JPH0372304A - Manufacture of optical coupler - Google Patents

Manufacture of optical coupler

Info

Publication number
JPH0372304A
JPH0372304A JP20885989A JP20885989A JPH0372304A JP H0372304 A JPH0372304 A JP H0372304A JP 20885989 A JP20885989 A JP 20885989A JP 20885989 A JP20885989 A JP 20885989A JP H0372304 A JPH0372304 A JP H0372304A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
heating
reciprocating motion
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20885989A
Other languages
Japanese (ja)
Inventor
Kazuhito Nagata
永田 千仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP20885989A priority Critical patent/JPH0372304A/en
Publication of JPH0372304A publication Critical patent/JPH0372304A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To forming a large uniform fusion area which has a nearly ideal coupling efficiency and to miniaturize an optical coupler by controlling the quantity of heat given to an optical fiber in reciprocal motion by varying the quantity of heat of a heating source or the distance between the heating source and optical fiber. CONSTITUTION:A burner 12 is used as the heating source 12, which is put in the reciprocal motion in the direction of the optical fiber axis and so controlled that the gas flow rate of the burner is small in the center of the reciprocal motion to obtain the least quantity of heat generation and increased toward both ends of the reciprocal motion to obtain the larger quantity of heat generation, thereby making the quantity of heat given to optical fibers 13a and 13b substantially weak in the center of the reciprocal motion and larger toward both the ends. Both ends of the optical fibers 13a and 13b are applied with mutually equal constant drawing forces at all times. As the area which is thinned in diameter by drawing is expanded, the heated area becomes wide, so the amplitude of the reciprocal motion of the heat source 12 is increased gradually as the frequency of the reciprocal motion is increased. Consequently, the effect of thinning of the optical fiber diameter is prevented from being converged on the center, the area which is thinned in diameter relatively uniformly is formed large, and the coupler is nimiaturized.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は光通信、光ファイバセンサなどに用いられる
光結合器の製造方法であり、少なくとも2本の光ファイ
バを加熱融着・延伸してファイバ型光結合器を製造する
方法に関し、特にファイバ型光結合器の光学的特性改善
および小型化をしようとするものである。
Detailed Description of the Invention "Field of Industrial Application" This invention is a method for manufacturing an optical coupler used in optical communications, optical fiber sensors, etc. The present invention relates to a method of manufacturing a fiber type optical coupler, and particularly aims to improve the optical characteristics and reduce the size of the fiber type optical coupler.

「従来の技術」 ファイバ型光結合器の融着・延伸製法に用いられる製造
装置は、第4図に示すように、同一直線上を滑らかに運
動する一対の延伸台11a、llbと、図に示さないが
、これら延伸台11 a、11 bに互いに距離がひら
く方向に同時に力を与える延伸力印加装置と、これら延
伸台11a、llb間に位置するガスバーナなどの加熱
FJ12とを主な構成要素とし、適当な長さに亘って被
覆を除去した2本の光ファイバ13a、13bを、その
被覆を除去した部分が互いに接触するように整合して延
伸台11a、llb上に設置し、ファイバホルダ14a
、14bで延伸台−1にそれぞれ把持する。
``Prior Art'' As shown in FIG. 4, the manufacturing equipment used for the fusion and stretching manufacturing method of fiber-type optical couplers includes a pair of stretching tables 11a and 11b that move smoothly on the same straight line, and Although not shown, the main components include a stretching force applying device that simultaneously applies force to the stretching tables 11a and 11b in the direction of increasing the distance from each other, and a heating FJ 12 such as a gas burner located between the stretching tables 11a and llb. The two optical fibers 13a and 13b with their coatings removed over an appropriate length are aligned and placed on the stretching tables 11a and llb so that the portions from which the coatings have been removed are in contact with each other, and placed in the fiber holder. 14a
, 14b are respectively gripped on the stretching table-1.

一方の光ファイバ13aの一端に光源15から光を入射
し、光ファイバ13aの他端および同一側の光ファイバ
13bの端からの各出射光を受光する光検出器16a、
16bが設けられ、光結合器製造中にその光分岐比を監
視できるようにされている。
A photodetector 16a that inputs light from a light source 15 to one end of one optical fiber 13a and receives each output light from the other end of the optical fiber 13a and the end of the optical fiber 13b on the same side;
16b is provided to enable monitoring of the optical splitting ratio during the manufacture of the optical coupler.

第4図に示すように、加熱源12を光ファイバ13a、
13bに近づけて、光ファイバ13a13bの融着を行
い、続いて第5図に示すように加熱源12を光ファイバ
の軸方向に往復運動させながら延伸台11a、llbに
互いに離れる方向の力を同時に加えて延伸する。光結合
器の分岐比は延伸量に依存するので光分岐比を監視しな
がら延伸を行い、所望の光分岐比を得た時点で延伸を終
了する。
As shown in FIG. 4, the heating source 12 is connected to an optical fiber 13a,
13b, the optical fibers 13a and 13b are fused together, and then, as shown in FIG. 5, while reciprocating the heating source 12 in the axial direction of the optical fibers, a force is simultaneously applied to the drawing tables 11a and llb in the direction of separating them from each other. In addition, it is stretched. Since the branching ratio of the optical coupler depends on the amount of stretching, stretching is performed while monitoring the optical branching ratio, and the stretching is completed when the desired optical branching ratio is obtained.

「発明が解決しようとする課題」 従来の製造方法で作られたファイバ型光結合器は、光フ
ァイバ融合領域中央においてその径が極めて細く、融合
領域の両端において太いという、いわゆるパイコニカル
テーパ型をしており、径の変移は急峻で、これを任意に
制御することは事実上不可能であった。
``Problems to be Solved by the Invention'' Fiber-type optical couplers manufactured using conventional manufacturing methods have a so-called piconic taper type in which the diameter is extremely thin at the center of the optical fiber fusion region and wide at both ends of the fusion region. The change in diameter was steep, and it was virtually impossible to arbitrarily control this.

この場合両光ファイバ導波路の光学的結合効率(結合係
数)は光ファイバ軸方向に沿って、各点の断面形状に従
って変移し、全体として所望の光分岐比を得るのに効率
の悪い構造をしている。すなわち、上記のようなテーバ
形状を余儀なくされるために、軸方向の大きな領域に亘
って、結合係数の極めて小さい部分が大きく存在する。
In this case, the optical coupling efficiency (coupling coefficient) of both optical fiber waveguides varies according to the cross-sectional shape of each point along the optical fiber axis direction, and an inefficient structure is required to obtain the desired optical branching ratio as a whole. are doing. That is, since the above-mentioned tapered shape is forced, there are large portions where the coupling coefficient is extremely small over a large area in the axial direction.

これは光結合器の小型化を目指す際の決定的な障害であ
る。
This is a decisive obstacle when aiming at miniaturization of optical couplers.

また、光分岐比は第6図に示すように入射光の波長にも
依存し、かつ延伸量に応して増減するため、延伸工程を
続けてゆくと、2波長ハ、λ2に対して破線で示すよう
に光分岐比がλ1で100%λ2で0%に近いものが得
られる点があり、これを利用してファイバ型光結合器に
よる波長分波合波器を作製することがしばしば行われる
。この場合、断面ごとに定まる結合係数と波長の関係も
一様ではなく、結果として2波長に対する分岐比は製造
装置の特性に支配されたまま2つの分岐比の関係を制御
することができず、第6図にみるように完全な100%
、0%は実現できなかった。
Furthermore, as shown in Figure 6, the optical branching ratio depends on the wavelength of the incident light and increases or decreases according to the amount of stretching. As shown in Figure 2, there is a point where the optical branching ratio is 100% at λ1 and close to 0% at λ2, and this is often used to create a wavelength demultiplexer/multiplexer using a fiber type optical coupler. be exposed. In this case, the relationship between the coupling coefficient and wavelength determined for each cross section is not uniform, and as a result, the branching ratio for the two wavelengths is controlled by the characteristics of the manufacturing equipment, and the relationship between the two branching ratios cannot be controlled. Complete 100% as shown in Figure 6
, 0% could not be achieved.

さらに、2本の光ファイバを用いて光結合器を作るのに
、融着を行う前に2本のうち1本を先行延伸し、または
2本それぞれを互いに相違する量だけ先行延伸してのち
融着・延伸を行うことでいわゆる広波長帯域光結合器を
作製することが行われる。これは2本の光ファイバの伝
搬定数差による分岐比の対波長特性の変形を利用したも
のだが、この際、先行延伸された光ファイバがパイコニ
カルテーバ形状をなしており、これを融着・延伸するの
が実際上極めて困難な作業になる。すなわち先行延伸さ
れた光ファイバを融着すべく整合設置するのに、光ファ
イバの間に間隙が生し、融着すべき点における十分な接
触がはかりにくいからである。−様に細径化された先行
延伸ファイバが作製できれば、広波長帯域光結合器の製
造歩留は大きく向上する。
Furthermore, when making an optical coupler using two optical fibers, one of the two fibers is pre-stretched before fusion splicing, or each of the two fibers is pre-stretched by a different amount and then the fibers are pre-stretched. By performing fusing and stretching, a so-called wide wavelength band optical coupler is manufactured. This utilizes the deformation of the branching ratio vs. wavelength characteristic due to the difference in propagation constant between two optical fibers, but at this time, the previously drawn optical fiber has a piconical taper shape, which is fused and Stretching becomes an extremely difficult task in practice. That is, when pre-drawn optical fibers are aligned and installed for fusion splicing, gaps are created between the optical fibers, making it difficult to achieve sufficient contact at the points to be fused. If a pre-drawn fiber with a diameter reduced in this way can be produced, the manufacturing yield of broadband optical couplers will be greatly improved.

「課題を解決するための手段」 この発明によれば光ファイバを融着する前に行われる光
ファイバの延伸工程、または融着後に行われる光ファイ
バ融合領域の延伸工程において、加熱源により光ファイ
バを加熱しながら、その加熱源を光ファイバに対し、そ
の軸方向に相対的に往復運動をさせ、その往復運動中に
光ファイバに与える加熱量を、加熱源の発熱量、または
加熱源と光ファイバとの距離を変化させて制御し、往復
運動の中央で加熱量を比較的小さくし、両端に近づく程
比較的大きくするように漸次変動させる。
"Means for Solving the Problem" According to the present invention, in the optical fiber stretching process performed before optical fiber fusion, or in the optical fiber fusion area stretching process performed after fusion, the optical fiber is While heating the optical fiber, the heating source is reciprocated relative to the optical fiber in its axial direction, and the amount of heating given to the optical fiber during the reciprocating movement is called the calorific value of the heating source, or the amount of heat generated by the heating source and the light source. It is controlled by changing the distance to the fiber, and the amount of heating is made relatively small at the center of the reciprocating motion, and gradually varied so that it becomes relatively large as it approaches both ends.

あるいは加熱源の移動方向と反対側の光ファイバ端部に
のみ実質的な延伸力を与えるように、光ファイバの両端
に与える延伸力を、往復運動の往路と復路とで逆に制御
する。
Alternatively, the stretching force applied to both ends of the optical fiber is reversely controlled on the forward and backward paths of the reciprocating motion so that a substantial stretching force is applied only to the end of the optical fiber on the opposite side to the moving direction of the heating source.

これにより一様な径をもつ延伸ファイバを実現でき、よ
って広波長帯域光結合器を容易に作ることができ、また
理想に近い結合効率をもつ−様な融着領域を大きく形成
でき、結合効率の小さい部分を省くことで光結合器の小
型化が実現できる。
This makes it possible to create a drawn fiber with a uniform diameter, making it easy to create a wide wavelength band optical coupler, and forming a large fused area with near-ideal coupling efficiency. By omitting the small part of the optical coupler, the optical coupler can be made smaller.

更に、結合効率の波長の関係について所望のようなファ
イバ融合領域断面を形威し、これによって各部がその断
面の結合領域を作ることで光結合器の光分岐比と波長の
関係を制御し、より精度のよい波長分波合波器を作製で
きる。
Furthermore, the fiber fusion region cross section is shaped as desired for the relationship between the coupling efficiency and the wavelength, and each part creates a coupling region of that cross section, thereby controlling the relationship between the optical branching ratio of the optical coupler and the wavelength. A more accurate wavelength demultiplexer/multiplexer can be created.

「実施例」 第1図にこの発明の実施例における延伸工程を示し、第
4図と対応する部分には同一符号を付けである。加熱源
12としてバーナが用いられ、加熱源12は光ファイバ
軸方向に往復運動され、その往復運動の中央でバーナの
ガス流量が小さく、発熱量が最も弱く、往復運動の両端
に行く程、ガス流量が大きく、発熱量が強くなるように
制御し、光ファイバ13a、13bに実質的に与えられ
る加熱量を、往復運動の中央で弱く、両端に行く程強く
する。光ファイバ13a、13bの両端には一定の相等
しい延伸力が常時加えられている。
"Example" FIG. 1 shows a stretching process in an example of the present invention, and parts corresponding to those in FIG. 4 are given the same reference numerals. A burner is used as the heating source 12, and the heating source 12 is reciprocated in the optical fiber axis direction.At the center of the reciprocating movement, the gas flow rate of the burner is small and the calorific value is the weakest, and as it goes to both ends of the reciprocating movement, the gas The flow rate is controlled to be large and the amount of heat generated is strong, and the amount of heating substantially given to the optical fibers 13a, 13b is weak at the center of the reciprocating motion and becomes stronger toward both ends. A constant and equal stretching force is always applied to both ends of the optical fibers 13a and 13b.

更に延伸により細径化された領域が広がるに従って加熱
領域を広げるため、加熱源12の往復運動の振幅を、往
復運動の回数に従って漸次拡大する。これにより、光フ
ァイバ細径化の効果が中央に集中することを防ぎ、比較
的−様に細径化された領域を大きく形成することができ
る。
Furthermore, in order to widen the heating area as the area reduced in diameter by stretching widens, the amplitude of the reciprocating motion of the heating source 12 is gradually increased in accordance with the number of reciprocating movements. This prevents the effect of reducing the diameter of the optical fiber from being concentrated in the center, and makes it possible to form a large area where the diameter is reduced in a relatively uniform manner.

第2図はこの発明の他の実施例を示し、この例では加熱
源I2としてバーナを使用し、そのガス流量、つまり発
熱量を一定に保ち、加熱源12の往復運動に、その中央
で光ファイバ13 a、13 bから遠ざかり、両端部
で光ファイバ13a、13bに近づくように光ファイバ
軸に対し垂直な運動成分をもたせ、つまり加熱源12を
破線図示のように、光ファイバ軸方向に沿った8字型の
運動とし、光ファイバ13a、13bと加熱源12との
距離を往復運動中に制御して、往復運動の中央で弱く、
両端で強い加熱が光ファイバ13a、13bに対して行
われるようにする。なお8字型運動の光ファイバ13a
、13bより遠い側の半分に加熱源12がある時は光フ
ァイバ13a、13bに与えられる加熱が殆どないよう
にする。
FIG. 2 shows another embodiment of the present invention, in which a burner is used as the heating source I2, its gas flow rate, that is, the calorific value, is kept constant, and the reciprocating movement of the heating source 12 is accompanied by a light beam at its center. The heating source 12 is moved away from the optical fibers 13a, 13b and closer to the optical fibers 13a, 13b at both ends, with a motion component perpendicular to the optical fiber axis. The distance between the optical fibers 13a, 13b and the heating source 12 is controlled during the reciprocating motion, and the temperature is weak at the center of the reciprocating motion.
Strong heating is performed on the optical fibers 13a, 13b at both ends. Note that the optical fiber 13a with figure 8 motion
, 13b, there is little heating applied to the optical fibers 13a, 13b.

更に加熱源12が図において8字運動の右側、延伸台1
1b側にある時間には、右側延伸台11bは固定され、
左側延伸台11aのみ延伸力を加えられ、加熱源12が
8字運動の左側にある時間には、左側延伸台11aは固
定され、右側延伸台11bのみ延伸力を加えられる0例
えば、8字運動の右側に加熱HI3がある場合は、右側
延伸台11bが固定され、左側延伸台11aのみ延伸力
が加えられているため、光ファイバの加熱延伸されて細
径化された部分は左側に移動し、一方加熱B12は右側
へ移動するため、光ファイバの細径化されてない部分を
加熱し、その部分が延伸により細径化されて左側へ移動
し、以下同様のことが行われ、光ファイバは−様に細径
化される。なお逆に8字運動の右側に加熱源12がある
場合に、左側延伸台11aを固定し、右側延伸台11b
のみに延伸力を加える場合は、加熱・延伸により光ファ
イバの細径化された部分は右側へ移動し、加熱源12も
運動により右側に移動するが、細径化された部分の一部
も加熱されるため、その部分はますます細(なり、−4
1な細径化は困難となる。
Furthermore, the heating source 12 is located on the right side of the figure 8 movement in the figure, on the stretching table 1.
During the time on the 1b side, the right stretching table 11b is fixed,
During the time when only the left stretching table 11a is applied with a stretching force and the heating source 12 is on the left side of the figure 8 movement, the left side stretching table 11a is fixed and only the right side stretching table 11b is applied with a stretching force. When the heating HI3 is on the right side of the optical fiber, the right stretching table 11b is fixed and the stretching force is applied only to the left stretching table 11a, so the part of the optical fiber that has been heated and stretched to be thinner moves to the left side. , on the other hand, since the heating B12 moves to the right, it heats the part of the optical fiber that has not been reduced in diameter, and that part is reduced in diameter by stretching and moves to the left. is made smaller in diameter. Conversely, if the heating source 12 is on the right side of the figure 8 movement, the left stretching table 11a is fixed and the right stretching table 11b is
When a stretching force is applied to only the optical fiber, the portion of the optical fiber whose diameter has been reduced by heating and drawing moves to the right, and the heating source 12 also moves to the right due to the movement, but part of the portion whose diameter has been reduced also moves to the right. As it is heated, that part becomes thinner and thinner (-4
It is difficult to reduce the diameter by 1.

先の説明では8字運動の一半部と他半部とで固定する延
伸台と、延伸力を加える延伸台とを逆としたが、先の説
明から理解されるように、加熱源12の光ファイバ13
a、13bの軸方向に沿う移動方向側の延伸台を固定し
、移動方向と反対側の延伸台に延伸力を加えればよい、
また上述では一方の延伸台を固定したが、固定する方の
延伸台に弱い延伸力を加え、他方の延伸台に加える延伸
力により実質的な延伸が行われようにしてもよい。
In the previous explanation, the stretching table that fixes one half of the figure-8 movement and the other half and the stretching table that applies the stretching force are reversed, but as can be understood from the previous explanation, the light of the heating source 12 fiber 13
It is sufficient to fix the stretching table on the side in the moving direction along the axial direction of a and 13b, and apply a stretching force to the stretching table on the opposite side to the moving direction.
Further, in the above description, one of the stretching tables is fixed, but a weak stretching force may be applied to the fixed stretching table, and substantial stretching may be performed by the stretching force applied to the other stretching table.

また第1図について示した加熱量の制御を行うと同時に
、加熱B12が延伸台11bの方向に移動中は延伸台1
1bを固定し、延伸台11aに延伸力を加え、加熱′t
1.12が延伸台11aの方向に移動中は延伸台11a
を固定し、延伸台llbに延伸力を加えてもよい。更に
上述の説明から理解されるように、光ファイバに対する
加熱量の制御を行うことなく、一定の加熱量とし、加熱
源12の往復運動における加熱源の移動方向側の延伸台
を固定とし、反対側の延伸台に延伸力を加え、往復運動
の往路と復路とで延伸台を逆に制御しても、軸方向で−
様な径の延伸部を得ることができる。
Further, while controlling the heating amount shown in FIG. 1, while the heating B12 is moving in the direction of the drawing table 11b,
1b is fixed, a stretching force is applied to the stretching table 11a, and heating is performed.
1. When 12 is moving in the direction of the stretching table 11a, the stretching table 11a
may be fixed, and a stretching force may be applied to the stretching table llb. Furthermore, as can be understood from the above explanation, the amount of heating to the optical fiber is not controlled, but is kept constant, the drawing table on the side of the moving direction of the heating source is fixed during the reciprocating motion of the heating source 12, and the drawing table on the side of the moving direction of the heating source is fixed, and Even if a stretching force is applied to the side stretching table and the stretching table is reversely controlled in the forward and return directions of the reciprocating motion, -
Extended portions of various diameters can be obtained.

上述では2本の光ファイバの融合領域の延伸工程にこの
発明を適用したが、3本以上の光ファイバの融合領域の
延伸工程にもこの発明を適用できる。また光ファイバを
融着する前に行われる光ファイバの延伸工程にもこの発
明を適用できる。
In the above description, the present invention has been applied to the process of drawing a fused region of two optical fibers, but the present invention can also be applied to a process of drawing a fused region of three or more optical fibers. Further, the present invention can also be applied to an optical fiber stretching process performed before the optical fibers are fused together.

「発明の効果J 以上述べたようにこの発明によれば、延伸工程において
加熱源の往復運動中に光ファイバ加熱量が往復運動の中
央で弱く、両端で強くなるように制御し、または往復運
動における加熱源の移動方向側と反対側の光ファイバの
端部にのみ実質的な延伸力を加えるように光ファイバの
両端の延伸力を、加熱源の移動方向に応じて逆に制御し
、あるいはこれら両制御を同時に行うことにより、細径
化効果が中央に集中するのを避けて分散し、この制御を
融着前の先行延伸および融着後の延伸に適用して、理想
に近い断面構造をもつ−様な結合領域を形成し、殆ど結
合効率の高い部分のみで形成された小型の光結合器が得
られる。また、この発明によればファイバ融合領域にお
ける軸方向の各位置の断面が−様なものとなるため、こ
の断面を結合効率の波長の関係について所望のものとす
ることにより、第3図の破線位置に示すように、波長ハ
に対し分岐比が100%、波長ハに対して分岐比が0%
の高精度波長分波合波器を作ることができる。更に先行
延伸工程に適用して、−様な細径部分をもって光ファイ
バが得られるため、その先行延伸された光ファイバと延
伸されない光ファイバまたは延伸量が異なる光ファイバ
とを融着すための整合設置を容易に行うことができ、広
波長帯域光結合器を歩留りよく製造することができる。
"Effect of the Invention J As described above, according to the present invention, during the reciprocating movement of the heating source in the drawing process, the amount of heating of the optical fiber is controlled so that it is weak in the center of the reciprocating movement and becomes strong at both ends, or The stretching force at both ends of the optical fiber is reversely controlled depending on the direction of movement of the heating source so that a substantial stretching force is applied only to the end of the optical fiber on the opposite side to the direction of movement of the heating source, or By performing both of these controls at the same time, the diameter reduction effect is distributed instead of being concentrated in the center, and this control is applied to the preliminary stretching before fusion and the stretching after fusion to create a cross-sectional structure close to the ideal. According to the present invention, a small optical coupler can be obtained in which a coupling region having a shape of -, so by setting this cross section to the desired wavelength relationship of coupling efficiency, the branching ratio is 100% for wavelength C, as shown by the broken line in Figure 3. The branching ratio is 0% for
It is possible to create a high-precision wavelength demultiplexer/multiplexer. Furthermore, by applying the preliminary drawing step, an optical fiber with a small diameter portion such as - is obtained, so it is necessary to align the pre-drawn optical fiber with an undrawn optical fiber or an optical fiber with a different amount of drawing. Installation can be performed easily, and a wide wavelength band optical coupler can be manufactured with high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す図、第2図はこの発明
の他の実施例を示す図、第3図はこの発明の適用により
得られる光分岐比と延伸量との関係例を示す図、第4図
は従来の製造方法における融着工程を示す図、第5図は
従来の製造方法における延伸工程を示す図、第6図は従
来の製造方法により得られる光分岐比と延伸量との関係
例を示噴図である。
FIG. 1 is a diagram showing an embodiment of the invention, FIG. 2 is a diagram showing another embodiment of the invention, and FIG. 3 is an example of the relationship between the light branching ratio and the amount of stretching obtained by applying the invention. Figure 4 shows the fusion process in the conventional manufacturing method, Figure 5 shows the stretching process in the conventional manufacturing method, and Figure 6 shows the light branching ratio and stretching obtained by the conventional manufacturing method. FIG.

Claims (7)

【特許請求の範囲】[Claims] (1)少なくとも2本の光ファイバを加熱融着・延伸し
てファイバ型光結合器を製造する方法において、 光ファイバを融着する前に行われる光ファイバの延伸工
程、または融着後に行われる光ファイバ融合領域の延伸
工程において、加熱源が光ファイバを加熱しながら光フ
ァイバに対し、その軸方向成分をもった相対的往復運動
を行い、その往復運動中に光ファイバに実質的に与えら
れる加熱量を、その往復運動の中央で弱く、両端で強く
なるように制御することを特徴とする光結合器の製造方
法。
(1) In a method of manufacturing a fiber-type optical coupler by heating and fusing and stretching at least two optical fibers, an optical fiber drawing process is performed before fusing the optical fibers, or after fusing the optical fibers. In the drawing process of the optical fiber fusion region, the heating source performs a relative reciprocating motion with an axial component with respect to the optical fiber while heating the optical fiber, and during the reciprocating motion, the heating source is substantially applied to the optical fiber. A method for manufacturing an optical coupler, characterized in that the amount of heating is controlled so that the amount of heating is weak at the center of the reciprocating motion and strong at both ends.
(2)上記往復運動は直線往復運動であり、上記加熱源
の発熱量をその往復運動の中央部で小、両端部で大とな
るように制御して上記加熱量の制御を行うことを特徴と
する請求項1記載の光結合器の製造方法。
(2) The reciprocating motion is a linear reciprocating motion, and the heating amount is controlled by controlling the amount of heat generated by the heating source to be small at the center of the reciprocating motion and large at both ends. 2. The method of manufacturing an optical coupler according to claim 1.
(3)上記加熱源はガスバーナであり、上記発熱量の制
御をバーナのガス流量の制御により行うことを特徴とす
る請求項2記載の光結合器の製造方法。
(3) The method of manufacturing an optical coupler according to claim 2, wherein the heat source is a gas burner, and the amount of heat generated is controlled by controlling the gas flow rate of the burner.
(4)上記往復運動に、その中央部で光ファイバから遠
ざかり、両端部で光ファイバに近づくように光ファイバ
軸に対し垂直な成分をもたせて、上記加熱量の制御を行
うことを特徴とする請求項1記載の光結合器の製造方法
(4) The amount of heating is controlled by giving the reciprocating motion a component perpendicular to the optical fiber axis such that the reciprocating motion moves away from the optical fiber at the center and approaches the optical fiber at both ends. A method for manufacturing an optical coupler according to claim 1.
(5)上記往復運動の繰り返し回数の増加と共にその往
復運動の振幅を大とすることを特徴とする請求項1記載
の光結合器の製造方法。
(5) The method for manufacturing an optical coupler according to claim 1, wherein the amplitude of the reciprocating motion is increased as the number of repetitions of the reciprocating motion increases.
(6)少なくとも2本の光ファイバを加熱融着・延伸し
てファイバ型光結合器を製造する方法において、 光ファイバを融着する前に行われる光ファイバの延伸工
程、または融着後に行われる光ファイバ融合領域の延伸
工程において、加熱源が光ファイバを加熱しながら光フ
ァイバに対し、その軸方向成分をもった相対的往復運動
を行い、上記加熱源の移動方向と反対側の光ファイバの
一端のみに実質的延伸力を加えるように、光ファイバの
両端に加える延伸力を、上記往復運動の往路と復路とで
独立に制御することを特徴とする光結合器の製造方法。
(6) In a method for manufacturing a fiber-type optical coupler by heating and fusing and stretching at least two optical fibers, an optical fiber drawing step is performed before fusing the optical fibers, or is carried out after fusing the optical fibers. In the process of stretching the optical fiber fusion region, the heating source performs a relative reciprocating motion with an axial component to the optical fiber while heating the optical fiber, and the heating source moves the optical fiber on the opposite side to the moving direction of the heating source. A method for manufacturing an optical coupler, characterized in that the stretching force applied to both ends of the optical fiber is independently controlled on the forward and backward paths of the reciprocating motion so that a substantial stretching force is applied only to one end.
(7)上記往復運動中に光ファイバに実質的に与えられ
る加熱量を、その往復運動の中央で弱く、両端で強くな
るように制御することを特徴とする請求項6記載の光結
合器の製造方法。
(7) The optical coupler according to claim 6, characterized in that the amount of heating substantially applied to the optical fiber during the reciprocating motion is controlled so that it is weak at the center of the reciprocating motion and becomes strong at both ends. Production method.
JP20885989A 1989-08-11 1989-08-11 Manufacture of optical coupler Pending JPH0372304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20885989A JPH0372304A (en) 1989-08-11 1989-08-11 Manufacture of optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20885989A JPH0372304A (en) 1989-08-11 1989-08-11 Manufacture of optical coupler

Publications (1)

Publication Number Publication Date
JPH0372304A true JPH0372304A (en) 1991-03-27

Family

ID=16563300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20885989A Pending JPH0372304A (en) 1989-08-11 1989-08-11 Manufacture of optical coupler

Country Status (1)

Country Link
JP (1) JPH0372304A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03154010A (en) * 1989-11-13 1991-07-02 Sumitomo Electric Ind Ltd Manufacture of optical fiber coupler
US5695540A (en) * 1992-11-05 1997-12-09 Sumitomo Electric Industries, Ltd. Method of spacing fibers of optical fiber tapes and coupling the fibers
JP2003515184A (en) * 1999-11-17 2003-04-22 イトフ オプティカル テクノロジーズ インコーポレイテッド − テクノロジーズ オプティク イトフ インコーポレイテッド Fabrication of multiplexed and demultiplexed single-mode optical fiber couplers
KR100427280B1 (en) * 2001-08-31 2004-04-14 현대자동차주식회사 Valve depth measuring device
US10251797B2 (en) 1999-12-29 2019-04-09 Hill-Rom Services, Inc. Hospital bed

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03154010A (en) * 1989-11-13 1991-07-02 Sumitomo Electric Ind Ltd Manufacture of optical fiber coupler
US5695540A (en) * 1992-11-05 1997-12-09 Sumitomo Electric Industries, Ltd. Method of spacing fibers of optical fiber tapes and coupling the fibers
JP2003515184A (en) * 1999-11-17 2003-04-22 イトフ オプティカル テクノロジーズ インコーポレイテッド − テクノロジーズ オプティク イトフ インコーポレイテッド Fabrication of multiplexed and demultiplexed single-mode optical fiber couplers
JP4790183B2 (en) * 1999-11-17 2011-10-12 イトフ オプティカル テクノロジーズ インコーポレイテッド − テクノロジーズ オプティク イトフ インコーポレイテッド Multiplexed and demultiplexed single-mode optical fiber coupler fabrication
US10251797B2 (en) 1999-12-29 2019-04-09 Hill-Rom Services, Inc. Hospital bed
KR100427280B1 (en) * 2001-08-31 2004-04-14 현대자동차주식회사 Valve depth measuring device

Similar Documents

Publication Publication Date Title
EP0148569B1 (en) Single mode fibre directional coupler manufacture
JP2645458B2 (en) Method of manufacturing single mode evanescent wave optical coupler
JP2003528347A (en) Optical waveguide lens and fabrication method
JP2000502194A (en) Tunable optical coupler using photosensitive glass
US5943458A (en) Mach-Zehnder interferometric devices with composite fibers
JPH0372304A (en) Manufacture of optical coupler
EP0780709B1 (en) Broadband coupler
US5101462A (en) Wide-band optical fiber coupler and its manufacturing method
JPH07128544A (en) Connecting structure for optical fiber and optical waveguide
JP3678797B2 (en) Manufacturing method of broadband optical fiber coupler
EP0818694A1 (en) Mach-zehnder interferometric devices with composite fibers
JPS59143119A (en) Light branching device
JP2879266B2 (en) Broadband optical fiber coupler
JP2931610B2 (en) Manufacturing method of optical fiber coupler
JPH03136009A (en) Optical fiber and optical fiber coupler and its production
JP3101958B2 (en) Broadband coupler and method of manufacturing the same
JPH03107110A (en) Wavelength demultiplexing/multiplexing coupler and production thereof
JPH0618743A (en) Optical branch coupler
JP2873116B2 (en) Manufacturing method of optical multiplexer / demultiplexer
JP3169299B2 (en) Manufacturing method of optical fiber coupler
JP3066444B2 (en) Manufacturing method of broadband optical fiber coupler
JPH02242204A (en) Optical fiber coupler
KR20190089437A (en) Manufacturing method of ultralong, uniform, and subwavelength-diameter optical fiber
JPH04134406A (en) Production of coupler
JPH0651153A (en) Optical branching/coupling device and its production