JPH0533838Y2 - - Google Patents

Info

Publication number
JPH0533838Y2
JPH0533838Y2 JP18518287U JP18518287U JPH0533838Y2 JP H0533838 Y2 JPH0533838 Y2 JP H0533838Y2 JP 18518287 U JP18518287 U JP 18518287U JP 18518287 U JP18518287 U JP 18518287U JP H0533838 Y2 JPH0533838 Y2 JP H0533838Y2
Authority
JP
Japan
Prior art keywords
temperature
pressure
liquid
tank
lpg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18518287U
Other languages
Japanese (ja)
Other versions
JPH0189698U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18518287U priority Critical patent/JPH0533838Y2/ja
Publication of JPH0189698U publication Critical patent/JPH0189698U/ja
Application granted granted Critical
Publication of JPH0533838Y2 publication Critical patent/JPH0533838Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案はLPG(液化石油ガス)の低温常圧タ
ンクから圧力の変化する加圧常温タンクに送液す
る装置に関し、外気温によつて吐出側の常温タン
クの圧力が変化しても常に最少のポンプ動力で運
転できるようにしたものである。
[Detailed description of the invention] [Industrial application field] This invention relates to a device that transports LPG (liquefied petroleum gas) from a low-temperature normal-pressure tank to a pressurized normal-temperature tank whose pressure changes. This allows the pump to always operate with the minimum amount of power even if the pressure in the side room-temperature tank changes.

〔従来の技術〕[Conventional technology]

プロパンやブタン等のLPG(液化石油ガス)の
貯蔵基地では、大量貯蔵には、二重殻構造で断熱
材が装着された低温常圧タンク(以下、単に常圧
タンクとする。)が使用され、LPGとして供給す
る場合には、低温状態のLPGを送液ポンプで吸
引して加圧したのち、加熱器を介して球形タンク
等の加圧常温タンク(以下、単に常温タンクとす
る。)に貯蔵し、これらプロパンとブタン等を所
定の割合で常温タンクのひとつである混合タンク
に送つて混合貯蔵したものを使用したり、混合し
ないで直接使用するようにしていいる。
At storage bases for LPG (liquefied petroleum gas) such as propane and butane, low-temperature normal pressure tanks (hereinafter simply referred to as normal pressure tanks) with a double shell structure and equipped with insulation are used for large-volume storage. When supplying as LPG, the low-temperature LPG is sucked and pressurized with a liquid feed pump, and then transferred to a pressurized room temperature tank such as a spherical tank (hereinafter referred to simply as a room temperature tank) via a heater. These propane, butane, etc. are stored in a predetermined ratio and sent to a mixing tank, which is one of the room-temperature tanks, and the mixed and stored mixture is used, or it is used directly without mixing.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

このようなLPG貯蔵基地の常温タンクでは、
断熱構造が採られていないため外気温の変化によ
つて内部の圧力が変化し、夏期と冬期では相当大
きな圧力変化となつてしまう。例えばプロパンで
は、夏期に約12Kg/cm2程度まで上昇する一方、冬
期は4Kg/cm2程度になり、ブタンでは、夏期に5
Kg/cm2程度まで上昇する一方、冬期は0Kg/cm2
度になつてしまう(いずれもゲージ圧)。
In the room-temperature tanks of such LPG storage bases,
Because it does not have an insulated structure, the internal pressure changes with changes in outside temperature, resulting in quite large pressure changes between summer and winter. For example, in the case of propane, the temperature rises to about 12Kg/ cm2 in the summer, while in the winter it rises to about 4Kg/ cm2 , and in the case of butane, it rises to about 5Kg/cm2 in the summer.
While it rises to about Kg/cm 2 , it drops to about 0 Kg/cm 2 in winter (all gauge pressure).

このため送液ポンプの容量を決定する場合、最
も圧力が高くなる夏期でも十分な吐出圧力となる
ようにしなければならない。
Therefore, when determining the capacity of the liquid pump, it is necessary to ensure that the discharge pressure is sufficient even in the summer when the pressure is highest.

ところが、夏期に必要な吐出圧が得られる送液
ポンプとすると、冬期のように常温タンク内の圧
力が低下した場合には、ポンプ容量が過大となつ
てしまう。
However, if a liquid feeding pump is used that can obtain the necessary discharge pressure in the summer, the pump capacity will become excessive when the pressure inside the normal temperature tank decreases as in the winter.

そこで、冬期には、送液ポンプの吐出側に弁を
設けて絞ることで調整しており、送液ポンプのポ
ンプ動力が無駄になつている。
Therefore, in the winter, a valve is installed on the discharge side of the liquid pump to adjust the volume, and the pumping power of the liquid pump is wasted.

すなわち、送液ポンプの性能曲線を表わす第2
図に示すように、高い吐出圧力を必要とする夏期
の場合の実揚程をhであり、管路等の抵抗が抵抗
曲線Rで表わすことができるとすると、揚程曲線
Hとの交点Aに対応する揚液量Qが送液でき、そ
のときの軸馬力は線図S上のa点となる。
In other words, the second curve representing the performance curve of the liquid pump is
As shown in the figure, assuming that the actual head in the summer when high discharge pressure is required is h, and the resistance of the pipeline etc. can be expressed by a resistance curve R, it corresponds to the intersection point A with the head curve H. The amount of liquid Q that can be pumped can be pumped, and the shaft horsepower at that time becomes point a on the diagram S.

これに対し、低い吐出圧力でよい冬期の場合の
揚程をh′とすると、弁で絞るため管路等の抵抗が
増加して抵抗曲線がR″(一定鎖線)となり、夏期
と同一の揚水量Qを確保する場合には、送液ポン
プの軸馬力は線図S上のa点のままとなつてしま
い、図中、斜線で示す分だけポンプ動力が無駄と
なつている。
On the other hand, if the pumping head in winter, when a low discharge pressure is sufficient, is h', the resistance of pipes, etc. increases due to throttling with a valve, and the resistance curve becomes R'' (constant chain line), resulting in the same pumping amount as in summer. When securing Q, the shaft horsepower of the liquid pump remains at point a on the diagram S, and the pump power is wasted by the amount shown by diagonal lines in the diagram.

この考案はかかる従来技術の問題点に鑑みてな
されたもので、供給先の圧力変化に応じて吐出圧
力を制御し、ポンプ動力の無駄が発生せず、運転
経費を減少することができるLPG送液装置を提
供しようとするものである。
This idea was made in view of the problems of the conventional technology, and it is possible to control the discharge pressure according to the pressure change at the supply destination, eliminate waste of pump power, and reduce operating costs. The aim is to provide a liquid device.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するためこの考案は、LPG
を低温常圧状態で貯蔵する常圧タンクから外気温
に応じた加圧常温状態で貯蔵する常温タンクに圧
送する装置において、常圧タンクからLPGを吸
引して圧力変化のある常温タンクに圧送する送液
ポンプと、この送液ポンプの吐出側の常温タンク
付近の大気温度を検出する温度検出器と、この温
度検出器の検出信号に基づき常温タンク内の圧力
より高い吐出圧となるよう送液ポンプの回転数を
制御する回転数制御器とからなることを特徴とす
るものである。
In order to solve the above problems, this idea is based on LPG
A device that pumps LPG from a normal pressure tank that stores it at low temperature and normal pressure to a room temperature tank that stores it at room temperature under pressure according to the outside temperature, sucks LPG from the normal pressure tank and pumps it to the room temperature tank where the pressure changes. A liquid sending pump, a temperature sensor that detects the atmospheric temperature near the room temperature tank on the discharge side of this liquid sending pump, and a liquid sending system that uses the detection signal from this temperature sensor to make the discharge pressure higher than the pressure in the room temperature tank. The pump is characterized by comprising a rotation speed controller that controls the rotation speed of the pump.

〔作用〕[Effect]

送液ポンプで加圧したLPGが貯蔵される常温
タンク内の圧力を常温タンク付近の大気温度を検
出することで知り、この大気温度により回転数制
御器で必要な吐出圧力に見合うよう送液ポンプの
回転数を制御するようにしており、送液ポンプを
常に必要最小限のポンプ動力で運転するようにし
て無駄を省き、運転経費の節約をはかつている。
The pressure inside the room-temperature tank where LPG pressurized by the liquid feed pump is stored is determined by detecting the atmospheric temperature near the room-temperature tank, and the rotation speed controller adjusts the liquid feed pump to match the required discharge pressure based on this atmospheric temperature. The number of rotations of the liquid pump is controlled so that the liquid pump is always operated with the minimum amount of pump power necessary, thereby eliminating waste and reducing operating costs.

〔実施例〕〔Example〕

以下、この考案の一実施例を図面に基づき詳細
に説明する。
Hereinafter, one embodiment of this invention will be described in detail based on the drawings.

第1図はこの考案のLPG送液装置の一実施例
にかかる概略構成図である。
FIG. 1 is a schematic diagram of an embodiment of the LPG liquid feeding device of this invention.

このLPG送液装置10は、プロパンとブタン
とを原料としてこれらの混合ガスを作つたり、こ
れらを原料として直接使用するLPG基地に設置
する場合のものである。原料ガスであるプロパン
とブタンはそれぞれ二重殻構造で断熱材が取付け
られた常圧タンク11,12に貯蔵されるように
なつており、ほぼ大気圧状態とされ、蒸発ガスは
冷凍機等で圧縮再液化するようにしてある。
This LPG liquid feeding device 10 is installed at an LPG base where propane and butane are used as raw materials to produce a gas mixture thereof, or where these gases are used directly as raw materials. The raw material gases, propane and butane, are stored in normal-pressure tanks 11 and 12, each of which has a double shell structure and is equipped with an insulating material, and are kept at almost atmospheric pressure, and the evaporated gas is stored in a refrigerator or the like. It is compressed and reliquefied.

これら常圧タンク11,12からはそれぞれ専
用の送液ポンプ13,14に吸引され、加熱器1
5,16および三方切換弁17,18を介して球
形タンク等の常温タンク19,20に送られるよ
うになつている。
These normal pressure tanks 11 and 12 are sucked into dedicated liquid feeding pumps 13 and 14, respectively, and the heater 1
5, 16 and three-way switching valves 17, 18, the liquid is sent to normal temperature tanks 19, 20 such as spherical tanks.

これら常温タンク19,20では、外気温に応
じた圧力等の加圧状態でプロパンやブタンを貯蔵
できるよう耐圧容器としての構造となつている。
These room-temperature tanks 19 and 20 are constructed as pressure-resistant containers so that propane and butane can be stored in a pressurized state, such as a pressure that corresponds to the outside temperature.

これら常温タンク19,20からは三方切換弁
17,18を介してそれぞれ流量検出器21,2
2および流量調整弁23,24が接続され、プロ
パンおよびブタンの混合量を調整したのち、常温
タンクのひとつである球形の混合タンク25に貯
蔵されるようになつている。そして、この混合タ
ンク25で混合されたLPGがタンクローリや小
型タンカーあるいはボンベに入れられ燃料等とし
て使用される。
These normal temperature tanks 19 and 20 are connected to flow rate detectors 21 and 2 via three-way switching valves 17 and 18, respectively.
2 and flow rate regulating valves 23 and 24 are connected to adjust the mixed amount of propane and butane, and then stored in a spherical mixing tank 25, which is one of the room temperature tanks. The LPG mixed in the mixing tank 25 is then put into a tank truck, small tanker, or cylinder and used as fuel.

このような常温タンク19,20の付近には、
外気温を検出するための温度検出器26が設置し
てあり、検出信号がそれぞれの送液ポンプ13,
14の回転数を制御する回転数制御器27,28
に入力されるようになつている。
Near these normal temperature tanks 19 and 20,
A temperature detector 26 is installed to detect the outside temperature, and a detection signal is sent to each liquid pump 13,
Rotation speed controllers 27 and 28 that control the rotation speed of 14
It is now entered into .

これら回転数制御器27,28では、常温タン
ク19,20付近の外気温からそれぞれの常温タ
ンク19,20内のプロパンおよびブタンの貯蔵
圧力を求め、この貯蔵圧力よりわずかに高い吐出
圧力に見合う送液ポンプ13,14の回転数をそ
れぞれ演算し、制御信号を出力して各送液ポンプ
13,14の駆動用電動機の電源周波数をインバ
ータ等で変えることで送液ポンプ13,14を所
定の回転数で運転する。
These rotational speed controllers 27 and 28 determine the storage pressure of propane and butane in each of the room temperature tanks 19 and 20 from the outside temperature near the room temperature tanks 19 and 20, and supply the gas at a discharge pressure that is slightly higher than this storage pressure. The rotational speed of the liquid pumps 13, 14 is calculated, a control signal is output, and the power frequency of the drive motor of each liquid pump 13, 14 is changed using an inverter, etc., so that the liquid pumps 13, 14 can be rotated at a predetermined speed. Drive by numbers.

したがつて、夏期のように外気温が高くなつて
常温タンク19,20内のプロパンやブタンが高
圧状態になると、それぞれの貯蔵圧力が温度検出
器26で検出された外気温から求められ、この求
められた貯蔵圧力よりわずかに高い吐出圧力に見
合う送液ポンプ13,14の回転数Nが演算さ
れ、これにより送液ポンプ13,14が運転され
る。
Therefore, when the outside temperature rises and the propane and butane in the room-temperature tanks 19 and 20 reach a high pressure state, as in the summer, the respective storage pressures are determined from the outside temperature detected by the temperature sensor 26, and this The rotational speed N of the liquid feed pumps 13, 14 corresponding to the discharge pressure slightly higher than the determined storage pressure is calculated, and the liquid feed pumps 13, 14 are operated accordingly.

一方、冬期のように外気温が低くなつて常温タ
ンク19,20内のプロパンやブタンの貯蔵圧力
が低下する場合には、送液ポンプ13,14の吐
出圧力を下げても送液できることになり、温度検
出器26で検出した外気温からそれぞれの常温タ
ンク19,20での貯蔵圧力が求められ、この貯
蔵圧力よりわずかに高い吐出圧力に見合う送液ポ
ンプ13,14の回転数N′が演算され、運転さ
れる。
On the other hand, when the outside temperature drops and the storage pressure of propane or butane in the room-temperature tanks 19, 20 decreases, such as in winter, it is possible to send liquid even if the discharge pressure of the liquid sending pumps 13, 14 is lowered. The storage pressure in each room temperature tank 19, 20 is determined from the outside temperature detected by the temperature sensor 26, and the rotational speed N' of the liquid feed pumps 13, 14 corresponding to the discharge pressure slightly higher than this storage pressure is calculated. and driven.

これらを第2図に示す送液ポンプ13,14の
性能曲線で説明する。
These will be explained using the performance curves of the liquid pumps 13 and 14 shown in FIG.

まず、夏期等で常温タンク19,20内の貯蔵
圧力が高い場合には、送液ポンプ13,14の吐
出圧力を高める必要があり、その実施例をhとす
ると、管路等の抵抗曲線Rは図示のように引くこ
とができる。
First, when the storage pressure in the room-temperature tanks 19, 20 is high in the summer, etc., it is necessary to increase the discharge pressure of the liquid pumps 13, 14. can be drawn as shown.

また、送液ポンプ13,14の回転数をNとし
た場合の揚程曲線Hと軸馬力線Sも図示のように
なり、抵抗曲線Rと揚程曲線Hとの交点Aからこ
の場合の揚水量がQとなり、軸馬力がaとなる。
In addition, the head curve H and shaft horsepower line S when the rotational speed of the liquid pumps 13 and 14 are N are also shown in the figure, and the amount of water pumped in this case is determined from the intersection A of the resistance curve R and the head curve H. Q, and the shaft horsepower becomes a.

次に、冬期等で常温タンク19,20内のプロ
パンやブタンの貯蔵圧力が低下した場合には、送
液ポンプ13,14の吐出圧力を下げることが可
能となつて揚程がh′に低下したとすれば、管路等
の抵抗は変化しないため抵抗曲線Rを平行移動し
た抵抗曲線R′(破線)で示すことができる。
Next, when the storage pressure of propane or butane in the room-temperature tanks 19, 20 decreases during winter, etc., it becomes possible to lower the discharge pressure of the liquid pumps 13, 14, and the head drops to h'. If so, since the resistance of the conduit etc. does not change, it can be shown by a resistance curve R' (broken line) obtained by moving the resistance curve R in parallel.

そして、この場合にも夏期等と同一の揚水量Q
を確保するとすれば、揚水量Qと抵抗曲線R′と
の交点Xが求められる。
In this case as well, the amount of pumped water Q is the same as in summer, etc.
If this is to be ensured, the intersection point X between the pumped water amount Q and the resistance curve R' is found.

そこで、送液ポンプ13,14の回転数を下げ
てX点を通る揚程曲線H′(破線)が得られる回転
数N′を回転数制御器27,28で演算しこの回
転数N′で送液ポンプ13,14を運転する。
Therefore, the rotation speed N' at which a head curve H' (broken line) passing through point X is obtained by lowering the rotation speed of the liquid feed pumps 13 and 14 is calculated by the rotation speed controllers 27 and 28, and the liquid is fed at this rotation speed N'. The liquid pumps 13 and 14 are operated.

すると、この回転数をN′とした場合の揚程曲
線H′に対応した軸馬力線はS′(破線)となり、揚
水量をQとした場合に必要な軸馬力は点bとな
り、ポンプ動力が低下することがわかる。
Then, when this rotational speed is N', the shaft horsepower line corresponding to the head curve H' becomes S' (broken line), and when the amount of pumped water is Q, the required shaft horsepower is point b, and the pump power is It can be seen that this decreases.

このように圧送先の圧力に応じて吐出圧力を必
要最小限として送液ポンプ13,14を運転する
ので、絞り弁を用いる場合のようなポンプ動力の
無駄が全くなく、効率的に運転できる。
In this way, the liquid sending pumps 13 and 14 are operated with the discharge pressure set to the minimum necessary level according to the pressure of the pumping destination, so there is no waste of pump power unlike when using a throttle valve, and the pumps can be operated efficiently.

なお、上記実施例では、各常温タンクにそれぞ
れ送液ポンプを設置するようにしたが、1台の送
液ポンプを切換えて使用するようにすることもで
きる。
In the above embodiment, a liquid feeding pump is installed in each room-temperature tank, but it is also possible to switch between using one liquid feeding pump.

また、適用対象となるLPGはプロパンとブタ
ンに限るものでない。さらに、プロパンとブタン
とを混合する場合に限らず、直接使用する場合等
にも適用できる。
Furthermore, the applicable LPG is not limited to propane and butane. Furthermore, it is applicable not only to cases where propane and butane are mixed, but also when they are used directly.

〔考案の効果〕[Effect of idea]

以上、一実施例とともに具体的に説明したよう
にこの考案のLPG送液装置によれば、送液ポン
プで加圧したLPGが貯蔵される常温タンク内の
圧力を常温タンク付近の大気温度を検出すること
で知り、この大気温度により回転数制御器で必要
な吐出圧力に見合うよう送液ポンプの回転数を制
御する制御するようにしたので、送液ポンプを常
に必要最小限の動力で運転することができ、運転
経費を節約できる。
As explained above in detail with one embodiment, according to the LPG liquid feeding device of this invention, the pressure inside the room temperature tank in which LPG pressurized by the liquid feeding pump is stored is detected by the atmospheric temperature near the room temperature tank. Based on the atmospheric temperature, we used the rotation speed controller to control the rotation speed of the liquid pump to match the required discharge pressure, so the liquid pump was always operated with the minimum power necessary. can save operating costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの考案のLPG送液装
置の一実施例にかかる概略構成図および性能曲線
の説明図である。 10……LPG送液装置、11,12……常圧
タンク、13,14……送液ポンプ、15,16
……加熱器、17,18……三方切換弁、19,
20……常温タンク、21,22……流量検出
器、23,24……流量調整弁、25……混合タ
ンク、26……温度検出器、27,28……回転
数制御器、H,H′……揚程曲線、R,R′,R″…
…抵抗曲線、S,S′……軸馬力線、N,N′……
回転数、h,h′……実揚程、Q……揚水量。
FIG. 1 and FIG. 2 are schematic diagrams of the configuration and explanatory diagrams of performance curves of an embodiment of the LPG liquid feeding device of this invention. 10... LPG liquid feeding device, 11, 12... Normal pressure tank, 13, 14... Liquid feeding pump, 15, 16
... Heater, 17, 18 ... Three-way switching valve, 19,
20... Normal temperature tank, 21, 22... Flow rate detector, 23, 24... Flow rate adjustment valve, 25... Mixing tank, 26... Temperature detector, 27, 28... Rotation speed controller, H, H ′……Head curve, R, R′, R″…
...Resistance curve, S, S'... Shaft horsepower line, N, N'...
Rotation speed, h, h'... Actual head, Q... Amount of water pumped.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] LPGを低温常圧状態で貯蔵する常圧タンクか
ら外気温に応じた加圧常温状態で貯蔵する常温タ
ンクに圧送する装置において、常圧タンクから
LPGを吸引して圧力変化のある常温タンクに圧
送する送液ポンプと、この送液ポンプの吐出側の
常温タンク付近の大気温度を検出する温度検出器
と、この温度検出器の検出信号に基づき常温タン
ク内の圧力より高い吐出圧となるよう送液ポンプ
の回転数を制御する回転数制御器とからなること
を特徴とするLPG送液装置。
A device that pumps LPG from a normal pressure tank that stores LPG at low temperature and normal pressure to a normal temperature tank that stores it at pressurized room temperature according to the outside temperature.
A liquid pump that suctions LPG and pumps it into a room-temperature tank where the pressure changes, a temperature detector that detects the atmospheric temperature near the room-temperature tank on the discharge side of this liquid pump, and a An LPG liquid feeding device comprising a rotational speed controller that controls the rotational speed of a liquid feeding pump so that the discharge pressure is higher than the pressure in a room temperature tank.
JP18518287U 1987-12-04 1987-12-04 Expired - Lifetime JPH0533838Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18518287U JPH0533838Y2 (en) 1987-12-04 1987-12-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18518287U JPH0533838Y2 (en) 1987-12-04 1987-12-04

Publications (2)

Publication Number Publication Date
JPH0189698U JPH0189698U (en) 1989-06-13
JPH0533838Y2 true JPH0533838Y2 (en) 1993-08-27

Family

ID=31476509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18518287U Expired - Lifetime JPH0533838Y2 (en) 1987-12-04 1987-12-04

Country Status (1)

Country Link
JP (1) JPH0533838Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3076182B2 (en) * 1993-09-24 2000-08-14 九州日本電気株式会社 Gas leakage prevention method in gas supply system and gas supply system provided with gas leakage prevention device
JP2001248792A (en) * 2000-03-03 2001-09-14 Ricoh Elemex Corp Liquefied gas filling system
JP7143120B2 (en) * 2018-06-01 2022-09-28 株式会社神戸製鋼所 gas supply system

Also Published As

Publication number Publication date
JPH0189698U (en) 1989-06-13

Similar Documents

Publication Publication Date Title
US11441736B2 (en) Multi-vessel fluid storage and delivery system
CN100436253C (en) Gas supply arrangement of a marine vessel and method of providing gas in a gas supply arrangement of a marine vessel
EP0157430B1 (en) Injection unit for internal combustion engines fed with gaseous fuels such as liquefied petroleum gas or methane
US20160017835A1 (en) Method And System For Delivering A Gaseous Fuel Into The Air Intake System Of An Internal Combustion Engine
WO1999045260A3 (en) Apparatus for controlling a fuel system of an internal combustion engine
JPH0533838Y2 (en)
KR101405582B1 (en) Fuel supplying device for liquefied natural gas vehicle
GB1114610A (en) Improvements in and relating to power plants including diesel engines using liquid and gaseous fuels
JP2001226684A (en) Gas supply facility
WO2021184681A1 (en) Stirring system, pumping machine and control method therefor, and storage medium
JPH0618146Y2 (en) LPG constant pressure liquid sending device
CN112983686B (en) LNG (liquefied Natural gas) supply system of dual-fuel engine and LNG ship
WO2019049790A1 (en) Ship
CN206738935U (en) The vaporization of LNG a kind of and self-supercharging device
JPH05126006A (en) Control device of fuel pump for internal combustion engine
KR101848964B1 (en) A floating offshore structure and a management method for the same
WO2019049789A1 (en) Ship
US20230392753A1 (en) Systems and methods for dispensing cryogenic liquid fuel as a gas at controlled temperature using cryogenic fluid
JP2004276744A (en) Liquid filling system for bulk lorry
RU2020125995A (en) Rocket filling system with liquid oxygen
JPS5939636B2 (en) How to unload low-temperature liquefied gas
KR20220021299A (en) Ship
KR101920948B1 (en) Supply fan control system of engine room having dual fuel engine and method thereof
JP3265617B2 (en) Fuel injection control device for LNG engine
CN113062824A (en) Marine lightweight double-body sequential voltage-stabilizing starting air device