the CO2 laser output is changed. At around the current laser output of 1.2 W, the thicker the film and the lower the melting point of the film, the more holes are formed in the crat layer.
Only low-loss connections are possible.

本発明の目的は、前記した従来技術の欠点を解明し、隣
接する光ファイバ及び光導波路に何等外敵悪影響を与え
ること無く、光導波路と光ファイバを低損失且つ高信頼
性をもって融着接続する方法と、それを行うことができ
る装置を提供することにある。
The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a method for fusion splicing optical waveguides and optical fibers with low loss and high reliability without causing any harmful effects on adjacent optical fibers and optical waveguides. and to provide a device that can do that.

[課題を解決するための手段] 本発明の光導波路と光ファイバの融着接続方法は、ガラ
ス光導波路体端面に光ファイバを突き合わせた状態で、
該突き合わせ部上面にCO□レーザビームを照射して光
ファイバと光導波路を融着接続する方法において、該突
き合わせ部上面に照射するレーザビームのスポット形状
を楕円形とし、光ファイバよりも光導波路体側の照射領
域を多くするものである。
[Means for Solving the Problems] The method of fusion splicing an optical waveguide and an optical fiber of the present invention comprises: abutting an optical fiber against an end face of a glass optical waveguide;
In a method of fusion splicing an optical fiber and an optical waveguide by irradiating the upper surface of the abutting portion with a CO□ laser beam, the spot shape of the laser beam irradiating the upper surface of the abutting portion is elliptical, and the spot shape is set to be closer to the optical waveguide body than the optical fiber. This increases the irradiation area.

また、本発明の光導波路と光ファイバの融着接続装置は
、ガラス光導波路端面に光ファイバを突き合わせた状態
で、該突き合わせ部上面に楕円形状のCO□レーザビー
ムを照射して光ファイバと光導波路を融着接続する装置
において、CO2レーザ光源、集光レンズ、集光レンズ
をX、Y、Z方向に偏位させる装置を具備する構成のも
のである。
Further, in the fusion splicing device for optical waveguides and optical fibers of the present invention, with the optical fibers abutted against the end faces of the glass optical waveguides, an elliptical CO□ laser beam is irradiated onto the upper surface of the abutted portions to connect the optical fibers and the optical fibers. The apparatus for fusion splicing wave paths is equipped with a CO2 laser light source, a condensing lens, and a device for deflecting the condensing lens in the X, Y, and Z directions.

[作用] 突き合わせ部上面に照射するC 02レーザビームのス
ボ・ソト形状が楕円形であることから、第1図に示すよ
うに、隣接する他の光ファイバや光導波路に影響を与え
ないで、より大きなスポットで光導波路と光ファイバを
融着接続することかできる。しかも、光ファイバよりも
光導波路体側の照射領域の方が多いため、光ファイバよ
りも熱容量の大きい光導波路体側をより多く加熱するこ
ととなり、低損失で高信頼の接続を得ることができる。
[Operation] Since the cross-section shape of the C02 laser beam irradiated onto the top surface of the abutment part is elliptical, as shown in FIG. Optical waveguides and optical fibers can be fusion spliced using a larger spot. Moreover, since the irradiation area on the optical waveguide body side is larger than that on the optical fiber, the optical waveguide body side, which has a larger heat capacity than the optical fiber, is heated more, making it possible to obtain a highly reliable connection with low loss.

C02レーザ光源、集光レンズ、集光レンズをX、Y、
Z方向に偏位させる装置を具備することにより、CO2
レーザ光のビームを集光レンズの中央部より周辺部に移
動させ、楕円形状の最適スポット形にして利用すること
ができる。
C02 laser light source, condensing lens, condensing lens in X, Y,
By providing a device that deflects in the Z direction, CO2
By moving the laser beam from the center to the periphery of the condensing lens, it can be used in an optimal elliptical spot shape.

[実施例] 以下、本発明を図面を参照しなから説明する。[Example] The present invention will be described below with reference to the drawings.

第1図において、1は石英系平板状光導波路体であり、
複数個の光導波路す及び光の分岐・分波等の機能素子を
形成した光回路素子を構成している。光導波路#1の端
面21PIには光フアイバアレイ3が位置しており、そ
れら個々の光ファイバaは、カラス光導波路すの端面に
突き合わせられた状態で、該突き合わせ部上面にCO□
レーザビームのスポット4を照射することにより融着接
続される。
In FIG. 1, 1 is a quartz-based flat optical waveguide body,
It constitutes an optical circuit element in which a plurality of optical waveguides and functional elements such as light branching and demultiplexing are formed. The optical fiber array 3 is located on the end surface 21PI of the optical waveguide #1, and each of the optical fibers a is abutted against the end surface of the glass optical waveguide.
Fusion splicing is performed by irradiating the laser beam spot 4.

このレーザビームのスポット4の形状は、従来の第4図
に示した円形ではなく、それより横に広がった楕円形に
制御されている。このようにCO□レーザビームのスポ
ット4の形状を楕円形にすることにより、第1図に示す
ように、隣接する他の光ファイバaや光導波路体1に影
響を与えないで、より大きなスポットとすることができ
、光導波FI@bと光ファイバaへの加熱配分を適切に
制御することが可能になり、低損失で高信頼の融着接続
を達成することができる。
The shape of the spot 4 of this laser beam is controlled to be an ellipse that spreads laterally, rather than the conventional circle shown in FIG. By making the shape of the spot 4 of the CO□ laser beam elliptical in this way, as shown in FIG. It becomes possible to appropriately control the heat distribution to the optical waveguide FI@b and the optical fiber a, and it is possible to achieve a highly reliable fusion splicing with low loss.

Co、L−ザによる融着接続装置の基本的構成は、第3
図で既に説明したところとほぼ同じである。即ち、先ず
、光ファイバaと光導波路体1とを微動台上にセットし
、光ファイバaと光導波路すとの光軸合わせを行い結き
させる。CO2レーザ6の光は目に見えないので、ます
He−Neレーザ7の光を委照光として、CO2レーザ
の照射予定位置に結合部を移動させる2そめ後、CO2
レーザ6のビーム光を照射して融着接続をする。
The basic configuration of the fusion splicing device using Co, L-za is as follows:
This is almost the same as what has already been explained in the figure. That is, first, the optical fiber a and the optical waveguide body 1 are set on a fine movement table, and the optical axes of the optical fiber a and the optical waveguide body 1 are aligned and connected. Since the light from the CO2 laser 6 is invisible, the light from the He-Ne laser 7 is used as the illumination light, and after moving the joint to the planned irradiation position of the CO2 laser, the CO2
The beam of laser 6 is irradiated to perform fusion splicing.

但し、従来の場合と異なり、cO□レーザ6がら出射さ
れたビームは、ヒームスプリツタ1反射ミラー等を通過
した後、ビーム形状を任意に制御可能な集光レンズ8に
よって比較的大きい楕円形状スポットとされ、適切な照
射パワーによって、光ファイバと光導波路の結合部に照
射される。
However, unlike the conventional case, the beam emitted from the cO□ laser 6 is converted into a relatively large elliptical spot by a condensing lens 8 whose beam shape can be arbitrarily controlled after passing through a heam splitter 1 reflecting mirror, etc. , the coupling portion between the optical fiber and the optical waveguide is irradiated with appropriate irradiation power.

この楕円形状スポット4の照射領域は、石英系平板状光
導波路体1と光ファイバaとの形状及びお互いの熱容量
の違いを考慮して、第1図の如く、光導波路体1(lI
Iかより多く照射されるように位1制御される。これに
より、光導波路体lも大きなスポット径で且つ広範囲に
平均的に加熱され、このため光導波路体1の接合部分も
十分に溶融される。しかも、隣接されている光ファイバ
aへの照射領域は小さいので、光ファイバaを加熱変形
させるることかない。従って、光ファイバaと光導波路
すとの低損失且つ信頼性の高い融着接続が可能となる。
The irradiation area of this elliptical spot 4 is determined as shown in FIG.
It is controlled by 1 so that more light is irradiated than 1. As a result, the optical waveguide body 1 is also heated uniformly over a wide range with a large spot diameter, and therefore the joint portion of the optical waveguide body 1 is also sufficiently melted. Moreover, since the irradiation area to the adjacent optical fiber a is small, the optical fiber a is not heated and deformed. Therefore, low loss and highly reliable fusion splicing between the optical fiber a and the optical waveguide becomes possible.

上記のようにCO2レーザビームを楕円形スポットとし
て突き合わせ部上面に集光させる方法としては幾つかの
方法があるが、最も簡便な方法は、集光レンズ8の位置
をずらせることによって実現させる方法である。詳述す
るに、一般にCO2レーザ融着装置に使用されているビ
ーム用集光レンズは、Zn5e製の凸型レンズであるた
め、ビームスポット形状は円形状に集光される。そこで
、このCO2レーザ光のビームを、集光レンズの中央部
より周辺部に移動させることにより、楕円形状に最適ス
ポット形にして利用する。このため本実施例の場合、融
着接続装置は、集光レンズ8をX、Y、Z方向に偏位さ
せる装置を具備しており、これによりし・−ザビームを
楕円形スポットにしている。
As mentioned above, there are several methods for converging the CO2 laser beam as an elliptical spot on the top surface of the butt part, but the simplest method is to shift the position of the condenser lens 8. It is. Specifically, since the beam condensing lens generally used in CO2 laser fusion devices is a convex lens made of Zn5e, the beam spot is condensed into a circular shape. Therefore, by moving the CO2 laser beam from the center to the periphery of the condenser lens, it is used in an optimal elliptical spot shape. For this reason, in the case of this embodiment, the fusion splicer is equipped with a device for deflecting the condenser lens 8 in the X, Y, and Z directions, thereby making the beam an elliptical spot.

しかし、凸型レンズの代りに、シリカドリカレンズのよ
うに円柱の屈折面を持ち、レンズの屈折率方向にのみ集
光し長さ方向には作用しないカマボコ型レンズを利用す
ることによっても、楕円形状が達成される。要するに、
レンズの形状1曲率。
However, instead of a convex lens, you can use a semi-cylindrical lens like a silica lens, which has a cylindrical refractive surface, focuses light only in the refractive index direction of the lens, and does not act in the length direction. shape is achieved. in short,
Lens shape 1 curvature.

屈折率などを適宜設計することにより、任意の形状のビ
ームスポットを得ることができる。
By appropriately designing the refractive index, etc., a beam spot of any shape can be obtained.

第2図は、複数の光ファイバa1〜anと光導波路b1
〜bnとを、1つのレーザービームスポットで同時に融
着接続する実施例を示す。この場合、図示するように、
より細長いビームスポット5にすることで、多芯ファイ
バと光導波路とを一括して融着することができ、非常に
能率良い接続方法が可能となる。
FIG. 2 shows a plurality of optical fibers a1 to an and an optical waveguide b1.
An example is shown in which fusion splicing is performed with one laser beam spot. In this case, as shown,
By making the beam spot 5 more elongated, the multicore fiber and the optical waveguide can be fused together, making it possible to achieve a very efficient connection method.

[発明の効果] 以上述べたように、本発明によれば、次のような優れた
効果を発揮する。
[Effects of the Invention] As described above, according to the present invention, the following excellent effects are exhibited.

(1)紹長い楕円形状のビームスボ、 1〜にすること
により、光導波路部か広範囲で平均的に加熱され、Ml
!l/!¥融粂件の下で高強度にM着接続されるので信
頼性の向上が図れる。
(1) A long elliptical beam substrate, by setting 1 to 1, the optical waveguide section is heated evenly over a wide range, and the Ml
! l/! Reliability can be improved because M-connection is made with high strength under the yen connection.

(2)多ボートの光導波路体に光ファイバを複数本接続
するとき、隣接する光ファイバや光導波路に影響しない
幅で、長手方向には広いビームスボン1〜にすることに
より、低損失で信頼性のある融着接続が可能となる。
(2) When connecting multiple optical fibers to a multi-boat optical waveguide body, by using a beam ribbon 1~ with a width that does not affect adjacent optical fibers or optical waveguides and is wide in the longitudinal direction, it is possible to achieve low loss and reliability. This enables flexible fusion splicing.

(3)小さい円形状のスポットでは、どうしても部分的
な加熱方式となるため、光導波路部に急峻な楕遣上の変
化、又は性質的な変動、例えば光導波路部を溶かしてし
まったり急激な屈折率の変化を与え特性上問題があった
が、本発明では広い範囲を滑らかに加熱することができ
るので、特性に余り悪影響を与えずず低損失の接続が可
能である。
(3) In the case of a small circular spot, a partial heating method is inevitable, so there may be a sharp change in ellipse or a change in the properties of the optical waveguide, such as melting of the optical waveguide or sudden refraction. However, in the present invention, a wide range can be smoothly heated, so that a low-loss connection is possible without affecting the characteristics too much.

(4)多芯光導波路と複数本の光ファイバとを一括融着
接続することができる。
(4) A multicore optical waveguide and a plurality of optical fibers can be fused and spliced at once.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光導波路と光ファイバの融着接続
方法の実施例を示す図、第2図は本発明の他の実施例を
示す図、第3図はC02レーザによる融着接続装置を示
した概略図、第4図は従来の融着接続方法を示す図、第
5図は従来のアーク放電による光フアイバ同志の融着接
続方法を示した略図である。 図中、1は石英系平板状光導波路体、2は光導波路体の
端面、3は光フアイバアレイ、45はCO2レーザビー
ムのスポット、6はCO2レーザ、7はHe−Neレー
ザ、8は集光レンズ8、aは光ファイバ、bは光導波路
を示す。 特許出願人  日立電線株式会社 代理人弁理士  絹 谷 信 雄 7垂匹三ロ ー\ 篤3図
Fig. 1 is a diagram showing an embodiment of the fusion splicing method for optical waveguides and optical fibers according to the present invention, Fig. 2 is a diagram showing another embodiment of the present invention, and Fig. 3 is a fusion splicing device using a C02 laser. 4 is a diagram showing a conventional fusion splicing method, and FIG. 5 is a schematic diagram showing a conventional fusion splicing method of optical fibers using arc discharge. In the figure, 1 is a quartz-based flat optical waveguide body, 2 is an end face of the optical waveguide body, 3 is an optical fiber array, 45 is a spot of a CO2 laser beam, 6 is a CO2 laser, 7 is a He-Ne laser, and 8 is a concentrator. In the optical lens 8, a indicates an optical fiber and b indicates an optical waveguide. Patent Applicant Hitachi Cable Co., Ltd. Representative Patent Attorney Nobuo Kinutani

Claims (1)

【特許請求の範囲】 1、ガラス光導波路体端面に光ファイバを突き合わせた
状態で、該突き合わせ部上面に CO_2レーザビームを照射して光ファイバと光導波路
を融着接続する方法において、該突き合わせ部上面に照
射するレーザビームのスポット形状を楕円形とし、光フ
ァイバよりも光導波路体側の照射領域を多くすることを
特徴とする光導波路と光ファイバの融着接続方法。 2、ガラス光導波路端面に光ファイバを突き合わせた状
態で、該突き合わせ部上面に楕円形状のCO_2レーザ
ビームを照射して光ファイバと光導波路を融着接続する
装置において、CO_2レーザ光源、集光レンズ、集光
レンズをX、Y、Z方向に偏位させる装置を具備するこ
とを特徴とする光導波路と光ファイバの融着接続装置。
[Claims] 1. In a method of fusion-splicing an optical fiber and an optical waveguide by irradiating a CO_2 laser beam onto the upper surface of the abutted portion with the optical fiber abutted against the end face of the glass optical waveguide body, the abutted portion A method for fusion splicing an optical waveguide and an optical fiber, characterized in that the spot shape of the laser beam irradiated onto the upper surface is elliptical, and the irradiation area is larger on the optical waveguide body side than on the optical fiber. 2. In a device that fusion-connects the optical fiber and the optical waveguide by irradiating an elliptical CO_2 laser beam onto the upper surface of the abutted portion with the optical fiber butted against the end face of the glass optical waveguide, a CO_2 laser light source, a condensing lens A fusion splicing device for an optical waveguide and an optical fiber, comprising a device for deflecting a condenser lens in X, Y, and Z directions.
JP2177580A 1990-07-06 1990-07-06 Fusion splicing method of optical waveguide and optical fiber Expired - Fee Related JP2958060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177580A JP2958060B2 (en) 1990-07-06 1990-07-06 Fusion splicing method of optical waveguide and optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177580A JP2958060B2 (en) 1990-07-06 1990-07-06 Fusion splicing method of optical waveguide and optical fiber

Publications (2)

Publication Number Publication Date
JPH0470607A true JPH0470607A (en) 1992-03-05
JP2958060B2 JP2958060B2 (en) 1999-10-06

Family

ID=16033461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177580A Expired - Fee Related JP2958060B2 (en) 1990-07-06 1990-07-06 Fusion splicing method of optical waveguide and optical fiber

Country Status (1)

Country Link
JP (1) JP2958060B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341151A (en) * 1992-06-09 1993-12-24 Hitachi Cable Ltd Method for connecting optical component to optical fiber
JPH05341152A (en) * 1992-06-11 1993-12-24 Hitachi Cable Ltd Device for connecting optical fiber to quartz waveguide type optical component
US5678090A (en) * 1994-02-04 1997-10-14 Nikon Corporation Zoom-type viewfinder device having a multi-sectioned viewfinder cam
US6352376B2 (en) * 1998-07-17 2002-03-05 Lightpatch Technologies, Inc. Use of a laser to fusion-splice optical components of substantially different cross-sectional areas
US11549881B2 (en) 2017-02-20 2023-01-10 The Regents Of The University Of California High efficiency optical detection of biomolecules in micro-capillaries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325990A (en) 2003-04-28 2004-11-18 Fujikura Ltd Fusion splicing method and fusion splice machine for different diameter optical fibers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145203A (en) * 1984-08-09 1986-03-05 Nippon Telegr & Teleph Corp <Ntt> Welding connection device for optical fiber
JPS6391608A (en) * 1986-10-06 1988-04-22 Fujitsu Ltd Method for connecting optical waveguide and optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145203A (en) * 1984-08-09 1986-03-05 Nippon Telegr & Teleph Corp <Ntt> Welding connection device for optical fiber
JPS6391608A (en) * 1986-10-06 1988-04-22 Fujitsu Ltd Method for connecting optical waveguide and optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341151A (en) * 1992-06-09 1993-12-24 Hitachi Cable Ltd Method for connecting optical component to optical fiber
JPH05341152A (en) * 1992-06-11 1993-12-24 Hitachi Cable Ltd Device for connecting optical fiber to quartz waveguide type optical component
US5678090A (en) * 1994-02-04 1997-10-14 Nikon Corporation Zoom-type viewfinder device having a multi-sectioned viewfinder cam
US6352376B2 (en) * 1998-07-17 2002-03-05 Lightpatch Technologies, Inc. Use of a laser to fusion-splice optical components of substantially different cross-sectional areas
US11549881B2 (en) 2017-02-20 2023-01-10 The Regents Of The University Of California High efficiency optical detection of biomolecules in micro-capillaries

Also Published As

Publication number Publication date
JP2958060B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
JP2709388B2 (en) Optical fiber connection method and connection structure, and processing method of optical fiber connection structure
US6822190B2 (en) Optical fiber or waveguide lens
KR100822953B1 (en) Optical waveguide lens and method of fabrication
JPS6112242B2 (en)
JPS62501732A (en) fiber-lens optical coupler
KR100288445B1 (en) Method for coupling two optical fibers one of which has cladding diameter different from the other
US5351323A (en) Optical fiber for coupling to elliptically-shaped source
CN1285520A (en) Miniature elbow joint in optical fiber and method for forming same
JPH0470607A (en) Method and device for fusion splicing connection between optical waveguide and optical fiber
JPS62253105A (en) Single mode optical fiber coupler and manufacture thereof
JPS60150011A (en) Manufacture of optical demultiplexing and multiplexing part
JPH05288967A (en) Optical fiber for laser input
EP0215713B1 (en) Optical fiber having elliptical lens and method of producing the same
JPH07128544A (en) Connecting structure for optical fiber and optical waveguide
JP2004264843A (en) Optical fiber with optical function element, and method and device for manufacturing same
CN216979357U (en) Optical waveguide for compressing and shaping input light spots generated by optical fiber array
JP2008286948A (en) Fusion splicing method
JPH07294770A (en) Method for connecting quartz waveguide to optical fiber and structure of juncture
JPS63163806A (en) Connection structure between semiconductor laser and optical fiber
JPH05341153A (en) Laser multiconductor fusion connecting device
JPS5857722B2 (en) fiber optic connector
JPH0218505A (en) Optical fiber and its connecting method
JP2574555Y2 (en) Connection structure between optical waveguide and optical fiber
JPH07218757A (en) Method for connecting quartz-based glass waveguide element and optical fiber by fusion splicing
JPH07250025A (en) Signal transmitting method for optical communication system

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees