JPH05335174A - Laminated ceramic electronic component - Google Patents

Laminated ceramic electronic component

Info

Publication number
JPH05335174A
JPH05335174A JP4164182A JP16418292A JPH05335174A JP H05335174 A JPH05335174 A JP H05335174A JP 4164182 A JP4164182 A JP 4164182A JP 16418292 A JP16418292 A JP 16418292A JP H05335174 A JPH05335174 A JP H05335174A
Authority
JP
Japan
Prior art keywords
ceramic
electronic component
substrate
monolithic
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4164182A
Other languages
Japanese (ja)
Inventor
Yutaka Takeshima
裕 竹島
Akira Ando
陽 安藤
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4164182A priority Critical patent/JPH05335174A/en
Publication of JPH05335174A publication Critical patent/JPH05335174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To realize a laminated ceramic electronic component lessened in thickness and enhanced in performance. CONSTITUTION:A ceramic-metal laminate 4 composed of conductor electrodes 2a and 2b formed through a CVD method, an evaporation method, or a sputtering method and ceramic layers 3 laminated through a CVD method is provided onto an SrTiO3 substrate 1. In succession, outer electrodes 5a and 5b are formed on both the ends of the laminate 4 through dipping or the like, and thus a small laminated ceramic capacitor 6 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は積層セラミック電子部品
に関する。具体的にいうと、ビデオテープレコーダ等の
電子部品に広く用いられている積層セラミックコンデン
サ、積層バリスタ、積層圧電素子、多層セラミック基板
等の積層セラミック電子部品に関するものである。
FIELD OF THE INVENTION This invention relates to monolithic ceramic electronic components. More specifically, the present invention relates to a monolithic ceramic electronic component such as a monolithic ceramic capacitor, a monolithic varistor, a monolithic piezoelectric element, and a multi-layered ceramic substrate that are widely used in electronic components such as video tape recorders.

【0002】[0002]

【従来の技術】従来の積層セラミックコンデンサの製造
方法を説明する(図示せず)。まず、素子寸法よりも大
きな所定の大きさにカットされたセラミック生シート上
に銀系ペースト等の電極ペースト(内部電極)を印刷
し、乾燥させた後、この電極ペーストが印刷されたセラ
ミック生シートを複数枚重ねて圧着させる。ついで、こ
れを1素子の大きさにカットして焼成する。焼成後、内
部電極と導通させるようにして素子の表面に電極ペース
トを塗布し、これを焼き付けて素子の両端に外部電極を
形成し、チップ状の積層セラミックコンデンサを製作し
ている。
2. Description of the Related Art A conventional method for manufacturing a monolithic ceramic capacitor will be described (not shown). First, an electrode paste (internal electrode) such as a silver paste is printed on a ceramic green sheet cut into a predetermined size larger than the element size, dried, and then the electrode green paste-printed ceramic green sheet. Stack multiple sheets and press them together. Then, this is cut into a size of one element and fired. After firing, an electrode paste is applied to the surface of the element so as to be electrically connected to the internal electrodes, and this is fired to form external electrodes at both ends of the element to manufacture a chip-shaped multilayer ceramic capacitor.

【0003】[0003]

【発明が解決しようとする課題】近年、電子部品の分野
においては、電子回路の高密度化・高集積化に伴って、
積層セラミックコンデンサ等の電子部品の一層の微小化
および高性能化が望まれている。したがって、積層セラ
ミックコンデンサにおいて、容量を小さくすることなく
微小化するためには、セラミック層(誘電体層)の厚み
をできるだけ薄くすることが望まれる。
In recent years, in the field of electronic parts, with the increase in density and integration of electronic circuits,
There is a demand for further miniaturization and higher performance of electronic components such as monolithic ceramic capacitors. Therefore, in order to miniaturize the monolithic ceramic capacitor without reducing the capacitance, it is desirable to make the thickness of the ceramic layer (dielectric layer) as thin as possible.

【0004】しかしながら、従来のような積層セラミッ
クコンデンサにおいてセラミック層の厚みを薄くしよう
とすると、種々の問題があった。まず、セラミック層を
薄くするためには、セラミック原料粉末粒径を小さくす
る必要があるが、セラミック原料粉末の粒径の微小化に
は限度がある。また、セラミック層を薄くすると、内部
電極の厚みも薄くする必要があるため、焼成工程におい
て内部電極に電極切れが生じ易い。さらに、セラミック
層を薄くすると、焼成時における内部電極の異常成長に
よりショートが発生したり、セラミック層に発生した孔
によって耐圧が低下する等の問題が生じる。このため、
従来の積層セラミックコンデンサにあっては、セラミッ
ク層の厚みを数μmより薄くすることは不可能で、積層
セラミックコンデンサの微小化及び大容量化には限界が
あった。
However, when trying to reduce the thickness of the ceramic layer in the conventional monolithic ceramic capacitor, there were various problems. First, in order to make the ceramic layer thin, it is necessary to reduce the particle size of the ceramic raw material powder, but there is a limit to the miniaturization of the particle size of the ceramic raw material powder. Further, when the ceramic layer is made thin, the thickness of the internal electrode also needs to be made thin, and therefore, the internal electrode is likely to be broken during the firing process. Furthermore, if the ceramic layer is made thin, problems such as a short circuit due to abnormal growth of the internal electrodes during firing and a decrease in withstand voltage due to holes generated in the ceramic layer occur. For this reason,
In the conventional monolithic ceramic capacitor, it is impossible to make the thickness of the ceramic layer thinner than several μm, and there is a limit to miniaturization and large capacity of the monolithic ceramic capacitor.

【0005】本発明は叙上の従来例の欠点に鑑みてなさ
れたものであり、その目的とするところは、積層セラミ
ック電子部品の高性能を実現しながらセラミック層を薄
層化することにある。
The present invention has been made in view of the drawbacks of the above conventional examples, and an object thereof is to reduce the thickness of a ceramic layer while realizing high performance of a laminated ceramic electronic component. ..

【0006】[0006]

【課題を解決するための手段】本発明の積層セラミック
電子部品は、複数層の導電体電極とCVD法によって形
成された複数層のセラミック層とを基板の表面に交互に
積層したことを特徴としている。
The multilayer ceramic electronic component of the present invention is characterized in that a plurality of layers of conductor electrodes and a plurality of layers of ceramic layers formed by a CVD method are alternately laminated on the surface of a substrate. There is.

【0007】また、上記セラミック層は誘電体であって
もよい。
The ceramic layer may be a dielectric.

【0008】[0008]

【作用】本発明にあっては、セラミック層がCVD法に
よって形成されているので、緻密なセラミック層が形成
され、しかも、焼成等の加熱工程を経ないので、導電体
電極の電極切れ、ショート等の欠陥が生じにくく、電子
部品としての高性能化が可能となる。
In the present invention, since the ceramic layer is formed by the CVD method, a dense ceramic layer is formed, and since a heating step such as firing is not performed, the electrode of the conductor electrode is broken or short-circuited. It is possible to improve the performance as an electronic component without causing defects such as.

【0009】さらに、セラミック層がCVD法によって
形成されているので、セラミック層の1μm以下の薄層
化が可能となり、超小型の積層セラミック電子部品が得
られる。
Further, since the ceramic layer is formed by the CVD method, the ceramic layer can be thinned to 1 μm or less, and an ultra-small monolithic ceramic electronic component can be obtained.

【0010】また、CVD法によるセラミック層の成膜
時に使用した基板を除去する必要がないため積層セラミ
ック電子部品の製造工程を簡略化できる。さらに、積層
セラミック電子部品中に基板を残しておくことにより、
積層セラミック電子部品の機械的強度を向上させること
ができ、電子部品としての信頼性を増すことができる。
Further, since it is not necessary to remove the substrate used for forming the ceramic layer by the CVD method, the manufacturing process of the monolithic ceramic electronic component can be simplified. Furthermore, by leaving the substrate in the laminated ceramic electronic component,
The mechanical strength of the monolithic ceramic electronic component can be improved, and the reliability as an electronic component can be increased.

【0011】[0011]

【実施例】図1(a)(b)(c)は、本発明の一実施
例による積層セラミックコンデンサの製造方法を示して
いる。図1(a)に示すものは表面が平滑な基板1であ
って、例えば、SrTiO3基板等を用いることができ
る。この基板1の上には、図1(b)に示すように、セ
ラミック層3が形成され、その上に1層目の導電体電極
2aが形成され、その上に再びセラミック層3が形成さ
れ、さらに2層目の導電体電極2bが形成され、さらに
セラミック層3が形成され、その上に3層目の導電体電
極2aが形成される。このような工程を繰り返すことに
より、基板1の表面には導電体電極2a,2bとセラミ
ック層3とが交互に複数層ずつ積層され、複数層の導電
体電極2a,2bと複数層のセラミック層3とからなる
セラミック−金属積層体4が形成される。ここで、各セ
ラミック層3はCVD法によって形成され、各導電体電
極2a,2bはスパッタ法等により形成されており、各
セラミック層3及び各導電体電極2a,2bの厚みは1
μm以下としてある。また、内部電極となる導電体電極
2a,2bはマスクを用いてパターン化されており、奇
数層目の導電体電極2aと偶数層目の導電体電極2bと
は、交互に反対側の端部へ引き出されている。この後、
ディッピングやスパッタ等によって両端に外部電極5
a,5bを形成すると、奇数層目の導電体電極2aが一
方の外部電極5aと導通し、偶数層目の導電体電極2b
が他方の外部電極5bと導通し、図1(c)に示すよう
な小型の積層セラミックコンデンサ6が製作される。
1 (a), 1 (b) and 1 (c) show a method of manufacturing a monolithic ceramic capacitor according to an embodiment of the present invention. The substrate shown in FIG. 1A is a substrate 1 having a smooth surface, and for example, an SrTiO 3 substrate or the like can be used. As shown in FIG. 1B, a ceramic layer 3 is formed on the substrate 1, a first-layer conductor electrode 2a is formed on the ceramic layer 3, and the ceramic layer 3 is formed on the ceramic layer 3 again. Then, the second-layer conductor electrode 2b is formed, the ceramic layer 3 is further formed, and the third-layer conductor electrode 2a is formed thereon. By repeating such steps, a plurality of conductor electrodes 2a and 2b and a plurality of ceramic layers 3 are alternately laminated on the surface of the substrate 1, and a plurality of conductor electrodes 2a and 2b and a plurality of ceramic layers are laminated. A ceramic-metal laminate 4 of 3 is formed. Here, each ceramic layer 3 is formed by a CVD method, each conductor electrode 2a, 2b is formed by a sputtering method, and the thickness of each ceramic layer 3 and each conductor electrode 2a, 2b is 1
It is less than or equal to μm. Further, the conductor electrodes 2a and 2b to be the internal electrodes are patterned using a mask, and the odd-numbered conductor electrodes 2a and the even-numbered conductor electrodes 2b are alternately arranged at opposite end portions. Have been pulled out to. After this,
External electrodes 5 on both ends by dipping, sputtering, etc.
When a and 5b are formed, the odd-numbered conductor electrode 2a is electrically connected to the one outer electrode 5a, and the even-numbered conductor electrode 2b is formed.
Is electrically connected to the other external electrode 5b, and a small monolithic ceramic capacitor 6 as shown in FIG. 1C is manufactured.

【0012】この結果、基板1の上に積層セラミックコ
ンデンサ6が形成され、基板1によって積層セラミック
コンデンサ6の機械的強度を向上させることができ、電
子部品としての信頼性が向上する。
As a result, the monolithic ceramic capacitor 6 is formed on the substrate 1, the mechanical strength of the monolithic ceramic capacitor 6 can be improved by the substrate 1, and the reliability as an electronic component is improved.

【0013】なお、図1では1素子のみの製造工程につ
いて説明しているが、複数素子を同時に製作することに
より効率的に積層セラミックコンデンサを製造すること
ができる。
Although the manufacturing process of only one element is described in FIG. 1, a multilayer ceramic capacitor can be efficiently manufactured by simultaneously manufacturing a plurality of elements.

【0014】つぎに、本発明をより明確に説明するた
め、以下に具体的実施例を掲げて説明する。具体的実施例 図2は積層セラミックコンデンサ6の製作に用いた熱C
VD装置7の概略構成図であって、8はCVD用のチャ
ンバー、9は基板1をセットするためのサセプタ、10
はO2ガスの給送路、11はArキャリアガスの給送
路、12はTIP〔チタンイソプロポキシド〕のベッセ
ル、13はPb(C254のベッセル、14はLa
(DPM)3〔DPM=C11192〕のベッセルであっ
て、TIP、Pb(C254及びLa(DPM)3の各
ベッセル12,13,14はArキャリアガスの給送路
11に並列に配置されている。
Next, in order to more clearly describe the present invention, specific examples will be described below. Specific Example FIG. 2 shows the heat C used for manufacturing the monolithic ceramic capacitor 6.
FIG. 2 is a schematic configuration diagram of the VD device 7, where 8 is a chamber for CVD, 9 is a susceptor for setting the substrate 1 and 10
Is an O 2 gas feed path, 11 is an Ar carrier gas feed path, 12 is a TIP [titanium isopropoxide] vessel, 13 is a Pb (C 2 H 5 ) 4 vessel, and 14 is La.
(DPM) 3 [DPM = C 11 H 19 O 2 ] vessels, each vessel 12, 13, 14 of TIP, Pb (C 2 H 5 ) 4 and La (DPM) 3 is supplied with Ar carrier gas. It is arranged in parallel to the feed path 11.

【0015】積層セラミックコンデンサ6を製作するた
めの基板1として縦横各50mm・厚さ0.2mmのS
rTiO3基板を用い、このSrTiO3基板1を熱CV
D装置7のサセプタ9上にセットした。
As a substrate 1 for manufacturing the monolithic ceramic capacitor 6, S of 50 mm in length and width and 0.2 mm in thickness is formed.
This SrTiO 3 substrate 1 is subjected to thermal CV using an rTiO 3 substrate.
It was set on the susceptor 9 of the D device 7.

【0016】ついで、サセプタ9を600℃に加熱した
状態で、TIP、Pb(C254及びLa(DPM)3
の各ベッセル12,13,14の各バルブ15,16,
17を開き、気化したTIP、Pb(C254及びL
a(DPM)3の各原料ガスをArキャリアガスに乗せ
てチャンバー8へ送り、この原料ガスをO2ガスと共に
SrTiO3基板1に吹き付けて反応させ、厚さ約1μ
mのPLT薄膜18(セラミック層3)を形成した(以
下、PLT薄膜形成工程という)。
Then, with the susceptor 9 heated to 600 ° C., TIP, Pb (C 2 H 5 ) 4 and La (DPM) 3 are added.
The valves 15, 16 of the vessels 12, 13, 14 of
Open 17 and vaporize TIP, Pb (C 2 H 5 ) 4 and L
Each raw material gas of a (DPM) 3 is placed on an Ar carrier gas and sent to the chamber 8. The raw material gas is sprayed together with the O 2 gas onto the SrTiO 3 substrate 1 to cause reaction, and the thickness is about 1 μm.
m PLT thin film 18 (ceramic layer 3) was formed (hereinafter referred to as PLT thin film forming step).

【0017】次に、PLT薄膜18の上にメタルマスク
をセットし、メタルマスクの窓を通してスパッタ法によ
りPLT薄膜18の上に厚さ約0.5μmのPt膜19
a(導電体電極2a)を形成した(以下、Pt膜形成第
1工程という)。このようにして形成されたPt膜19
aを図3(a)に示す。図3(b)は図3(a)のX部
拡大図であって、斜線を施した領域は1素子分に相当す
る領域を示し、図3(b)に記入されている数字は各部
の寸法(単位mm)を示している。
Next, a metal mask is set on the PLT thin film 18, and a Pt film 19 having a thickness of about 0.5 μm is formed on the PLT thin film 18 by a sputtering method through a window of the metal mask.
a (conductor electrode 2a) was formed (hereinafter referred to as a Pt film formation first step). The Pt film 19 thus formed
a is shown in FIG. FIG. 3 (b) is an enlarged view of the X part of FIG. 3 (a), and the shaded area indicates the area corresponding to one element, and the numbers written in FIG. 3 (b) indicate the parts. The dimension (unit: mm) is shown.

【0018】ついで、再びPLT薄膜形成工程によりP
LT薄膜18を約1μm生成させた。
Then, the PLT thin film forming step is performed again to form P
The LT thin film 18 was formed with a thickness of about 1 μm.

【0019】次に、最上層のPLT薄膜18の上にメタ
ルマスクをセットし、スパッタ法によりPLT薄膜18
の上に厚さ約0.5μmのPt膜19b(導電体電極2
b)を形成した(以下、Pt膜形成第2工程という)。
図4(a)はこのPt膜19bのパターンを示す。図4
(b)は図4(a)のY部拡大図であって、斜線を施し
た領域は1素子分に相当する領域を示し、図3(b)に
記入されている数字は寸法(単位mm)を示している。
Next, a metal mask is set on the uppermost PLT thin film 18, and the PLT thin film 18 is formed by the sputtering method.
On top of the Pt film 19b (conducting electrode 2
b) was formed (hereinafter referred to as the Pt film formation second step).
FIG. 4A shows the pattern of the Pt film 19b. Figure 4
4B is an enlarged view of the Y portion of FIG. 4A, where the shaded area indicates the area corresponding to one element, and the numbers written in FIG. 3B are the dimensions (unit: mm). ) Is shown.

【0020】このように、PLT薄膜形成−Pt膜形成
第1−PLT薄膜形成−Pt膜形成第2の各工程を30
0回繰り返し、最後にPLT薄膜形成工程を行なってS
rTiO3基板1の上にセラミック−金属積層体4を得
た。
As described above, the PLT thin film formation-Pt film formation first step-PLT thin film formation-Pt film formation second step is performed 30 times.
Repeat 0 times, and finally perform the PLT thin film formation step to perform S
A ceramic-metal laminate 4 was obtained on the rTiO 3 substrate 1.

【0021】この後、図3(b)及び図4(b)の破線
C(切り代Ct=0.1mmとした)に沿ってダイシン
グソーによりセラミック−金属積層体4を素子毎にカッ
トした。1素子ずつにカットしたSrTiO3基板1の
両端にディッピングによりAgペーストを付け、600
℃で焼き付けて外部電極5a,5bを形成した。
Thereafter, the ceramic-metal laminate 4 was cut element by element with a dicing saw along the broken line C (cutting margin Ct = 0.1 mm) in FIGS. 3B and 4B. Attach Ag paste by dipping to both ends of SrTiO 3 substrate 1 cut into 1 element,
The external electrodes 5a and 5b were formed by baking at ° C.

【0022】こうして長さ約2mm、幅約1.2mm、
厚さ約1.2mmの積層セラミックコンデンサ6を得
た。この積層セラミックコンデンサ6の容量を測定した
ところ4.7μFの値であった。
Thus, the length is about 2 mm, the width is about 1.2 mm,
A multilayer ceramic capacitor 6 having a thickness of about 1.2 mm was obtained. The capacitance of the monolithic ceramic capacitor 6 was measured and found to be 4.7 μF.

【0023】抗折強度の測定 つぎに、この積層セラミックコンデンサ6の抗折強度を
図5に示すような抗折強度測定装置20を用いて測定し
た。図5において、21は試料保持台であって、試験体
となる積層セラミックコンデンサ6は試料保持台21の
溝部22の上で両端を保持され、中央部を加圧ピン23
によって加圧される。そして、加圧ピン23の圧力が置
き針付きテンションゲージ24によって表示される。こ
の測定に際し、試料保持台21の溝部22の間隔Lは
1.4mmとした。
Measurement of flexural strength Next, the flexural strength of the monolithic ceramic capacitor 6 was measured using a flexural strength measuring device 20 as shown in FIG. In FIG. 5, reference numeral 21 denotes a sample holder, the laminated ceramic capacitor 6 serving as a test body is held at both ends on the groove portion 22 of the sample holder 21, and the pressure pin 23 is provided at the center portion.
Is pressurized by. Then, the pressure of the pressurizing pin 23 is displayed by the tension gauge with a stapling needle 24. In this measurement, the interval L between the groove portions 22 of the sample holder 21 was set to 1.4 mm.

【0024】一方、比較のために上記PLT薄膜形成−
Pt膜形成第1−PLT薄膜形成−Pt膜形成第2の各
工程を実施例と同様に繰り返してセラミック−金属積層
体を得た後、ドライエッチングによってSrTiO3
板を除去し、その後1素子毎にカットし、両端に外部電
極を焼き付け、基板を有しない比較例の積層セラミック
コンデンサを作製した。この積層セラミックコンデンサ
の寸法は、長さ約2mm、幅約1.2mm、厚さ約0.9
mmであった。この比較例の積層セラミックコンデンサ
の抗折強度を測定した。
On the other hand, for comparison, the above PLT thin film formation-
A Pt film forming the 1-PLT thin film forming -Pt film forming the second steps are repeated in the same manner as in Example Ceramic - after obtaining the metal laminate to remove SrTiO 3 substrate by dry etching, then each element Then, external electrodes were baked on both ends to prepare a laminated ceramic capacitor of a comparative example having no substrate. The dimensions of this monolithic ceramic capacitor are about 2 mm in length, about 1.2 mm in width, and about 0.9 in thickness.
It was mm. The bending strength of the multilayer ceramic capacitor of this comparative example was measured.

【0025】実施例及び比較例の最大荷重及び抗折強度
の測定結果を表1に示す。なお、抗折強度は次式により
求めた。 σ=(3PL)/(2ωt2) ここで、Pは最大荷重(kgf)であって、試験片が破
壊したときのテンションゲージの目盛である。また、L
は下部支点間距離(mm)、ωは試験片の幅(mm)、
tは試験片の厚さ(mm)である。
Table 1 shows the measurement results of the maximum load and the bending strength of Examples and Comparative Examples. The bending strength was calculated by the following formula. σ = (3PL) / (2ωt 2 ), where P is the maximum load (kgf) and is the scale of the tension gauge when the test piece breaks. Also, L
Is the distance between the lower fulcrums (mm), ω is the width of the test piece (mm),
t is the thickness (mm) of the test piece.

【0026】[0026]

【表1】 [Table 1]

【0027】表1によれば、実施例の積層セラミックコ
ンデンサでは、比較例に比較して大幅に抗折強度が大き
くなっており、機械的強度が向上している。
According to Table 1, in the laminated ceramic capacitor of the example, the transverse strength is significantly higher than that of the comparative example, and the mechanical strength is improved.

【0028】[0028]

【発明の効果】本発明によれば、セラミック層及び導電
体電極のいずれも緻密な膜が得られ、しかも高温に曝さ
れないので、セラミック層や導電体電極を1μm以下に
薄層化してもセラミック層や導電体電極に欠陥が生じに
くく、高性能で超小型(超薄型)の積層セラミック電子
部品を得られる。
According to the present invention, a dense film can be obtained for both the ceramic layer and the conductor electrode, and since it is not exposed to high temperature, even if the ceramic layer or the conductor electrode is thinned to 1 μm or less, the ceramic It is possible to obtain an ultra-compact (ultra-thin) monolithic ceramic electronic component that is not likely to cause defects in layers and conductor electrodes.

【0029】また、積層セラミック電子部品中に基板を
残しておくことにより、積層セラミック電子部品の機械
的強度を向上させることができ、電子部品としての信頼
性を増すことができる。さらに、CVD法によるセラミ
ック層の成膜時に使用した基板を除去する必要がないの
で、積層セラミック電子部品の製造工程を簡略化できる
という利点がある。
By leaving the substrate in the monolithic ceramic electronic component, the mechanical strength of the monolithic ceramic electronic component can be improved and the reliability of the electronic component can be increased. Further, since it is not necessary to remove the substrate used for forming the ceramic layer by the CVD method, there is an advantage that the manufacturing process of the monolithic ceramic electronic component can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)(c)は本発明の一実施例による
積層セラミックコンデンサの製造方法を示す断面図であ
る。
1A, 1B and 1C are cross-sectional views showing a method for manufacturing a monolithic ceramic capacitor according to an embodiment of the present invention.

【図2】本発明の具体的実施例において用いた熱CVD
装置を示す概略構成図である。
FIG. 2 is a thermal CVD used in a specific embodiment of the present invention.
It is a schematic block diagram which shows an apparatus.

【図3】(a)は基板の上に形成されたPt膜(導電体
電極)を示す平面図、(b)は(a)のX部拡大図であ
る。
FIG. 3A is a plan view showing a Pt film (conductor electrode) formed on a substrate, and FIG. 3B is an enlarged view of an X portion of FIG.

【図4】(a)は基板の上に形成された別なPt膜(導
電体電極)を示す平面図、(b)は(a)のY部拡大図
である。
4A is a plan view showing another Pt film (conductor electrode) formed on a substrate, and FIG. 4B is an enlarged view of a Y portion of FIG. 4A.

【図5】積層セラミックコンデンサの抗折強度を測定す
るための測定装置を示す概略図である。
FIG. 5 is a schematic diagram showing a measuring device for measuring the bending strength of a monolithic ceramic capacitor.

【符号の説明】[Explanation of symbols]

1 基板 2a,2b 導電体電極 3 セラミック層 5a,5b 外部電極 7 熱CVD装置 DESCRIPTION OF SYMBOLS 1 Substrate 2a, 2b Conductor electrode 3 Ceramic layer 5a, 5b External electrode 7 Thermal CVD apparatus

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 41/09 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 41/09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数層の導電体電極とCVD法によって
形成された複数層のセラミック層とを基板の表面に交互
に積層したことを特徴とする積層セラミック電子部品。
1. A multilayer ceramic electronic component comprising a plurality of conductor electrodes and a plurality of ceramic layers formed by a CVD method, which are alternately laminated on a surface of a substrate.
【請求項2】 前記セラミック層が誘電体であることを
特徴とする請求項1に記載の積層セラミック電子部品。
2. The monolithic ceramic electronic component according to claim 1, wherein the ceramic layer is a dielectric.
JP4164182A 1992-05-28 1992-05-28 Laminated ceramic electronic component Pending JPH05335174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4164182A JPH05335174A (en) 1992-05-28 1992-05-28 Laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4164182A JPH05335174A (en) 1992-05-28 1992-05-28 Laminated ceramic electronic component

Publications (1)

Publication Number Publication Date
JPH05335174A true JPH05335174A (en) 1993-12-17

Family

ID=15788267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4164182A Pending JPH05335174A (en) 1992-05-28 1992-05-28 Laminated ceramic electronic component

Country Status (1)

Country Link
JP (1) JPH05335174A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876536B2 (en) 2002-12-27 2005-04-05 Tdk Corporation Thin film capacitor and method for fabricating the same
US6930875B2 (en) 2003-06-12 2005-08-16 Tdk Corporation Multi-layered unit
JP2005244220A (en) * 2004-02-25 2005-09-08 Lumileds Lighting Us Llc Board for light-emitting diode with esd protection incorporated
JPWO2004065668A1 (en) * 2003-01-21 2006-05-18 Tdk株式会社 Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, and method for manufacturing thin film capacitor
US7145198B2 (en) 2001-08-28 2006-12-05 Tdk Corporation Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor
US7242044B2 (en) 2001-08-28 2007-07-10 Tdk Corporation Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor
US7312514B2 (en) 2003-02-27 2007-12-25 Tdk Corporation High-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, and production method of thin film capacity element
US7319081B2 (en) 2003-02-27 2008-01-15 Tdk Corporation Thin film capacity element composition, high-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, electronic circuit and electronic apparatus
KR100865760B1 (en) * 2006-03-29 2008-10-28 박영진 Multi layer capacitor device and multi layer varistor device and method for manufacturing the same
US7580241B2 (en) 2004-04-26 2009-08-25 Tdk Corporation Thin film capacitor element composition, high permittivity insulation film, thin film capacitor element, thin film multilayer capacitor, and method of production of thin film capacitor element
US20130342081A1 (en) * 2012-06-22 2013-12-26 Murata Manufacturing Co., Ltd. Ceramic electronic component and ceramic electronic apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145198B2 (en) 2001-08-28 2006-12-05 Tdk Corporation Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor
US7242044B2 (en) 2001-08-28 2007-07-10 Tdk Corporation Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor
US6876536B2 (en) 2002-12-27 2005-04-05 Tdk Corporation Thin film capacitor and method for fabricating the same
JP4706479B2 (en) * 2003-01-21 2011-06-22 Tdk株式会社 Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, and method for manufacturing thin film capacitor
US7745869B2 (en) 2003-01-21 2010-06-29 Tdk Corporation Thin film capacitance element composition, high permittivity insulation film, thin film capacitance element, thin film multilayer capacitor and production method of thin film capacitance element
JPWO2004065668A1 (en) * 2003-01-21 2006-05-18 Tdk株式会社 Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, and method for manufacturing thin film capacitor
US7312514B2 (en) 2003-02-27 2007-12-25 Tdk Corporation High-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, and production method of thin film capacity element
US7319081B2 (en) 2003-02-27 2008-01-15 Tdk Corporation Thin film capacity element composition, high-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, electronic circuit and electronic apparatus
US6930875B2 (en) 2003-06-12 2005-08-16 Tdk Corporation Multi-layered unit
JP2005244220A (en) * 2004-02-25 2005-09-08 Lumileds Lighting Us Llc Board for light-emitting diode with esd protection incorporated
US7580241B2 (en) 2004-04-26 2009-08-25 Tdk Corporation Thin film capacitor element composition, high permittivity insulation film, thin film capacitor element, thin film multilayer capacitor, and method of production of thin film capacitor element
KR100865760B1 (en) * 2006-03-29 2008-10-28 박영진 Multi layer capacitor device and multi layer varistor device and method for manufacturing the same
US20130342081A1 (en) * 2012-06-22 2013-12-26 Murata Manufacturing Co., Ltd. Ceramic electronic component and ceramic electronic apparatus

Similar Documents

Publication Publication Date Title
US6829134B2 (en) Laminated ceramic electronic component and method for manufacturing the same
CA2211259C (en) Monolithic ceramic capacitor and producing method thereof
JPH05335174A (en) Laminated ceramic electronic component
US7567427B2 (en) Monolithic ceramic electronic component
JP3306814B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH05335173A (en) Laminated ceramic electronic component and manufacture thereof
JPH10312933A (en) Laminated ceramic electronic parts
JPH09190947A (en) Laminated ceramic electronic component
JP2000340448A (en) Laminated ceramic capacitor
JP3241054B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JPH0897072A (en) Multilayer ceramic device
JPH11354370A (en) Layered ceramic electronic parts
US7180155B2 (en) Method for manufacturing thin-film multilayer electronic component and thin-film multilayer electronic component
JP2993247B2 (en) Manufacturing method of multilayer ceramic capacitor
JPS61253811A (en) Manufacture of laminate ceramic capacitor
JP6117557B2 (en) Multilayer electronic components
JPH05304042A (en) Layered ceramic capacitor and manufacture thereof
JPH11195554A (en) Multilayered ceramic electronic device and production of the same
JP2987995B2 (en) Internal electrode paste and multilayer ceramic capacitor using the same
JP2658121B2 (en) High dielectric materials and capacitors using the same
JPS607711A (en) Laminated ceramic condenser and method of producing same
JPH05166666A (en) Metal-ceramic laminated film
JPH1126279A (en) Manufacture of laminated ceramic electronic parts
JP2023143031A (en) Ceramic electronic component and manufacturing method thereof
JPH0221649B2 (en)