JPH07128544A - Connecting structure for optical fiber and optical waveguide - Google Patents

Connecting structure for optical fiber and optical waveguide

Info

Publication number
JPH07128544A
JPH07128544A JP27835693A JP27835693A JPH07128544A JP H07128544 A JPH07128544 A JP H07128544A JP 27835693 A JP27835693 A JP 27835693A JP 27835693 A JP27835693 A JP 27835693A JP H07128544 A JPH07128544 A JP H07128544A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
junctures
optical fiber
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27835693A
Other languages
Japanese (ja)
Inventor
Michitaka Okuda
通孝 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27835693A priority Critical patent/JPH07128544A/en
Publication of JPH07128544A publication Critical patent/JPH07128544A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the connecting structure for an optical waveguide which is easily adjustable and has high reliability to optical axis misalignment by an environmental fluctuation by aligning and connecting the optical waveguide and optical fibers and simultaneously and locally heat treating the junctures thereof, then fixing the junctures. CONSTITUTION:This connecting structure for the optical waveguide 1 and the optical fibers 2 is constituted to connect the core end face of the optical fiber 2 with the incident side end face and exit side end face of the optical waveguide 1 formed in a substrate. The juncture of the optical waveguide 1 and the optical fibers 2 are simultaneously and locally heat treated in the state of connecting the junctures and are then fixed in order to expand and nearly align the mode field diameter of the junctures of the optical waveguide 1 and the optical fibers 2. The mode field diameters are simultaneously expanded, by simultaneously heating the junctures of the optical waveguide 1 and the optical fibers 2 in such a manner and, therefore, the easy connection with high efficiency is executed by rough alignment even if the optical waveguide 1 and optical fibers 2 which are previously expanded in the cores of the junctures are not prepared.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信ネットワークに
おいて光を分岐・合流、又は分波・合波するのに使用さ
れる光導波路型部品の接続構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection structure of optical waveguide type components used for branching / combining or demultiplexing / combining light in an optical communication network.

【0002】[0002]

【従来の技術】従来、光導波路と光ファイバとを接続す
るには、両者の各端面を突き合わせるバットジョイント
法が用いられてきた。即ち、各光の通るコアの光軸の位
置合わせをする事により、損失の最も低い場所で固定す
る方法が用いられている。この方法は、接続箇所が1ヶ
所の場合は容易に接続可能であるが、接続が多数ヶ所に
わたる場合、かつ伝搬光がシングルモード導波の場合に
は次のような問題点を有している。
2. Description of the Related Art Conventionally, in order to connect an optical waveguide and an optical fiber, a butt joint method of abutting the end faces of both has been used. That is, a method is used in which the optical axis of the core through which each light passes is aligned so that the core is fixed at the position where the loss is lowest. This method can be easily connected when there is only one connection point, but has the following problems when there are many connections and the propagating light is single mode waveguide. .

【0003】[0003]

【発明が解決しようとする課題】従来の技術において
は、使用する光導波路のコア間ピッチと光ファイバ側
(ファイバアレイ側)のコア間ピッチの誤差により、伝
搬光にパワーロスが生じ、ポートによりそれが異なる。
コア内を伝搬する光のモードフィールド径は、約10μ
m程度で、その位置合わせ精度としてサブミクロンオー
ダの精度が必要となり、それに伴い各コア間間隔として
もサブミクロンオーダの精度が必要とされ、そうした部
品の製作が困難である。又、接続部の光路径が細い為、
温湿度、振動等の環境変動による光軸ズレにより、接続
部の特性が変動し、信頼性に乏しいという問題点があっ
た。そこで接続部のモードフィールド径を増大させる事
により、即ち光ファイバにコア拡大ファイバ、導波路側
もそれに合わせ接続部のモードフィールド径を拡大した
光導波路を使って接続する事により前記問題点を改善し
ようとするものもあるが、この場合予めコア拡大ファイ
バ、同導波路を準備して行わなければならず、それぞれ
特殊な加工を経て作製される為、改善されるもののコス
トが高く、部品製作まで長時間かかってしまうという問
題点を生じた。
In the prior art, due to an error between the core pitch of the optical waveguide used and the core pitch of the optical fiber side (fiber array side), a power loss occurs in the propagating light, which is caused by the port. Is different.
The mode field diameter of the light propagating in the core is about 10μ.
In the order of m, the sub-micron accuracy is required as the alignment accuracy, and the sub-micron accuracy is also required for the inter-core spacing, which makes it difficult to manufacture such parts. Also, because the optical path diameter of the connection part is small,
There is a problem that the characteristics of the connection portion fluctuate due to the optical axis shift due to environmental changes such as temperature and humidity and vibration, resulting in poor reliability. Therefore, the above problem is improved by increasing the mode field diameter of the connection part, that is, by connecting the optical fiber with the core expansion fiber and the optical waveguide having the mode field diameter of the connection part expanded corresponding to the waveguide side. There is also something to try, but in this case, it is necessary to prepare the core expansion fiber and the same waveguide in advance, and each is manufactured through special processing, so it is improved but the cost is high There was a problem that it took a long time.

【0004】[0004]

【課題を解決するための手段】本発明は、これらの問題
点を解決する為に、基板中に形成された光導波路の入射
側端面、出射側端面にて光ファイバのコア端面を接続す
る光導波路と光ファイバの接続構造であって、光導波路
及び光ファイバの接続部のモードフィールド径を拡大ほ
ぼ一致させるのに前記接続部を接続した状態で局部的両
者を同時に加熱処理、その後固定する事により実現した
接続構造を提供する。
SUMMARY OF THE INVENTION In order to solve these problems, the present invention provides an optical waveguide which connects the end faces of an optical fiber formed in a substrate to the end faces of an optical fiber at the incident end face and the output end face. A connection structure of a waveguide and an optical fiber, in which the both are locally heat-treated at the same time in the state where the connection is connected in order to enlarge and substantially match the mode field diameter of the connection between the optical waveguide and the optical fiber, and then fixed. The connection structure realized by is provided.

【0005】[0005]

【実施例】以下図面を用いて本発明の実施例を説明す
る。図1は、本発明による実施例の接続部側面を拡大し
て示したもので、図2はその上面図である。図において
同じ部位は同じ符号で示す。光の導波方向はどちらでも
よいが、例えば導波路側から導波する光は、導波路コア
内を図1下段に示した強度分布を有するモードフィール
ドの光として伝搬して導波路コア拡大部に入射、モード
フィールドを拡大しながら伝搬する。その後モードフィ
ールド拡大領域の平坦部にかかり、図1下段に示すモー
ドフィールド形状となる。その状態で、今度はファイバ
側コア拡大領域に入射伝搬する。その際、導波路側モー
ドフィールドがファイバ側モードフィールドに形状が一
致していないと、回折、反射により損失が生じる。その
後、ファイバコア拡大部遷移領域を経て光ファイバコア
に伝搬する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged view showing a side surface of a connection portion of an embodiment according to the present invention, and FIG. 2 is a top view thereof. In the figures, the same parts are designated by the same reference numerals. The light may be guided in either direction. For example, light guided from the waveguide side propagates in the waveguide core as light of a mode field having the intensity distribution shown in the lower part of FIG. Incident on and propagate while expanding the mode field. After that, the flat portion of the mode field expansion region is reached, and the mode field shape shown in the lower part of FIG. 1 is obtained. In this state, this time, the incident light propagates to the fiber side core expansion region. At this time, if the shape of the waveguide-side mode field does not match the shape of the fiber-side mode field, a loss occurs due to diffraction and reflection. After that, it propagates to the optical fiber core through the transition region of the expanded fiber core portion.

【0006】通常、こうした接続部を構成するには、予
め端面のコアを拡大した光ファイバと光導波路を準備し
て行うが、ここでは通常の光ファイバ、光導波路で行
う。接続部のコア拡大手法に関しては図3を用いて説明
する。
Usually, in order to form such a connecting portion, an optical fiber and an optical waveguide whose cores on the end faces are enlarged are prepared in advance, but here, an ordinary optical fiber and optical waveguide are used. A method of enlarging the core of the connection part will be described with reference to FIG.

【0007】図3は、本発明による接続部のコア拡大部
作製方法を示したもので、ファイバサポート上の光ファ
イバ、端面を位置合わせ接続した光導波路、接続部上の
加熱源からなる。加熱源としては、ガスバーナ、電気ヒ
ータ等局部的に加熱可能なものとする。又、加熱温度と
しては、1400゜C程度まで加熱する。加熱による温
度分布を均等にする為、加熱源を光軸に沿って僅かに往
復させるとよい。そうする事により光ファイバ、光導波
路コア内に屈折率増加の為添加されているGeがクラッ
ド側に拡散され、ほぼガウシアン分布状に拡大分布す
る。それにより導波光が広がった状態で伝搬する。非加
熱領域のコア部との間はテーパ状の遷移領域となるが、
その形状が急峻な場合、回折により放射モードが生じ、
伝搬損失が増大する。従って、テーパ状遷移領域は長い
方が望ましく、例えばシングルモードフィールドの拡大
倍率をn倍とした場合、遷移領域の長さはn2 倍mm以
上あると殆ど損失なしに伝搬する。
FIG. 3 shows a method of manufacturing a core enlarged portion of a connecting portion according to the present invention, which comprises an optical fiber on a fiber support, an optical waveguide whose ends are aligned and connected, and a heating source on the connecting portion. As a heating source, a gas burner, an electric heater or the like capable of locally heating. The heating temperature is about 1400 ° C. In order to make the temperature distribution due to heating uniform, it is advisable to slightly reciprocate the heating source along the optical axis. By doing so, Ge added for increasing the refractive index in the optical fiber and the optical waveguide core is diffused to the clad side, and is expanded and distributed almost in a Gaussian distribution. Thereby, the guided light propagates in a spread state. Although there is a tapered transition region between the core and the non-heated region,
If the shape is steep, diffraction causes a radiation mode,
Propagation loss increases. Therefore, it is desirable that the tapered transition region is long. For example, when the magnification of the single mode field is n times, if the length of the transition region is n 2 times or more, the propagation takes place with almost no loss.

【0008】この手法により光ファイバと光導波路端面
の接続部コアを同時に加熱処理する事により双方の接続
部モードフィールド径を同時に増大する事が出来る。
又、この場合、多分岐器等多数のアレイ状ファイバを有
する構造にも適用出来、それらを同時に加熱、モードフ
ィールド拡大が可能である。接続部のモードフィールド
拡大により、損失変動の誤差範囲は拡大する。例えば
0.1dB変動する範囲は、モードフィールド径がn倍
になると、ほぼn2 倍となる。それでポート接続時の誤
差量による損失変動が緩和される。よって、接続部のモ
ードフィールド径が3倍になると、0.1dB変動の接
続位置誤差範囲は、当初の9倍となり、誤差範囲増大に
より、ラフな位置合わせ、精度の緩い部品による接続が
可能である。引き続き接続部は端部を接着又は溶着固定
する事で固定、実装される。
By this method, the joint mode cores of the optical fiber and the end face of the optical waveguide are heated at the same time, so that the mode field diameters of both joints can be increased at the same time.
Further, in this case, it can be applied to a structure having a large number of array fibers such as a multi-branching device, and they can be simultaneously heated and the mode field can be expanded. By expanding the mode field of the connection part, the error range of loss variation is expanded. For example, the range of fluctuation of 0.1 dB becomes n 2 times when the mode field diameter becomes n times. As a result, loss fluctuation due to the error amount at the time of port connection is mitigated. Therefore, if the mode field diameter of the connection part is tripled, the connection position error range of 0.1 dB fluctuation will be 9 times the initial value, and due to the increased error range, rough alignment and connection with parts with low accuracy are possible. is there. Subsequently, the connecting portion is fixed and mounted by adhering or welding the ends.

【0009】[0009]

【発明の効果】以上説明したように本発明によれば、光
導波路と光ファイバの接続部を同時加熱により、同時に
モードフィールドを拡大するので、予め接続部コアを拡
大した光導波路、光ファイバを用意しなくとも、ラフな
位置合わせにより容易に高効率な接続が実現できる。
又、多数の接続を有する構造にも対応でき、その場合、
各コア間ピッチ誤差によるポート間の出力変動が、モー
ドフィールド径拡大により緩和され、調整時の位置合わ
せ精度が緩和され、部品精度の低減が図れ、光軸変動に
対する損失の変動が低減する。従って、調整容易、環境
変動による光軸ズレに対しても信頼性の高い光導波路の
接続構造が実現でき、製作時間も従来よりも短時間で出
来る。
As described above, according to the present invention, since the mode field is simultaneously expanded by simultaneously heating the connection portion of the optical waveguide and the optical fiber, the optical waveguide and the optical fiber in which the connection portion core is expanded in advance are used. Even if you do not prepare it, you can easily achieve highly efficient connection by rough alignment.
It can also be used for structures with multiple connections, in which case
The output fluctuation between the ports due to the pitch error between cores is mitigated by the expansion of the mode field diameter, the alignment accuracy at the time of adjustment is mitigated, the component accuracy can be reduced, and the fluctuation of the loss due to the optical axis fluctuation is reduced. Therefore, it is possible to realize the connection structure of the optical waveguide which is easy to adjust and highly reliable against the optical axis shift due to the environmental change, and the manufacturing time can be shortened as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す略図で、図(a)は側断
面図、図(b)は各導波部のモードフィールドの強度分
布を示す図。
FIG. 1 is a schematic view showing an embodiment of the present invention, FIG. 1A is a side sectional view, and FIG. 1B is a view showing intensity distribution of a mode field of each waveguide.

【図2】本発明実施例の接続部平面略図。FIG. 2 is a schematic plan view of a connecting portion according to the embodiment of the present invention.

【図3】本発明による接続部の加熱方法を示す略図。FIG. 3 is a schematic diagram showing a method for heating a connection portion according to the present invention.

【符号の説明】[Explanation of symbols]

1 光導波路 1a 光導波路コア 2
光ファイバ 2a 光ファイバコア 3 加熱源
4 接着剤 5 光ファイバサポート
1 Optical Waveguide 1a Optical Waveguide Core 2
Optical fiber 2a optical fiber core 3 heating source
4 Adhesive 5 Optical fiber support

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上あるいは基板中に形成された光導波
路の入射側端面と出射側端面にそれぞれ光ファイバコア
端面を接続する光ファイバと光導波路の接続構造におい
て、1箇所又は複数箇所を接続する光導波路と光ファイ
バ各端面部をコア拡大によりモードフィールド径を増大
させる為、光導波路と光ファイバを位置合わせ接続、移
動する加熱源により接続部を同時に局部的に加熱処理
し、その後固定されてなることを特徴とする光ファイバ
と光導波路の接続構造。
1. A connection structure of an optical fiber and an optical waveguide for connecting an optical fiber core end surface to an incident side end surface and an output side end surface of an optical waveguide formed on or in a substrate, respectively. In order to increase the mode field diameter by enlarging the core of the optical waveguide and each end face of the optical fiber, the optical waveguide and the optical fiber are aligned and connected, and the connecting source is heated locally at the same time by the moving heating source, and then fixed. A connection structure between an optical fiber and an optical waveguide, which is characterized by the following.
JP27835693A 1993-11-08 1993-11-08 Connecting structure for optical fiber and optical waveguide Pending JPH07128544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27835693A JPH07128544A (en) 1993-11-08 1993-11-08 Connecting structure for optical fiber and optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27835693A JPH07128544A (en) 1993-11-08 1993-11-08 Connecting structure for optical fiber and optical waveguide

Publications (1)

Publication Number Publication Date
JPH07128544A true JPH07128544A (en) 1995-05-19

Family

ID=17596201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27835693A Pending JPH07128544A (en) 1993-11-08 1993-11-08 Connecting structure for optical fiber and optical waveguide

Country Status (1)

Country Link
JP (1) JPH07128544A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930421A (en) * 1996-03-29 1999-07-27 Hitachi, Ltd. Optical fiber and method for coupling optical fibers
US6442315B1 (en) 1997-11-18 2002-08-27 Samsung Electronics Co., Ltd. Optical waveguide chip and method of formation thereof
JP2002328244A (en) * 2001-05-01 2002-11-15 Nippon Telegr & Teleph Corp <Ntt> Optical component
JP2004021038A (en) * 2002-06-18 2004-01-22 Fujikura Ltd Manufacturing method of waveguide type light components, optical cross connecting system, and waveguide type light components
JP2010224280A (en) * 2009-03-24 2010-10-07 Furukawa Electric Co Ltd:The Optical integrated circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930421A (en) * 1996-03-29 1999-07-27 Hitachi, Ltd. Optical fiber and method for coupling optical fibers
US6173095B1 (en) 1996-03-29 2001-01-09 Hitachi, Ltd. Optical fiber and method for coupling optical fibers
US6393182B1 (en) 1996-03-29 2002-05-21 Hitachi, Ltd. Optical fiber and method for coupling optical fibers
US6442315B1 (en) 1997-11-18 2002-08-27 Samsung Electronics Co., Ltd. Optical waveguide chip and method of formation thereof
JP2002328244A (en) * 2001-05-01 2002-11-15 Nippon Telegr & Teleph Corp <Ntt> Optical component
JP2004021038A (en) * 2002-06-18 2004-01-22 Fujikura Ltd Manufacturing method of waveguide type light components, optical cross connecting system, and waveguide type light components
JP2010224280A (en) * 2009-03-24 2010-10-07 Furukawa Electric Co Ltd:The Optical integrated circuit

Similar Documents

Publication Publication Date Title
CA1272896A (en) Fiber-lens optical coupler
US4737004A (en) Expanded end optical fiber and associated coupling arrangements
US6014483A (en) Method of fabricating a collective optical coupling device and device obtained by such a method
JP3158105B2 (en) Manufacturing method of core diffused optical fiber
JPS6112242B2 (en)
JPH0588038A (en) Mode field conversion fiber parts
JPH07128544A (en) Connecting structure for optical fiber and optical waveguide
US5410626A (en) Optical coupler having a tapered fused region
JPS6333706A (en) Fiber type optical wave circuit element and its production
JP2958060B2 (en) Fusion splicing method of optical waveguide and optical fiber
JPH06300939A (en) Connection structure between optical waveguide and optical fiber
JPH09297235A (en) Optical waveguide and its production as well as optical waveguide module using the same
JPH04264409A (en) Optical coupling circuit
JP3228614B2 (en) Connection structure between optical fiber and optical waveguide
JPH10186165A (en) Optical demultiplexing unit or optical branching unit
JPH0372304A (en) Manufacture of optical coupler
WO2001014918A1 (en) Improvements in and relating to fibre optic devices
JPH10160953A (en) Optical circuit
JPH01154009A (en) Production of fiber fusion splicing type optical coupler
JPS60242406A (en) Single polarization optical fiber
JPH04225302A (en) Fiber type optical isolator
JP2574555Y2 (en) Connection structure between optical waveguide and optical fiber
JPH05188234A (en) Method for connecting optical fiber cables
JPH04234010A (en) Connecting device for optical waveguide and optical fiber
JP2958179B2 (en) Optical fiber coupler and manufacturing method thereof