JPH05335625A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH05335625A
JPH05335625A JP13647792A JP13647792A JPH05335625A JP H05335625 A JPH05335625 A JP H05335625A JP 13647792 A JP13647792 A JP 13647792A JP 13647792 A JP13647792 A JP 13647792A JP H05335625 A JPH05335625 A JP H05335625A
Authority
JP
Japan
Prior art keywords
substrate
type
light emitting
layer
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13647792A
Other languages
Japanese (ja)
Inventor
Hisao Nagata
久雄 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP13647792A priority Critical patent/JPH05335625A/en
Publication of JPH05335625A publication Critical patent/JPH05335625A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PURPOSE:To obtain a semiconductor light emitting element the output per one chip of which can be increased by forming light emitting elements having p-n or pin junctions on both surfaces of a conductive substrate and causing the p-n or pin junctions to emit light. CONSTITUTION:A p-type GaAs buffer layer 2, p-type AlGaAs clad layer 3, i-type AlGaAs active layer 4, n-type AlGaAs clad layer 5, and n-type GaAs contact layer 6 are successively grown by an MOCVD method on both surfaces of a p-GaAs substrate 1. Then a ridge structure 7 having a 5mum width and step 8 for forming electrodes on the substrate 1 are formed by chemical etching and an SiO2 film 9 constituting an insulating layer is formed by a sputtering method. In addition, an AuGe film which becomes an n-type electrode 10 and AuCr film which becomes a p-type electrode 11 are formed by a vacuum deposition method. Therefore, when this product is applied to an LD, a semiconductor light emitting element which can outputs a higher optical output as compared with the conventional element having the same size can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、注入型の半導体発光素
子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection type semiconductor light emitting device.

【0002】[0002]

【従来の技術】発光素子の代表的なものとして、発光ダ
イオード(LED)と半導体レーザ(LD)が知られて
いる。LEDやLDは化合物半導体(GaAs、Ga
P、AlGaAs等)にpnまたはpinの接合を形成
し、これに順方向電圧を印加することにより接合内部に
キャリアを注入、その再結合の過程で生じる発光現象を
利用したものである。このようなLEDやLDは従来、
GaAsやInP等の単結晶基板上にGaAs、AlG
aAs、InP、InGaAsP等それぞれの基板に格
子整合した化合物半導体を、液相エピタクシー法(LP
E)、有機金属気相成長法(MOCVD)、気相成長法
(VPE)、分子線エピタクシー法(MBE法)等の結
晶成長法を用いてエピタキシャル成長し、加工を施すこ
とで製造されて来た。すなわちLEDやLDは、nまた
はp型の単結晶基板の片面に、基板と同じ導電型の半導
体材料とそれとは異なった導電型を示す半導体材料を順
次エピタキシャル成長してpn接合もしくはpin接合
が形成されていた。そして基板とエピタキシャル成長膜
の表面に設けられた電極間に電流を流すことで発光させ
ていた。
2. Description of the Related Art A light emitting diode (LED) and a semiconductor laser (LD) are known as typical light emitting elements. LEDs and LDs are compound semiconductors (GaAs, Ga)
A pn or pin junction is formed in (P, AlGaAs, etc.), and a forward voltage is applied to the junction to inject carriers into the junction, and a light emission phenomenon that occurs in the process of recombination thereof is utilized. Conventionally, such LEDs and LDs have been
GaAs, AlG on a single crystal substrate such as GaAs or InP
Compound semiconductors lattice-matched to the respective substrates such as aAs, InP, InGaAsP, etc. are subjected to liquid phase epitaxy (LP
E), metal-organic vapor phase epitaxy (MOCVD), vapor phase epitaxy (VPE), molecular beam epitaxy (MBE method), etc. It was That is, in an LED or LD, a pn junction or a pin junction is formed on one surface of an n-type or p-type single crystal substrate by sequentially epitaxially growing a semiconductor material having the same conductivity type as that of the substrate and a semiconductor material having a conductivity type different from that of the substrate. Was there. Then, light is emitted by passing a current between the substrate and the electrodes provided on the surface of the epitaxial growth film.

【0003】[0003]

【発明が解決しようとする課題】近年、Nd:YAGレ
ーザ等の固体レーザの励起にLDが用いられている。こ
のLDの特性として求められるのが光出力である。単体
のレーザではこれに必要な出力が得られないため、LD
を並べたLDアレイあるいはLDアレイを2次元に並べ
たものが用いられている。このように固体レーザを励起
するためには多数のLDが必要である。
In recent years, LDs have been used for pumping solid-state lasers such as Nd: YAG lasers. The optical output is required as the characteristic of this LD. Since a single laser cannot obtain the output required for this, LD
An LD array in which is arranged or a two-dimensional array of LD arrays is used. As described above, a large number of LDs are required to excite the solid-state laser.

【0004】一方、LEDを用いたマルチカラーディス
プレイは、図5に示したように発光波長の異なるLED
を並べることで製造されている。図は面発光型の赤と緑
の2色のLEDを用いた場合である。アルミナ多層配線
基板50に赤色LED51と緑色LED52を1対とし
てX配線53上にダイボンドされており、LEDの他方
の電極はそれぞれYR配線54、YG配線55にボンディ
ングされている。図6はこのマトリックス配線で、例え
ばX2−Y1G間に順方向電圧を印加すると緑色のLE
D:D21Gが点灯する。またX3−Y2RおよびX3−Y2G
に同時に電界を印加するとD32RとD32Gが同時に発光
し、黄色で発光しているように観測される。ところがこ
のディスプレイでは、1ドットを形成するのに2つの素
子が必要となっている。
On the other hand, a multi-color display using LEDs has LEDs of different emission wavelengths as shown in FIG.
It is manufactured by lining up. The figure shows the case where surface emitting LEDs of two colors, red and green, are used. The red LED 51 and the green LED 52 as a pair are die-bonded on the X wiring 53 on the alumina multilayer wiring board 50, and the other electrodes of the LED are bonded to the Y R wiring 54 and the Y G wiring 55, respectively. FIG. 6 shows this matrix wiring. For example, when a forward voltage is applied between X 2 and Y 1G , green LE
D: D 21G lights up. Also X 3 -Y 2R and X 3 -Y 2G
When an electric field is applied at the same time, it is observed that D 32R and D 32G simultaneously emit light and emit yellow light. However, in this display, two elements are required to form one dot.

【0005】本発明は上記従来の問題点を解決し、より
少ない素子数で同じトータル出力を達成する、言い換え
ると、1チップ当たりの高光出力化のできる半導体発光
素子を提供することを第1の目的とし、多波長出力が可
能な半導体発光素子を提供することを第2の目的とする
ものである。
The first object of the present invention is to provide a semiconductor light emitting device which solves the above problems of the prior art and achieves the same total output with a smaller number of devices, in other words, a high light output per chip. A second object is to provide a semiconductor light emitting device capable of outputting multiple wavelengths.

【0006】[0006]

【課題を解決するための手段】請求項1の半導体発光素
子は、pn接合もしくはpin接合に電流を流して発光
させる半導体発光素子において、導電性基板の両面にp
n接合もしくはpin接合を有する発光素子を形成し、
基板表面に設けた電極と素子表面に設けた電極間に電流
を流し、基板の両面付近に設けたpn接合もしくはpi
n接合で発光させることを特徴とする。
According to a first aspect of the present invention, there is provided a semiconductor light emitting device which emits light by passing a current through a pn junction or a pin junction.
forming a light emitting element having an n-junction or a pin junction,
A current is caused to flow between the electrode provided on the surface of the substrate and the electrode provided on the surface of the element to form a pn junction or pi provided near both sides of the substrate.
It is characterized in that light is emitted at an n-junction.

【0007】請求項2の半導体発光素子は、基板の両面
のpn接合もしくはpin接合を形成する半導体材料の
バンドギャップが異なり、発光波長が基板の両面に設け
た発光素子間で異なることを特徴とする。
According to another aspect of the semiconductor light emitting element of the present invention, the band gap of the semiconductor material forming the pn junction or the pin junction on both surfaces of the substrate is different, and the emission wavelength is different between the light emitting elements provided on both surfaces of the substrate. To do.

【0008】本発明では、基板の両面にエピタキシャル
成長を施してpn接合もしくはpin接合を形成し、加
工することで基板を共通電極とする発光素子を得ること
ができる。発光素子の構造およびエピタキシャル成長を
はじめとするプロセス技術は、従来知られている技術を
そのまま適用できる。
In the present invention, a light emitting device using the substrate as a common electrode can be obtained by performing epitaxial growth on both surfaces of the substrate to form a pn junction or a pin junction and processing the same. As the process technology including the structure of the light emitting device and the epitaxial growth, the conventionally known technology can be applied as it is.

【0009】本発明による半導体発光素子では、従来の
ものの2倍の光出力をほぼ同じ大きさのチップから取り
出すことができる。またLDアレイに応用することで
も、ビット数が1/2、すなわち1/2の幅で同じ光出
力を取り出すことが可能である。
In the semiconductor light emitting device according to the present invention, a light output twice as large as that of the conventional one can be taken out from a chip having substantially the same size. Also, by applying it to an LD array, it is possible to extract the same optical output with a bit number of ½, that is, with a width of ½.

【0010】この技術の応用として基板の両面で、発光
層の組成あるいは添加する不純物を変えることで2波長
で発振するLDあるいはLEDを得ることができる。例
えば、GaP-LEDは深い準位を介しての発光で、そ
の準位あるいはキャリアの再結合の過程によって緑色か
ら赤色の波長で発光する。そこでn型GaP基板を用い
て一方の面にZnおよびOをドープしたGaPを、他方
の面にはNを添加したp型GaPをエピタキシャル成長
する。n−GaPから共通電極を取り出し、この電極と
前者の成長層に設けた電極間に順方向電圧を印加すると
赤色で発光し、後者の材料に設けた電極との間に順方向
電圧を印加することで緑色に発光させることが可能とな
る。GaPのバンドギャップは、これらのいずれの波長
の光よりも大きいエネルギを持っているため、両面の素
子に同時に順方向電圧を印加すると、端面および基板の
いずれの面においても肉眼では黄色の発光として観察で
きる。このダイオードをLEDディスプレイに応用する
と、画素数が同じでも素子数を1/2にすることが可能
となる。
As an application of this technique, an LD or an LED that oscillates at two wavelengths can be obtained by changing the composition of the light emitting layer or the added impurities on both sides of the substrate. For example, a GaP-LED emits light through a deep level, and emits light of wavelengths from green to red depending on the process of recombination of the levels or carriers. Therefore, an n-type GaP substrate is used to epitaxially grow GaP doped with Zn and O on one surface and p-type GaP doped with N on the other surface. When a common electrode is taken out from n-GaP and a forward voltage is applied between this electrode and the electrode provided in the former growth layer, light is emitted in red, and a forward voltage is applied between the electrode provided in the latter material. This makes it possible to emit green light. Since the band gap of GaP has energy larger than that of light of any of these wavelengths, when a forward voltage is applied to the elements on both sides at the same time, yellow light is emitted as light to the end face and both faces of the substrate with the naked eye. I can observe. When this diode is applied to an LED display, it is possible to reduce the number of elements to 1/2 even if the number of pixels is the same.

【0011】本発明において、GaAs、InP、Ga
P、AlGaAs、InGaAs、InGaAsP、A
lGaInP等をはじめとするIII−V族化合物半導
体、ZnS、ZnSe、ZnTe、CdS、CdSe、
CdTeをはじめとする2元以上のII−VI族化合物
半導体、Si、Ge、SiC等のIV族半導体等いかな
る材料も用いることができる。LDへの応用では、基板
の両面の発振波長を同じにすることも可能であり、また
異なった波長で発振させることも可能である。LEDの
多色化においても、本発明ではGaPを用いて赤色と緑
色の組み合わせについて述べたが、これに限ることな
く、例えばGaAs基板上のAlGaAs赤色LEDと
ZnSe青色LEDの組み合わせなど、上記の種々の材
料を用いることが可能である。
In the present invention, GaAs, InP, Ga
P, AlGaAs, InGaAs, InGaAsP, A
III-V group compound semiconductors such as lGaInP, ZnS, ZnSe, ZnTe, CdS, CdSe,
Any material such as a binary or more II-VI group compound semiconductor including CdTe and a group IV semiconductor such as Si, Ge, or SiC can be used. In the application to the LD, it is possible to make the oscillation wavelengths of both surfaces of the substrate the same, and it is also possible to oscillate at different wavelengths. In the present invention, even in the case of multicoloring of LEDs, the present invention has described the combination of red and green using GaP, but the present invention is not limited to this, and various combinations of the above, such as a combination of an AlGaAs red LED on a GaAs substrate and a ZnSe blue LED, are possible. It is possible to use the above materials.

【0012】[0012]

【実施例】以下、本発明を図面を参照して詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

【0013】図1は、本発明の実施例1に係るLDの斜
視図である。図2は、本発明の実施例2に係る拡散を併
用したLDの斜視図である。図3は、本発明の実施例3
に係るLDの斜視図である。図4は、本発明の面発光型
のLEDを用いたマルチカラーディスプレイを模式的に
示す斜視図である。 実施例1 以下本発明の実施例としてGaAs基板の両面にAlG
aAs-LDを作製した例について述べる。LDの構造
は図1に示すようなリッジ導波路型とした。両面研磨し
た厚さ100μmのp−GaAs基板1の両面に、MO
CVD法によりそれぞれp−GaAsバッファ層2、p
−AlGaAsクラッド層3、i−AlGaAs活性層
4、n−AlGaAsクラッド層5およびn−GaAs
コンタクト層6を順次成長した。続いて幅5μmのリッ
ジ構造7と基板に電極を設けるためのステップ8を化学
エッチングで形成した。絶縁層であるSiO2膜9をス
パッタ法、n型電極10となるAuGe膜とp型電極1
1となるAuCr膜を真空蒸着法で形成した。本LDを
Cuヒートシンクにダイボンドして発光特性を評価した
ところ、発振しきい値はいずれの面の素子についても4
0mA前後であった。またヒートシンク側の素子の最大
出力は片端面当たり約35mW、ヒートシンク側でない
方の側の素子の最大出力は片端面当たりは約30mWで
あった。この差異は熱によるものである。さらに両側の
素子に同時に電流を注入した時、約60mWの出力が得
られた。この際、端面のコーティングは施していない。
上記実施例では基板両面のリッジが、基板の垂線上で一
致しているが、これをずらすことで同時点灯時の熱拡散
効率が向上しトータルのパワーを大きくできる。 実施例2 本発明の他のLDへの応用実施例としてGaAs基板の
両面に作製した例について述べる。LDの構造は図2に
示すようなリッジ導波路型とした。両面研磨したp−G
aAs基板1の両面にMOCVD法によりそれぞれp−
GaAsバッファ層2、p−AlGaAsクラッド層
3、i−AlGaAs活性層4、n−AlGaAsクラ
ッド層5およびn−GaAsコンタクト層6を順次成長
した。共通電極を取り出すために基板の一部に閉管法で
Znを拡散し、Zn拡散領域13を形成した。続いて幅
5μmのリッジ構造7とZn拡散領域13を分離するた
めに、基板に達する程度の分離エッチング溝14を形成
した。これにより横接合型の半導体レーザとして作用す
るのを防ぐことができる。絶縁層であるSiO2膜9を
スパッタ法、n型電極10となるAuGe膜とp型電極
11となるAuCr膜を真空蒸着法で形成した。本LD
をCuヒートシンクにダイボンドして発光特性を評価し
たところ、発振しきい値はいずれの面の素子についても
40mA前後であった。またヒートシンク側の素子の最
大出力は片端面当たり約35mW、ヒートシンク側でな
い方の側の素子の最大出力は片端面当たりは約30mW
であった。この差異は熱によるものである。さらに両側
の素子に同時に電流を注入した時、約60mWの出力が
得られた。この際、端面のコーティングは施していな
い。 実施例3 本発明の実施例として、GaPを用いたLEDについて
図3を用いて説明する。図3(a)に示すように、n−
GaP基板20の一部の表面にSiO2膜を成膜し、後
工程の選択成長のための膜として用いた。n−GaP基
板20の残りの表面にTeをドープしたn−GaP層2
1、ZnおよびOを添加したGaP層22を選択的にL
PE法により成長した。続いて基板の裏面にNドープG
aP層23、ZnドープGaP層24をLPE法で成長
した。選択成長のためのSiO2膜を除去後、n型共通
電極25およびp型電極26を形成した。また図3
(b)に示すように、表面のn型共通電極25に対向す
る裏面の部分にp型水玉電極27を形成した。n型共通
電極25とp型電極26との間に順方向バイアスを印加
したところ、赤色の光が基板を通して開口部28から出
射した。一方、n型共通電極25とp型水玉電極27と
の間ではp型水玉電極27の間29,29,29から緑
色の光が出射した。
FIG. 1 is a perspective view of an LD according to the first embodiment of the present invention. FIG. 2 is a perspective view of an LD according to a second embodiment of the present invention that also uses diffusion. FIG. 3 shows a third embodiment of the present invention.
It is a perspective view of LD concerning. FIG. 4 is a perspective view schematically showing a multicolor display using the surface-emitting type LED of the present invention. Example 1 Hereinafter, as an example of the present invention, AlG was formed on both surfaces of a GaAs substrate.
An example of producing aAs-LD will be described. The structure of the LD was a ridge waveguide type as shown in FIG. On both surfaces of the 100 μm-thick p-GaAs substrate 1 polished on both sides, MO
The p-GaAs buffer layers 2 and p are respectively formed by the CVD method.
-AlGaAs clad layer 3, i-AlGaAs active layer 4, n-AlGaAs clad layer 5 and n-GaAs
The contact layer 6 was sequentially grown. Subsequently, a ridge structure 7 having a width of 5 μm and step 8 for providing an electrode on the substrate were formed by chemical etching. The SiO 2 film 9 serving as an insulating layer is sputtered, and the AuGe film serving as the n-type electrode 10 and the p-type electrode 1 are formed.
The AuCr film to be No. 1 was formed by the vacuum evaporation method. When this LD was die-bonded to a Cu heat sink and the light emission characteristics were evaluated, the oscillation threshold value was 4 for any element on any surface.
It was around 0 mA. The maximum output of the element on the heat sink side was about 35 mW per one end face, and the maximum output of the element on the side not on the heat sink side was about 30 mW per one end face. This difference is due to heat. Further, when current was simultaneously injected into the elements on both sides, an output of about 60 mW was obtained. At this time, the end surface is not coated.
In the above embodiment, the ridges on both sides of the substrate are aligned on the vertical line of the substrate, but by shifting them, the thermal diffusion efficiency at the time of simultaneous lighting is improved and the total power can be increased. Example 2 As an example of application of the present invention to another LD, an example in which the GaAs substrate is formed on both sides will be described. The structure of the LD was a ridge waveguide type as shown in FIG. Double side polished p-G
Both sides of the aAs substrate 1 were p-typed by the MOCVD method.
A GaAs buffer layer 2, a p-AlGaAs cladding layer 3, an i-AlGaAs active layer 4, an n-AlGaAs cladding layer 5 and an n-GaAs contact layer 6 were sequentially grown. In order to take out the common electrode, Zn was diffused into a part of the substrate by a closed tube method to form a Zn diffusion region 13. Then, in order to separate the ridge structure 7 having a width of 5 μm and the Zn diffusion region 13, a separation etching groove 14 reaching the substrate was formed. This can prevent the semiconductor laser from acting as a lateral junction type semiconductor laser. The SiO2 film 9 serving as an insulating layer was formed by sputtering, and the AuGe film serving as the n-type electrode 10 and the AuCr film serving as the p-type electrode 11 were formed by vacuum deposition. Book LD
When die was bonded to a Cu heat sink and the light emitting characteristics were evaluated, the oscillation threshold value was about 40 mA for the devices on any surface. The maximum output of the element on the heat sink side is about 35 mW per one end face, and the maximum output of the element on the side not on the heat sink side is about 30 mW per one end face.
Met. This difference is due to heat. Further, when current was simultaneously injected into the elements on both sides, an output of about 60 mW was obtained. At this time, the end surface is not coated. Example 3 As an example of the present invention, an LED using GaP will be described with reference to FIG. As shown in FIG. 3A, n−
An SiO 2 film was formed on a part of the surface of the GaP substrate 20 and used as a film for selective growth in a post process. Te-doped n-GaP layer 2 on the remaining surface of the n-GaP substrate 20
1, the GaP layer 22 added with Zn and O is selectively
It was grown by the PE method. Then, on the back surface of the substrate, N-doped G
The aP layer 23 and the Zn-doped GaP layer 24 were grown by the LPE method. After removing the SiO 2 film for selective growth, an n-type common electrode 25 and a p-type electrode 26 were formed. See also FIG.
As shown in (b), a p-type polka dot electrode 27 was formed on the rear surface portion facing the n-type common electrode 25 on the front surface. When a forward bias was applied between the n-type common electrode 25 and the p-type electrode 26, red light was emitted from the opening 28 through the substrate. On the other hand, between the n-type common electrode 25 and the p-type polka dot electrode 27, green light was emitted from the spaces 29, 29, 29 between the p-type polka dot electrodes 27.

【0014】このマルチLEDをLEDディスプレイに
応用することで、画素数が同じ場合には素子数を1/2
にすることが可能となる。図4は、本発明の面発光型の
LEDを用いたマルチカラーディスプレイを模式的に示
す斜視図である。アルミナ多層配線基板30に本マルチ
LED31がX配線32およびYR配線33上にダイボ
ンドされており、また上部電極はボンディングワイヤ3
5によりYG配線34と電気的に接続している。このマ
トリックス配線は図6に示したものと等価である。先に
示したものと同様に例えばX2−Y1G間に順方向電圧を
印加すると緑色のLED:D21Gが点灯する。またX3
2RおよびX3−Y2Gに同時に電界を印加するとD32R
32Gが同時に発光し、黄色で発光しているように観測
される。
By applying this multi-LED to an LED display, if the number of pixels is the same, the number of elements is halved.
It becomes possible to FIG. 4 is a perspective view schematically showing a multicolor display using the surface-emitting type LED of the present invention. This multi-LED 31 is die-bonded onto the X wiring 32 and the Y R wiring 33 on the alumina multilayer wiring board 30, and the upper electrode is the bonding wire 3
5 electrically connects to the Y G wiring 34. This matrix wiring is equivalent to that shown in FIG. When a forward voltage is applied between, for example, X 2 -Y 1G , the green LED: D 21G is turned on as in the case shown above. Also X 3
When an electric field is applied simultaneously to Y 2R and X 3 -Y 2G , D 32R and D 32G emit light at the same time, and it is observed that they emit yellow light.

【0015】[0015]

【発明の効果】本発明をLDに応用した場合、従来と同
じサイズのものと比較して高い光出力を取り出すことが
可能となった。また、基板両面で発光層の組成を変え
る、あるいは発光メカニズムが異なった材料を用いるこ
とで複数の異なった波長で発振させることも可能であ
る。本発明による発光素子を例えばマルチカラーディス
プレイに応用した場合、素子数を1/2に低減すること
が可能となった。
When the present invention is applied to the LD, it becomes possible to take out a higher optical output than that of the conventional one. It is also possible to oscillate at a plurality of different wavelengths by changing the composition of the light emitting layer on both surfaces of the substrate or by using materials having different light emitting mechanisms. When the light emitting device according to the present invention is applied to, for example, a multi-color display, the number of devices can be reduced to 1/2.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係るLDの斜視図である。FIG. 1 is a perspective view of an LD according to a first embodiment of the present invention.

【図2】本発明の実施例2に係る拡散を併用したLDの
斜視図である。
FIG. 2 is a perspective view of an LD according to a second embodiment of the present invention that also uses diffusion.

【図3】(a)は本発明の実施例3に係るLDの斜視図
である。(b)は(a)を裏から見た図である。
FIG. 3A is a perspective view of an LD according to a third embodiment of the present invention. (B) is the figure which looked at (a) from the back.

【図4】本発明の面発光型のLEDを用いたマルチカラ
ーディスプレイを模式的に示す斜視図である。
FIG. 4 is a perspective view schematically showing a multi-color display using surface emitting LEDs of the present invention.

【図5】従来のLEDディスプレイの斜視図である。FIG. 5 is a perspective view of a conventional LED display.

【図6】LEDディスプレイのマトリックス配線図であ
る。
FIG. 6 is a matrix wiring diagram of the LED display.

【符号の説明】[Explanation of symbols]

1 p−GaAs基板 2 p−GaAsバッファ層 3 p−AlGaAsクラッド層 4 i−AlGaAs活性層 5 n−AlGaAsクラッド層 6 n−GaAsコンタクト層 7 リッジ構造 8 ステップ 9 SiO2膜 10,12 n型電極 11,26 p型電極 13 Zn拡散領域 14 分離エッチング溝 20 n−GaP基板 21 TeドープGaP層 22 Zn,OドープGaP層 23 NドープGaP層 24 ZnドープGaP層 25 n型共通電極 27 p型水玉電極 28 開口部 29 p型水玉電極の間 30,50 アルミナ多層配線基板 31 マルチLED 32,53 X配線 33,54 YR配線 34,55 YG配線 35 ボンディングワイヤ 51 赤色LED 52 緑色LED1 p-GaAs substrate 2 p-GaAs buffer layer 3 p-AlGaAs clad layer 4 i-AlGaAs active layer 5 n-AlGaAs clad layer 6 n-GaAs contact layer 7 ridge structure 8 step 9 SiO 2 film 10, 12 n-type electrode 11, 26 p-type electrode 13 Zn diffusion region 14 isolation etching groove 20 n-GaP substrate 21 Te-doped GaP layer 22 Zn, O-doped GaP layer 23 N-doped GaP layer 24 Zn-doped GaP layer 25 n-type common electrode 27 p-type water drop Electrode 28 Opening 29 Between p-type dot electrodes 30, 50 Alumina multilayer wiring board 31 Multi LED 32, 53 X wiring 33, 54 Y R wiring 34, 55 Y G wiring 35 Bonding wire 51 Red LED 52 Green LED

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 pn接合もしくはpin接合に電流を流
して発光させる半導体発光素子において、導電性基板の
両面にpn接合もしくはpin接合を有する発光素子を
形成し、基板表面に設けた電極と素子表面に設けた電極
間に電流を流し、基板の両面付近に設けたpn接合もし
くはpin接合で発光させることを特徴とする半導体発
光素子。
1. A semiconductor light-emitting device that emits light by passing a current through a pn junction or a pin junction, in which light-emitting devices having a pn junction or a pin junction are formed on both surfaces of a conductive substrate, and electrodes provided on the surface of the substrate and the device surface. A semiconductor light-emitting device characterized in that a current is caused to flow between the electrodes provided on the substrate to emit light at a pn junction or a pin junction provided near both surfaces of the substrate.
【請求項2】 基板の両面のpn接合もしくはpin接
合を形成する半導体材料のバンドギャップが異なり、発
光波長が基板の両面に設けた発光素子間で異なることを
特徴とする請求項1記載の半導体発光素子。
2. The semiconductor according to claim 1, wherein the band gaps of the semiconductor materials forming the pn junction or the pin junction on both sides of the substrate are different, and the emission wavelength is different between the light emitting elements provided on both sides of the substrate. Light emitting element.
JP13647792A 1992-05-28 1992-05-28 Semiconductor light emitting element Pending JPH05335625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13647792A JPH05335625A (en) 1992-05-28 1992-05-28 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13647792A JPH05335625A (en) 1992-05-28 1992-05-28 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH05335625A true JPH05335625A (en) 1993-12-17

Family

ID=15176051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13647792A Pending JPH05335625A (en) 1992-05-28 1992-05-28 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH05335625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110139A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Nitride semiconductor light emitting element
JP2009182026A (en) * 2008-01-29 2009-08-13 Toshiba Corp Semiconductor light-emitting apparatus and method of manufacturing semiconductor light-emitting apparatus
US8342708B2 (en) 2009-03-23 2013-01-01 Samsung Electronics Co., Ltd. Light emitting device, light emitting system comprising the same, and method of fabricating thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110139A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Nitride semiconductor light emitting element
JP2009182026A (en) * 2008-01-29 2009-08-13 Toshiba Corp Semiconductor light-emitting apparatus and method of manufacturing semiconductor light-emitting apparatus
US8342708B2 (en) 2009-03-23 2013-01-01 Samsung Electronics Co., Ltd. Light emitting device, light emitting system comprising the same, and method of fabricating thereof
US8638046B2 (en) 2009-03-23 2014-01-28 Samsung Electronics Co., Ltd. Light emitting device, light emitting system comprising the same, and method of fabricating thereof

Similar Documents

Publication Publication Date Title
US6548834B2 (en) Semiconductor light emitting element
US9825088B2 (en) Light-emitting device and manufacturing method thereof
JP4126749B2 (en) Manufacturing method of semiconductor device
US6278137B1 (en) Semiconductor light-emitting devices
US5665985A (en) Light-emitting diode of edge-emitting type, light-receiving device of lateral-surface-receiving type, and arrayed light source
US5008891A (en) Semiconductor light-emitting devices
US5869849A (en) Light-emitting diodes with high illumination
JP3240097B2 (en) Semiconductor light emitting device
US4700210A (en) Asymmetric chip design for LEDS
JPH04212479A (en) Semiconductor light-emitting device
JPH0897468A (en) Semiconductor light emitting device
JPH10261818A (en) Light-emitting semiconductor device
KR20220138863A (en) multi-color light-emitting structures
JPH1187773A (en) Light emitting element
JPH04225577A (en) Light emitting diode
KR100433989B1 (en) Semiconductor LED device and manufacturing metheod thereof
US5250814A (en) Semiconductor light-emitting devices
JPH07273369A (en) Optical semiconductor device
JP3691202B2 (en) Semiconductor light emitting device
JPH05335625A (en) Semiconductor light emitting element
JPH1168149A (en) Semiconductor element and semiconductor element array
JPH04361572A (en) Semiconductor light emitting element
JP2002305327A (en) Nitride-based semiconductor light emitting device
JPH05218498A (en) Light emitting diode provided with transverse junction
US5006907A (en) Crosstalk preventing laser diode array