JPH05335652A - Ferromagnetic magnetic resistance element - Google Patents

Ferromagnetic magnetic resistance element

Info

Publication number
JPH05335652A
JPH05335652A JP4142326A JP14232692A JPH05335652A JP H05335652 A JPH05335652 A JP H05335652A JP 4142326 A JP4142326 A JP 4142326A JP 14232692 A JP14232692 A JP 14232692A JP H05335652 A JPH05335652 A JP H05335652A
Authority
JP
Japan
Prior art keywords
ferromagnetic
magnetoresistive element
ferromagnetic magnetoresistive
resistance element
magnetic resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4142326A
Other languages
Japanese (ja)
Inventor
Kazuhiro Onaka
和弘 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4142326A priority Critical patent/JPH05335652A/en
Publication of JPH05335652A publication Critical patent/JPH05335652A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a thin-film magnetic resistance element to be used within gas oil and heavy oil and further provide a sealing structure for improving mechanical strength and reliability. CONSTITUTION:A ferromagnetic magnetic resistance element substrate 11 is laid out within a cap 12, the opening of the cap 12 is hermetically sealed, further the inside is replaced by inactive gas atmosphere or is turned into vacuum state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル合金の強磁性
薄膜を用いた強磁性磁気抵抗素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic magnetoresistive element using a nickel alloy ferromagnetic thin film.

【0002】[0002]

【従来の技術】現在、主に用いられている回転検出装置
の中で、光半導体を用いた光式回転検出装置や、ホール
ICを用いた磁気式回転検出装置は、耐熱温度が125
℃以下であり、産業機器に対して使用する際には大きな
障害となっているのが現状である。そこで200℃以上
の耐熱温度のある強磁性磁気抵抗素子の産業機器への利
用がますます高まってきている。特に電装品分野では、
180℃以上の耐熱性を要求される電子部品が多く、検
出体の物性から見て、強磁性磁気抵抗素子以外の回転検
出装置は使用できないことは明らかであり、その期待度
は高まる一方である。さらに、特に耐熱性を要求されな
い使用用途であっても、使用環境が軽油や重油中であっ
たり、また著しくゴミの発生する箇所であった場合、呈
色した液体や粉塵等により光線の透過を妨げられるた
め、光式回転検出装置の使用は不可能であった。
2. Description of the Related Art At present, among the rotation detection devices mainly used, an optical rotation detection device using an optical semiconductor and a magnetic rotation detection device using a Hall IC have a heat resistant temperature of 125.
The temperature is below ℃, which is a major obstacle to use in industrial equipment. Therefore, the use of ferromagnetic magnetoresistive elements having a heat resistant temperature of 200 ° C. or higher is increasing in industrial equipment. Especially in the electrical component field,
Many electronic components are required to have heat resistance of 180 ° C or higher, and it is clear from the physical properties of the detector that it is not possible to use a rotation detector other than the ferromagnetic magnetoresistive element, and its expectation is increasing. .. Furthermore, even in applications where heat resistance is not particularly required, if the environment of use is in light oil or heavy oil, or if there is a significant amount of dust, the colored liquid or dust may block the transmission of light rays. It was impossible to use the optical rotation detection device because of the hindrance.

【0003】一方、強磁性磁気抵抗素子はガラスまたは
セラミック基板上にニッケル合金からなる膜厚約500
Åの強磁性薄膜をパターニングし、その上に保護膜Si
Nとエポキシ樹脂またはポリイミド樹脂などをコーティ
ングすることによって構成される。
On the other hand, a ferromagnetic magnetoresistive element has a film thickness of about 500 made of nickel alloy on a glass or ceramic substrate.
The ferromagnetic thin film of Å is patterned, and the protective film Si is formed on it.
It is formed by coating N with epoxy resin or polyimide resin.

【0004】図4は従来例の強磁性磁気抵抗素子基板の
断面図である。ここで1はリード線、2はガラスまたは
セラミックの基板、3は強磁性磁気抵抗薄膜、4は電
極、5は保護膜である。
FIG. 4 is a sectional view of a conventional ferromagnetic magnetoresistive element substrate. Here, 1 is a lead wire, 2 is a glass or ceramic substrate, 3 is a ferromagnetic magnetoresistive thin film, 4 is an electrode, and 5 is a protective film.

【0005】また強磁性磁気抵抗素子は図5のように構
成されている。ここで、6は強磁性磁気抵抗素子基板、
7はエポキシ等のモールド樹脂である。
The ferromagnetic magnetoresistive element is constructed as shown in FIG. Here, 6 is a ferromagnetic magnetoresistive element substrate,
7 is a mold resin such as epoxy.

【0006】これらで構成された強磁性磁気抵抗素子
は、湿度を多く含んだ環境や、軽油や重油中での使用は
構成材料の特性より非常に困難であった。
The ferromagnetic magnetoresistive element made of these materials has been extremely difficult to use in an environment containing a lot of humidity, in light oil or heavy oil, due to the characteristics of the constituent materials.

【0007】これらの従来の強磁性磁気抵抗素子につい
て、軽油中での連続使用による中点電位変化量を図2に
示すが、1000時間で5V印加時に20mV以上マイ
ナス側にずれていることが判る。
FIG. 2 shows the amount of change in the midpoint potential of these conventional ferromagnetic magnetoresistive elements due to continuous use in light oil. It can be seen that the voltage shifts to the negative side by 20 mV or more when 5 V is applied for 1000 hours. ..

【0008】また軽油中での連続使用による抵抗値変化
率を図3に示すが、1000時間で10%以上減少して
いることがわかる。
FIG. 3 shows the rate of change in resistance value due to continuous use in light oil, which shows that the resistance value has decreased by 10% or more after 1000 hours.

【0009】[0009]

【発明が解決しようとする課題】以上のような従来使用
していた基板の有する問題点の原因としては以下のもの
が考えられる。
The causes of the problems of the above-mentioned conventionally used substrates are considered as follows.

【0010】1.軽油や重油中に含まれるアルカリ成分
またはハロゲン分子の、電気泳動によるニッケル合金中
への拡散。
1. Diffusion of alkaline components or halogen molecules contained in light oil or heavy oil into nickel alloy by electrophoresis.

【0011】2.軽油や重油等による保護膜樹脂の破
壊。 以上の問題を鑑みて、軽油や重油など素子を構成する材
料を腐食または破壊しうる液体中での連続使用を可能に
し、さらに高い機械的強度と信頼性を確保した強磁性磁
気抵抗素子を提供することを目的とする。
2. Destruction of protective film resin by light oil or heavy oil. In view of the above problems, it is possible to provide a ferromagnetic magnetoresistive element that enables continuous use in a liquid that can corrode or destroy elements such as light oil and heavy oil, and that has higher mechanical strength and reliability. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】上記問題を解決するため
に本発明は、セラミックまたはガラスからなる基板の表
面に形成されたニッケル合金の強磁性磁気抵抗薄膜と、
この強磁性磁気抵抗薄膜を覆う保護膜と、リード線とを
備えた強磁性磁気抵抗素子基板を有し、前記強磁性磁気
抵抗素子基板を開口部を有する金属ケース内に配設する
とともに、前記開口部よりリード線を引出し、かつ前記
開口部をハーメチックシールしたものである。
In order to solve the above problems, the present invention provides a ferromagnetic alloy magnetoresistive thin film of nickel alloy formed on the surface of a substrate made of ceramic or glass,
A ferromagnetic magnetoresistive element substrate having a protective film covering the ferromagnetic magnetoresistive thin film and a lead wire is provided, and the ferromagnetic magnetoresistive element substrate is disposed in a metal case having an opening, and A lead wire is drawn out from the opening, and the opening is hermetically sealed.

【0013】[0013]

【作用】強磁性磁気抵抗素子を金属キャップに入れて溶
接封止し、リード線の取り出し部分を低温焼成ガラスに
てハーメチックシールすることによって、完全に外気と
の接触をなくして素子の劣化を防ぐ。
[Function] The ferromagnetic magnetoresistive element is put in a metal cap, welded and sealed, and the lead-out portion is hermetically sealed with a low-temperature baked glass to completely eliminate contact with the outside air and prevent deterioration of the element. ..

【0014】[0014]

【実施例】以下、本発明の一実施例の強磁性磁気抵抗素
子について説明する。図1において11は強磁性磁気抵
抗素子基板で、図4に示すような構成である。12は金
属ケースとしての銅合金のキャップ、13はリード線、
14は鉄合金のベース、15は封止用ガラスである。こ
こで、リード線13とベース14とを封止用ガラス15
にて接着しておき、強磁性磁気抵抗素子基板11の電極
部分をリード線13の先端部分に溶接または半田付けす
る。その後、キャップ12をかぶせてベース14との接
触部分を溶接または半田付けする。またキャップ12内
はアルゴンや窒素、または非常に活性化しにくい不活性
ガスを充填させるか、真空状態にする。
EXAMPLE A ferromagnetic magnetoresistive element according to an example of the present invention will be described below. In FIG. 1, 11 is a ferromagnetic magnetoresistive element substrate, which has a structure as shown in FIG. 12 is a copper alloy cap as a metal case, 13 is a lead wire,
Reference numeral 14 is an iron alloy base, and 15 is sealing glass. Here, the lead wire 13 and the base 14 are sealed with the glass 15 for sealing.
Then, the electrode portion of the ferromagnetic magnetoresistive element substrate 11 is welded or soldered to the tip portion of the lead wire 13. Then, the cap 12 is covered and the contact portion with the base 14 is welded or soldered. The inside of the cap 12 is filled with argon, nitrogen, or an inert gas that is very difficult to activate, or is placed in a vacuum state.

【0015】図2は本実施例の素子を用いて100℃で
の重油中で連続使用を行った後の中点電位ドリフト量の
結果であり、横軸は時間、縦軸は中点電位のドリフト量
を示している。これによると、従来例の素子のみや樹脂
モールドした強磁性磁気抵抗素子と比較して全く中点が
トリフトしていないことが判る。これは金属キャップと
ベースと溶接部分の封止が完全になされているために、
重油中の不純物イオンによる強磁性薄膜の劣化や、モー
ルド樹脂の破壊などが起こっていないことによるもので
ある。
FIG. 2 shows the results of the amount of midpoint potential drift after continuous use in heavy oil at 100 ° C. using the device of this example, where the horizontal axis represents time and the vertical axis represents midpoint potential. The amount of drift is shown. According to this, it can be seen that the middle point does not troffer at all as compared with the conventional element only or the resin-molded ferromagnetic magnetoresistive element. This is because the metal cap, the base and the welded part are completely sealed,
This is because the deterioration of the ferromagnetic thin film and the destruction of the mold resin due to the impurity ions in the heavy oil have not occurred.

【0016】図3は本実施例の素子を用いて100℃で
の重油中で連続使用した後の抵抗値変化率の結果であ
り、横軸は時間、縦軸は抵抗値の変化率を示している。
これによると、抵抗値の変化は全く無いことがわかる。
FIG. 3 shows the results of the rate of change in resistance value after continuous use in heavy oil at 100 ° C. using the device of this example, the horizontal axis represents time, and the vertical axis represents the rate of change in resistance value. ing.
According to this, it can be seen that there is no change in the resistance value.

【0017】[0017]

【発明の効果】以上のように本発明によれば、次のよう
な効果が得られる。 1.100℃での重油中の連続使用において、中点電位
のドリフトが全くない 2.100℃での重油中の連続使用において、抵抗値変
化が全く無い。 3.素子の機械的強度が大きくなる。 4.素子の信頼性を確保できる。
As described above, according to the present invention, the following effects can be obtained. 1. There is no midpoint potential drift in continuous use in heavy oil at 100 ° C. 2. There is no change in resistance value in continuous use in heavy oil at 100 ° C. 3. The mechanical strength of the element is increased. 4. The reliability of the element can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による強磁性磁気抵抗素子の
断面図
FIG. 1 is a sectional view of a ferromagnetic magnetoresistive element according to an embodiment of the present invention.

【図2】同実施例及び従来例の中点電位の変化量を示し
た特性図
FIG. 2 is a characteristic diagram showing the amount of change in the midpoint potential of the example and the conventional example.

【図3】同実施例及び従来例の抵抗値変化率を示した特
性図
FIG. 3 is a characteristic diagram showing resistance value change rates of the example and the conventional example.

【図4】強磁性磁気抵抗素子基板の断面図FIG. 4 is a sectional view of a ferromagnetic magnetoresistive element substrate.

【図5】従来例の強磁性磁気抵抗素子の断面図FIG. 5 is a sectional view of a conventional ferromagnetic magnetoresistive element.

【符号の説明】[Explanation of symbols]

11 強磁性磁気抵抗素子基板 12 キャップ 13 リード線 14 ベース 15 封止用ガラス 11 Ferromagnetic Magnetoresistive Element Substrate 12 Cap 13 Lead Wire 14 Base 15 Sealing Glass

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミックまたはガラスからなる基板の表
面に形成されたニッケル合金の強磁性磁気抵抗薄膜と、
この強磁性磁気抵抗薄膜を覆う保護膜と、リード線とを
備えた強磁性磁気抵抗素子基板を有し、前記強磁性磁気
抵抗素子基板を開口部を有する金属ケース内に配設する
とともに、前記開口部よりリード線を引出し、かつ前記
開口部をハーメチックシールした強磁性磁気抵抗素子。
1. A ferromagnetic alloy magnetoresistive thin film of nickel alloy formed on the surface of a substrate made of ceramic or glass,
A ferromagnetic magnetoresistive element substrate having a protective film covering the ferromagnetic magnetoresistive thin film and a lead wire is provided, and the ferromagnetic magnetoresistive element substrate is disposed in a metal case having an opening, and A ferromagnetic magnetoresistive element in which a lead wire is drawn out from the opening and the opening is hermetically sealed.
【請求項2】ハーメチックシールした金属ケース内雰囲
気を不活性ガス雰囲気または真空状態にした強磁性磁気
抵抗素子。
2. A ferromagnetic magnetoresistive element in which the atmosphere in a hermetically sealed metal case is an inert gas atmosphere or a vacuum state.
JP4142326A 1992-06-03 1992-06-03 Ferromagnetic magnetic resistance element Pending JPH05335652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4142326A JPH05335652A (en) 1992-06-03 1992-06-03 Ferromagnetic magnetic resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4142326A JPH05335652A (en) 1992-06-03 1992-06-03 Ferromagnetic magnetic resistance element

Publications (1)

Publication Number Publication Date
JPH05335652A true JPH05335652A (en) 1993-12-17

Family

ID=15312747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4142326A Pending JPH05335652A (en) 1992-06-03 1992-06-03 Ferromagnetic magnetic resistance element

Country Status (1)

Country Link
JP (1) JPH05335652A (en)

Similar Documents

Publication Publication Date Title
US4461924A (en) Semiconductor casing
US3619614A (en) An infrared intensity detector
US4001863A (en) Resin-sealed type semiconductor device
US4280885A (en) Method of and apparatus for active electro-chemical water and similar environmental contaminant elimination in semi-conductor and other electronic and electrical devices and the like
US4338486A (en) Housing for electrical and electronic components
JPH05335652A (en) Ferromagnetic magnetic resistance element
US4659378A (en) Solderable adhesive layer
US20060164204A1 (en) Magnetoresistance effect element and production method and application method therefor same
US4010440A (en) Electrical resistor component assembly which is hermetically sealed
US3638076A (en) Metal-to-glass-to-ceramic seal
JPS61290740A (en) Manufacture of semiconductor device
US5285012A (en) Low noise integrated circuit package
JP3115414B2 (en) Reed switch
JP2739703B2 (en) 1x optical sensor
JPH05258909A (en) Glass-sealed thermistor
KR860000476B1 (en) Manufacturing method of lead wire
JPS6392926A (en) Liquid crystal display element
JPH02234401A (en) Variable resistor
JPH05215600A (en) Thermistor chip element and infrared ray detector using it
Clark et al. Improved aging results using thick-film hybrid packaging and evacuated miniature ovenized oscillators using such packaging
JPS5812441Y2 (en) Semiconductor device electrode structure
JPH0945975A (en) Semiconductor magnetic sensor
KR200167234Y1 (en) An axial type ntc thermistor with in the layer-built chip
JPS5717149A (en) Semiconductor device
JPH0521863A (en) Ferromagnetoresistance element