JPH05335173A - Laminated ceramic electronic component and manufacture thereof - Google Patents

Laminated ceramic electronic component and manufacture thereof

Info

Publication number
JPH05335173A
JPH05335173A JP16418192A JP16418192A JPH05335173A JP H05335173 A JPH05335173 A JP H05335173A JP 16418192 A JP16418192 A JP 16418192A JP 16418192 A JP16418192 A JP 16418192A JP H05335173 A JPH05335173 A JP H05335173A
Authority
JP
Japan
Prior art keywords
ceramic
substrate
electronic component
conductor
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16418192A
Other languages
Japanese (ja)
Inventor
Yutaka Takeshima
裕 竹島
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP16418192A priority Critical patent/JPH05335173A/en
Publication of JPH05335173A publication Critical patent/JPH05335173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To realize a laminated ceramic electronic component lessened in thickness and enhanced in performance. CONSTITUTION:A ceramic-metal laminate 4 composed of conductor electrodes 2a and 2b formed through a CVD method, an evaporation method, or a sputtering method and ceramic layers 3 laminated through a CVD method is provided onto an Al2O3 substrate 1. Thereafter, the Al2O3 substrate 1 is selectively removed through a dry etching method or the like to leave only the ceramic- metal laminate 4. In succession, outer electrodes 5a and 5b are formed on both the ends of the laminate 4 through dipping, and thus a small laminated ceramic capacitor 6 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は積層セラミック電子部品
及びその製造方法に関する。具体的にいうと、ビデオテ
ープレコーダ等の電子部品に広く用いられている積層セ
ラミックコンデンサ、積層バリスタ、積層圧電素子、多
層セラミック基板等の積層セラミック電子部品とその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated ceramic electronic component and a method for manufacturing the same. More specifically, the present invention relates to a monolithic ceramic electronic component such as a monolithic ceramic capacitor, a monolithic varistor, a monolithic piezoelectric element, and a multi-layered ceramic substrate that are widely used in electronic components such as a video tape recorder, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の積層セラミックコンデンサの製造
方法を説明する(図示せず)。まず、素子寸法よりも大
きな所定の大きさにカットされたセラミック生シート上
に銀系ペースト等の電極ペースト(内部電極)を印刷
し、乾燥させた後、この電極ペーストが印刷されたセラ
ミック生シートを複数枚重ねて圧着させる。ついで、こ
れを1素子の大きさにカットして焼成する。焼成後、内
部電極と導通させるようにして素子の表面に電極ペース
トを塗布し、これを焼き付けて素子の両端に外部電極を
形成し、チップ状の積層セラミックコンデンサを製作し
ている。
2. Description of the Related Art A conventional method for manufacturing a monolithic ceramic capacitor will be described (not shown). First, an electrode paste (internal electrode) such as a silver paste is printed on a ceramic green sheet cut into a predetermined size larger than the element size, dried, and then the electrode green paste-printed ceramic green sheet. Stack multiple sheets and press them together. Then, this is cut into a size of one element and fired. After firing, an electrode paste is applied to the surface of the element so as to be electrically connected to the internal electrodes, and this is fired to form external electrodes at both ends of the element to manufacture a chip-shaped multilayer ceramic capacitor.

【0003】[0003]

【発明が解決しようとする課題】近年、電子部品の分野
においては、電子回路の高密度化・高集積化に伴って、
積層セラミックコンデンサ等の電子部品の一層の微小化
および高性能化が望まれている。したがって、積層セラ
ミックコンデンサにおいて、容量を小さくすることなく
微小化するためには、セラミック層(誘電体層)の厚み
をできるだけ薄くすることが望まれる。
In recent years, in the field of electronic parts, with the increase in density and integration of electronic circuits,
There is a demand for further miniaturization and higher performance of electronic components such as monolithic ceramic capacitors. Therefore, in order to miniaturize the monolithic ceramic capacitor without reducing the capacitance, it is desirable to make the thickness of the ceramic layer (dielectric layer) as thin as possible.

【0004】しかしながら、従来のような積層セラミッ
クコンデンサにおいてセラミック層の厚みを薄くしよう
とすると、種々の問題があった。まず、セラミック層を
薄くするためには、セラミック原料粉末粒径を小さくす
る必要があるが、セラミック原料粉末の粒径の微小化に
は限度がある。また、セラミック層を薄くすると、内部
電極の厚みも薄くする必要があるため、焼成工程におい
て内部電極に電極切れが生じ易い。さらに、セラミック
層を薄くすると、焼成時における内部電極の異常成長に
よりショートが発生したり、セラミック層に発生した孔
によって耐圧が低下する等の問題が生じる。このため、
従来の積層セラミックコンデンサにあっては、セラミッ
ク層の厚みを数μmより薄くすることは不可能で、積層
セラミックコンデンサの微小化及び大容量化には限界が
あった。
However, when trying to reduce the thickness of the ceramic layer in the conventional monolithic ceramic capacitor, there were various problems. First, in order to make the ceramic layer thin, it is necessary to reduce the particle size of the ceramic raw material powder, but there is a limit to the miniaturization of the particle size of the ceramic raw material powder. Further, when the ceramic layer is made thin, the thickness of the internal electrode also needs to be made thin, and therefore, the internal electrode is likely to be broken during the firing process. Furthermore, if the ceramic layer is made thin, problems such as a short circuit due to abnormal growth of the internal electrodes during firing and a decrease in withstand voltage due to holes generated in the ceramic layer occur. For this reason,
In the conventional monolithic ceramic capacitor, it is impossible to make the thickness of the ceramic layer thinner than several μm, and there is a limit to miniaturization and large capacity of the monolithic ceramic capacitor.

【0005】本発明は叙上の従来例の欠点に鑑みてなさ
れたものであり、その目的とするところは、積層セラミ
ック電子部品の高性能を実現しながらセラミック層を薄
層化することにある。
The present invention has been made in view of the drawbacks of the above conventional examples, and an object thereof is to reduce the thickness of a ceramic layer while realizing high performance of a laminated ceramic electronic component. ..

【0006】[0006]

【課題を解決するための手段】本発明による積層セラミ
ック電子部品は、複数層の導電体電極と、CVD法によ
って形成された複数層のセラミック層とを交互に積層し
たことを特徴としている。
A laminated ceramic electronic component according to the present invention is characterized in that a plurality of layers of conductor electrodes and a plurality of layers of ceramic layers formed by a CVD method are alternately laminated.

【0007】さらに、上記導電体電極はCVD法、蒸着
法もしくはスパッタ法のうちの少なくとも1種の方法を
用いて形成することができる。
Further, the conductor electrode can be formed by using at least one of the CVD method, the vapor deposition method and the sputtering method.

【0008】また、本発明による積層セラミック電子部
品の製造方法は、基板の上に導電体電極とCVD法によ
るセラミック層とを交互に複数層積層した後、前記基板
を除去することを特徴としている。
Further, the method for manufacturing a monolithic ceramic electronic component according to the present invention is characterized in that a plurality of conductor electrodes and ceramic layers formed by a CVD method are alternately laminated on a substrate, and then the substrate is removed. ..

【0009】[0009]

【作用】本発明の積層セラミック電子部品にあっては、
セラミック層がCVD法によって形成され、さらに、導
電体電極がCVD法、蒸着法、スパッタ法等によって形
成されているので、セラミック層及び導電体電極のいず
れも緻密な膜が形成され、しかも、焼成等の加熱工程を
経ないので、導電体電極の電極切れ、ショート等の欠陥
が生じにくく、電子部品としての高性能化が可能とな
る。
In the laminated ceramic electronic component of the present invention,
Since the ceramic layer is formed by the CVD method and the conductor electrode is formed by the CVD method, the vapor deposition method, the sputtering method, etc., a dense film is formed on both the ceramic layer and the conductor electrode, and the firing is performed. Since the heating process such as the above is not performed, defects such as electrode breakage and short circuit of the conductor electrode are unlikely to occur, and high performance as an electronic component can be achieved.

【0010】さらに、セラミック層がCVD法によって
形成され、導電体電極がCVD法、蒸着法、スパッタ法
等によって形成されているので、セラミック層や導電体
電極の1μm以下の薄層化が可能となり、超小型の積層
セラミック電子部品が得られる。
Further, since the ceramic layer is formed by the CVD method and the conductor electrode is formed by the CVD method, the vapor deposition method, the sputtering method, etc., the ceramic layer and the conductor electrode can be thinned to 1 μm or less. , Ultra-small monolithic ceramic electronic components can be obtained.

【0011】また、本発明の積層セラミック電子部品の
製造方法にあっては、基板の上にセラミック層及び導電
体電極を形成しているので、基板を支持体として極薄の
セラミック層及び導電体電極を成長させ、交互に積層さ
せることができる。しかも、最終的には基板を除去して
いるので、基板によって積層セラミック電子部品が大き
くなることがなく、上記のような超小型の積層セラミッ
ク電子部品を製作することができる。
Further, in the method for manufacturing a monolithic ceramic electronic component of the present invention, since the ceramic layer and the conductor electrode are formed on the substrate, the substrate is used as a support and the ultrathin ceramic layer and the conductor are formed. The electrodes can be grown and stacked alternately. In addition, since the substrate is finally removed, the monolithic ceramic electronic component does not become large due to the substrate, and the above-mentioned ultra-small monolithic ceramic electronic component can be manufactured.

【0012】[0012]

【実施例】図1(a)(b)(c)(d)は、本発明の
一実施例による積層セラミックコンデンサの製造方法を
示している。図1(a)に示すものは表面が平滑な基板
1であって、エッチング等によって選択的に除去可能な
材質であればよく、絶縁基板に限定されない。例えば、
アルミナ基板等を用いることができる。この基板1の上
には、図1(b)に示すように、セラミック層3が形成
され、その上に1層目の導電体電極2aが形成され、そ
の上にセラミック層3が形成され、さらに2層目の導電
体電極2bが形成され、さらにセラミック層3が形成さ
れ、その上に3層目の導電体電極2aが形成される。こ
のような工程を繰り返すことにより、基板1の表面には
導電体電極2a,2bとセラミック層3とが交互に複数
層ずつ積層され、複数層の導電体電極2a,2bと複数
層のセラミック層3とからなるセラミック−金属積層体
4が形成される。ここで、各セラミック層3はCVD法
によって形成され、各導電体電極2a,2bはCVD
法、蒸着法もしくはスパッタ法のうちいずれかの方法を
用いて形成されており、各セラミック層3及び各導電体
電極2a,2bの厚みは1μm以下としてある。また、
内部電極となる導電体電極2a,2bはマスクを用いて
パターン化されており、奇数層目の導電体電極2aと偶
数層目の導電体電極2bとは、交互に反対側の端部へ引
き出されている。この後、基板1をエッチング等によっ
て選択的に除去すると、図1(c)に示すようなセラミ
ック−金属積層体4だけが残る。ついで、ディッピング
やスパッタ等によって両端に外部電極5a,5bを形成
すると、奇数層目の導電体電極2aが一方の外部電極5
aと導通し、偶数層目の導電体電極2bが他方の外部電
極5bと導通し、図1(d)に示すような超小型の積層
セラミックコンデンサ6が製作される。
1 (a), 1 (b), 1 (c) and 1 (d) show a method of manufacturing a monolithic ceramic capacitor according to an embodiment of the present invention. The substrate shown in FIG. 1A is a substrate 1 having a smooth surface, and any material that can be selectively removed by etching or the like may be used, and is not limited to an insulating substrate. For example,
An alumina substrate or the like can be used. As shown in FIG. 1B, a ceramic layer 3 is formed on the substrate 1, a first-layer conductor electrode 2a is formed thereon, and a ceramic layer 3 is formed thereon. Further, the second-layer conductor electrode 2b is formed, the ceramic layer 3 is further formed, and the third-layer conductor electrode 2a is formed thereon. By repeating such steps, a plurality of conductor electrodes 2a and 2b and a plurality of ceramic layers 3 are alternately laminated on the surface of the substrate 1, and a plurality of conductor electrodes 2a and 2b and a plurality of ceramic layers are laminated. A ceramic-metal laminate 4 of 3 is formed. Here, each ceramic layer 3 is formed by a CVD method, and each conductor electrode 2a, 2b is formed by CVD.
Method, vapor deposition method, or sputtering method, and the thickness of each ceramic layer 3 and each conductor electrode 2a, 2b is 1 μm or less. Also,
The conductor electrodes 2a and 2b to be the internal electrodes are patterned using a mask, and the conductor electrodes 2a of the odd-numbered layers and the conductor electrodes 2b of the even-numbered layers are alternately drawn to the opposite ends. Has been. After that, when the substrate 1 is selectively removed by etching or the like, only the ceramic-metal laminate 4 as shown in FIG. 1C remains. Next, when the external electrodes 5a and 5b are formed on both ends by dipping, sputtering, etc., the conductor electrode 2a of the odd-numbered layer becomes one external electrode 5.
The conductive electrode 2b of the even-numbered layer is electrically connected to the outer electrode 5b of the other layer, and the microminiature multilayer ceramic capacitor 6 as shown in FIG. 1D is manufactured.

【0013】なお、図1では1素子のみの製造工程につ
いて説明しているが、複数素子を同時に製作することに
より効率的に積層セラミックコンデンサを製造すること
ができる。
Although the manufacturing process of only one element is described in FIG. 1, a multilayer ceramic capacitor can be efficiently manufactured by simultaneously manufacturing a plurality of elements.

【0014】つぎに、本発明をより明確に説明するた
め、以下に具体的実施例を掲げて説明する。実施例1 図2は積層セラミックコンデンサ6の製作に用いた熱C
VD装置7の概略構成図であって、8はCVD用のチャ
ンバー、9は基板1をセットするためのサセプタ、10
はO2ガスの給送路、11はArキャリアガスの給送
路、12はTIP〔チタンイソプロポキシド〕のベッセ
ル、13はPb(C254のベッセル、14はLa
(DPM)3〔DPM=C11192〕のベッセル、15
は(PtCl22(CO)3のベッセルであって、TI
P、Pb(C254、La(DPM)3及び(PtCl
22(CO)3の各ベッセル12,13,14,15は
Arキャリアガスの給送路11に並列に配置されてい
る。
Next, in order to more clearly describe the present invention, specific examples will be described below. Example 1 FIG. 2 shows heat C used for manufacturing the monolithic ceramic capacitor 6.
FIG. 2 is a schematic configuration diagram of the VD device 7, where 8 is a chamber for CVD, 9 is a susceptor for setting the substrate 1 and 10
Is an O 2 gas feed path, 11 is an Ar carrier gas feed path, 12 is a TIP [titanium isopropoxide] vessel, 13 is a Pb (C 2 H 5 ) 4 vessel, and 14 is La.
(DPM) 3 [DPM = C 11 H 19 O 2 ] Vessel, 15
Is a vessel of (PtCl 2 ) 2 (CO) 3 and has a TI
P, Pb (C 2 H 5 ) 4 , La (DPM) 3 and (PtCl
2 ) 2 (CO) 3 vessels 12, 13, 14, and 15 are arranged in parallel to the Ar carrier gas feed path 11.

【0015】積層セラミックコンデンサ6を製作するた
めの基板1として縦横各50mm、厚さ0.2mmのA
23基板を用い、このAl23基板1を熱CVD装置
7のサセプタ9上にセットした。
As a substrate 1 for manufacturing the monolithic ceramic capacitor 6, an A having a length and width of 50 mm and a thickness of 0.2 mm is used.
This Al 2 O 3 substrate 1 was set on the susceptor 9 of the thermal CVD device 7 using an l 2 O 3 substrate.

【0016】ついで、サセプタ9を600℃に加熱した
状態で、TIP、Pb(C254及びLa(DPM)3
の各ベッセル12,13,14の各バルブ16,17,
18を開き、気化したTIP、Pb(C254及びL
a(DPM)3の各原料ガスをArキャリアガスに乗せ
てチャンバー8へ送り、この原料ガスをO2ガスと共に
Al23基板1に吹き付けて反応させ、厚さ約1μmの
PLT薄膜21(セラミック層3)を形成した(以下、
PLT薄膜形成工程という)。
Then, with the susceptor 9 heated to 600 ° C., TIP, Pb (C 2 H 5 ) 4 and La (DPM) 3 are added.
The valves 16, 17, of the vessels 12, 13, 14 of
Open 18 and vaporize TIP, Pb (C 2 H 5 ) 4 and L
Each raw material gas of a (DPM) 3 is placed on an Ar carrier gas and sent to the chamber 8. The raw material gas is blown together with the O 2 gas onto the Al 2 O 3 substrate 1 to cause reaction, and the PLT thin film 21 (about 1 μm thick) Ceramic layer 3) was formed (hereinafter,
PLT thin film forming process).

【0017】次に、PLT薄膜21の上にメタルマスク
をセットし、基板1を600℃に加熱した状態で(Pt
Cl22(CO)3のベッセル15のバルブ19を開
き、(PtCl22(CO)3の原料ガスをArキャリ
アガスと共にメタルマスクの窓を通してAl23基板1
に吹き付け、図3(a)(b)に示すようにメタルマス
クの窓と同一パターンに厚さ約0.5μmのPt膜20
a(導電体電極2a)を形成した(以下、Pt膜形成第
1工程という)。図3(b)は図3(a)のX部拡大図
であって、斜線を施した領域は1素子分に相当する領域
を示し、図3(b)に記入されている数字は各部の寸法
(単位mm)を示している。
Next, a metal mask is set on the PLT thin film 21, and the substrate 1 is heated to 600 ° C. (Pt.
The valve 19 of the vessel 15 of Cl 2 ) 2 (CO) 3 is opened, and the source gas of (PtCl 2 ) 2 (CO) 3 is passed together with the Ar carrier gas through the window of the metal mask Al 2 O 3 substrate 1
3A and 3B, the Pt film 20 having a thickness of about 0.5 μm is formed in the same pattern as the window of the metal mask as shown in FIGS.
a (conductor electrode 2a) was formed (hereinafter referred to as a Pt film formation first step). FIG. 3 (b) is an enlarged view of the X part of FIG. 3 (a), and the shaded area indicates the area corresponding to one element, and the numbers written in FIG. 3 (b) indicate the parts. The dimension (unit: mm) is shown.

【0018】ついで、再びPLT薄膜形成工程によりP
LT薄膜21を約1μm生成させた。
Then, the PLT thin film forming step is performed again to form P
The LT thin film 21 was formed to have a thickness of about 1 μm.

【0019】次に、最上層のPLT薄膜21の上に別な
メタルマスクをセットし、基板1を600℃に加熱した
状態で(PtCl22(CO)3のチャンバー15のバ
ルブ19を開き、(PtCl22(CO)3の原料ガス
をArキャリアガスと共にメタルマスクの窓を通してA
23基板1に吹き付け、図4(a)(b)に示すよう
にメタルマスクの窓と同一パターンに厚さ約0.5μm
のPt膜20b(導電体電極2b)を形成した(以下、
Pt膜形成第2工程という)。図4(b)は図4(a)
のY部拡大図であって、斜線を施した領域は1素子分に
相当する領域を示し、図3(b)に記入されている数字
は寸法(単位mm)を示している。
Next, another metal mask is set on the uppermost PLT thin film 21, and the valve 19 of the (PtCl 2 ) 2 (CO) 3 chamber 15 is opened with the substrate 1 heated to 600 ° C. , (PtCl 2 ) 2 (CO) 3 source gas together with Ar carrier gas through the window of the metal mask A
Sprayed onto the l 2 O 3 substrate 1 and having a thickness of about 0.5 μm in the same pattern as the window of the metal mask as shown in FIGS.
Pt film 20b (conductor electrode 2b) was formed (hereinafter,
This is called the Pt film formation second step). 4 (b) is shown in FIG. 4 (a).
3B is an enlarged view of the Y portion of FIG. 3A, in which the shaded area indicates the area corresponding to one element, and the numbers entered in FIG. 3B indicate the dimensions (unit: mm).

【0020】このように、PLT薄膜形成−Pt膜形成
第1−PLT薄膜形成−Pt膜形成第2の各工程を15
0回繰り返し、最後にPLT薄膜形成工程を行なってA
23基板1の上にセラミック−金属積層体4を得た。
As described above, each of the PLT thin film formation-Pt film formation first-PLT thin film formation-Pt film formation second steps is performed 15 times.
Repeat 0 times, and finally perform the PLT thin film formation process
A ceramic-metal laminate 4 was obtained on the l 2 O 3 substrate 1.

【0021】この後、腐食性ガスのイオンビームによる
ドライエッチングでAl23基板1を除去した後、図3
(b)及び図4(b)の破線Cに沿ってダイシングソー
によりセラミック−金属積層体4を素子毎にカットし
た。1素子ずつにカットしたセラミック−金属積層体4
の両端にディッピングによりAgペーストを付け、60
0℃で焼き付けて外部電極5a,5bを形成した。
After that, the Al 2 O 3 substrate 1 is removed by dry etching with an ion beam of a corrosive gas, and then, as shown in FIG.
The ceramic-metal laminated body 4 was cut for each element by a dicing saw along the broken line C in (b) and FIG. 4 (b). Ceramic-metal laminate 4 cut into individual elements 4
Attach Ag paste by dipping to both ends of 60
The external electrodes 5a and 5b were formed by baking at 0 ° C.

【0022】こうして長さ約1mm、幅約0.5mm、
厚さ約0.45mmの積層セラミックコンデンサ6を得
た。この積層セラミックコンデンサ6の容量を測定した
ところ1.1μFの値であった。
Thus, the length is about 1 mm, the width is about 0.5 mm,
A multilayer ceramic capacitor 6 having a thickness of about 0.45 mm was obtained. The capacitance of the monolithic ceramic capacitor 6 was measured and found to be 1.1 μF.

【0023】実施例2 Pt層20a,20b(導電体電極2a,2b)の形成
方法として蒸着法を用い、それ以外については実施例1
と同様にして長さ約1mm、幅約0.5mm、厚さ約0.
45mmの積層セラミックコンデンサ6を製作した。こ
の積層セラミックコンデンサ6の容量を測定したところ
1.0μFの値が得られた。
Example 2 A vapor deposition method was used as a method for forming the Pt layers 20a and 20b (conductor electrodes 2a and 2b), and other than that, Example 1 was used.
Similarly, the length is about 1 mm, the width is about 0.5 mm, and the thickness is about 0.1 mm.
A 45 mm monolithic ceramic capacitor 6 was manufactured. When the capacitance of the monolithic ceramic capacitor 6 was measured, a value of 1.0 μF was obtained.

【0024】実施例3 Pt層20a,20b(導電体電極2a,2b)の形成
方法としてスパッタ法を用い、実施例1と同様にして長
さ約1mm、幅約0.5mm、厚さ約0.45mmの積層
セラミックコンデンサ6を得た。この積層セラミックコ
ンデンサ6の容量を測定したところ1.1μFの値が得
られた。
Example 3 A sputtering method was used as a method for forming the Pt layers 20a and 20b (conductor electrodes 2a and 2b). As in Example 1, a length of about 1 mm, a width of about 0.5 mm, and a thickness of about 0 were set. A .45 mm monolithic ceramic capacitor 6 was obtained. When the capacitance of this monolithic ceramic capacitor 6 was measured, a value of 1.1 μF was obtained.

【0025】[0025]

【発明の効果】本発明によれば、セラミック層及び導電
体電極のいずれも緻密な膜が得られ、しかも高温に曝さ
れないので、セラミック層や導電体電極を1μm以下に
薄層化してもセラミック層や導電体電極に欠陥が生じに
くく、高性能で超小型の積層セラミック電子部品を得ら
れる。
According to the present invention, a dense film can be obtained for both the ceramic layer and the conductor electrode, and since it is not exposed to high temperature, even if the ceramic layer or the conductor electrode is thinned to 1 μm or less, the ceramic It is possible to obtain a high-performance and ultra-compact monolithic ceramic electronic component in which defects are unlikely to occur in layers and conductor electrodes.

【0026】また、本発明にあっては、基板を支持体と
して極薄のセラミック層及び導電体電極を成長させ、交
互に積層させることができるので、安定かつ均一に積層
セラミック電子部品を製作でき、しかも、最終的には基
板を除去することによって超小型もしくは超薄型の積層
セラミック電子部品を製作することができる。
Further, according to the present invention, since an extremely thin ceramic layer and a conductor electrode can be grown using the substrate as a support and laminated alternately, a laminated ceramic electronic component can be manufactured stably and uniformly. Moreover, by finally removing the substrate, an ultra-small or ultra-thin monolithic ceramic electronic component can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)(c)(d)は本発明の一実施例
による積層セラミックコンデンサの製造方法を示す断面
図である。
1A, 1B, 1C and 1D are cross-sectional views showing a method for manufacturing a monolithic ceramic capacitor according to an embodiment of the present invention.

【図2】本発明の具体的実施例において用いたCVD装
置を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing a CVD apparatus used in a specific example of the present invention.

【図3】(a)は基板の上に形成されたPt膜(導電体
電極)を示す平面図、(b)は(a)のX部拡大図であ
る。
FIG. 3A is a plan view showing a Pt film (conductor electrode) formed on a substrate, and FIG. 3B is an enlarged view of an X portion of FIG.

【図4】(a)は基板の上に形成された別なPt膜(導
電体電極)を示す平面図、(b)は(a)のY部拡大図
である。
4A is a plan view showing another Pt film (conductor electrode) formed on a substrate, and FIG. 4B is an enlarged view of a Y portion of FIG. 4A.

【符号の説明】[Explanation of symbols]

1 基板 2a,2b 導電体電極 3 セラミック層 5a,5b 外部電極 7 熱CVD装置 DESCRIPTION OF SYMBOLS 1 Substrate 2a, 2b Conductor electrode 3 Ceramic layer 5a, 5b External electrode 7 Thermal CVD apparatus

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数層の導電体電極と、CVD法によっ
て形成された複数層のセラミック層とを交互に積層した
ことを特徴とする積層セラミック電子部品。
1. A laminated ceramic electronic component, wherein a plurality of layers of conductor electrodes and a plurality of layers of ceramic layers formed by a CVD method are alternately laminated.
【請求項2】 前記導電体電極をCVD法、蒸着法もし
くはスパッタ法のうちの少なくとも1種の方法を用いて
形成した請求項1に記載の積層セラミック電子部品。
2. The multilayer ceramic electronic component according to claim 1, wherein the conductor electrode is formed by using at least one of a CVD method, a vapor deposition method, and a sputtering method.
【請求項3】 基板の上に導電体電極とCVD法による
セラミック層とを交互に複数層積層した後、前記基板を
除去することを特徴とする積層セラミック電子部品の製
造方法。
3. A method of manufacturing a monolithic ceramic electronic component, comprising: alternately laminating a plurality of conductor electrodes and ceramic layers formed by a CVD method on a substrate, and then removing the substrate.
JP16418192A 1992-05-28 1992-05-28 Laminated ceramic electronic component and manufacture thereof Pending JPH05335173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16418192A JPH05335173A (en) 1992-05-28 1992-05-28 Laminated ceramic electronic component and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16418192A JPH05335173A (en) 1992-05-28 1992-05-28 Laminated ceramic electronic component and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05335173A true JPH05335173A (en) 1993-12-17

Family

ID=15788253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16418192A Pending JPH05335173A (en) 1992-05-28 1992-05-28 Laminated ceramic electronic component and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05335173A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876536B2 (en) 2002-12-27 2005-04-05 Tdk Corporation Thin film capacitor and method for fabricating the same
US6930875B2 (en) 2003-06-12 2005-08-16 Tdk Corporation Multi-layered unit
JPWO2004065668A1 (en) * 2003-01-21 2006-05-18 Tdk株式会社 Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, and method for manufacturing thin film capacitor
US7145198B2 (en) 2001-08-28 2006-12-05 Tdk Corporation Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor
US7242044B2 (en) 2001-08-28 2007-07-10 Tdk Corporation Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor
US7312514B2 (en) 2003-02-27 2007-12-25 Tdk Corporation High-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, and production method of thin film capacity element
US7319081B2 (en) 2003-02-27 2008-01-15 Tdk Corporation Thin film capacity element composition, high-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, electronic circuit and electronic apparatus
KR100865760B1 (en) * 2006-03-29 2008-10-28 박영진 Multi layer capacitor device and multi layer varistor device and method for manufacturing the same
US7580241B2 (en) 2004-04-26 2009-08-25 Tdk Corporation Thin film capacitor element composition, high permittivity insulation film, thin film capacitor element, thin film multilayer capacitor, and method of production of thin film capacitor element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145198B2 (en) 2001-08-28 2006-12-05 Tdk Corporation Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor
US7242044B2 (en) 2001-08-28 2007-07-10 Tdk Corporation Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor
US6876536B2 (en) 2002-12-27 2005-04-05 Tdk Corporation Thin film capacitor and method for fabricating the same
JPWO2004065668A1 (en) * 2003-01-21 2006-05-18 Tdk株式会社 Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, and method for manufacturing thin film capacitor
US7745869B2 (en) 2003-01-21 2010-06-29 Tdk Corporation Thin film capacitance element composition, high permittivity insulation film, thin film capacitance element, thin film multilayer capacitor and production method of thin film capacitance element
JP4706479B2 (en) * 2003-01-21 2011-06-22 Tdk株式会社 Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, and method for manufacturing thin film capacitor
US7312514B2 (en) 2003-02-27 2007-12-25 Tdk Corporation High-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, and production method of thin film capacity element
US7319081B2 (en) 2003-02-27 2008-01-15 Tdk Corporation Thin film capacity element composition, high-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, electronic circuit and electronic apparatus
US6930875B2 (en) 2003-06-12 2005-08-16 Tdk Corporation Multi-layered unit
US7580241B2 (en) 2004-04-26 2009-08-25 Tdk Corporation Thin film capacitor element composition, high permittivity insulation film, thin film capacitor element, thin film multilayer capacitor, and method of production of thin film capacitor element
KR100865760B1 (en) * 2006-03-29 2008-10-28 박영진 Multi layer capacitor device and multi layer varistor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4800459A (en) Circuit substrate having ceramic multilayer structure containing chip-like electronic components
US5459635A (en) Laminated thin film capacitor and method for producing the same
KR20180042125A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2006041474A (en) Thin film multilayer ceramic capacitor and its manufacturing method
TW201837935A (en) Multi-Layer Ceramic Capacitor
TW201830433A (en) Ceramic electronic component and method of producing the same
JPH05335173A (en) Laminated ceramic electronic component and manufacture thereof
JP2001217142A (en) Laminated thin-film capacitor and method for mounting it
JPH05335174A (en) Laminated ceramic electronic component
JP2014093517A (en) Multilayer ceramic electronic part, and manufacturing method thereof
JPH06291380A (en) Dielectric multilayered parts and its manufacture
US7180155B2 (en) Method for manufacturing thin-film multilayer electronic component and thin-film multilayer electronic component
JPH10312933A (en) Laminated ceramic electronic parts
JPS5924534B2 (en) Laminated composite parts
JPH0945577A (en) Multilayer electronic component manufacturing method
JPH0745402A (en) Laminated ptc thermistor
JPH05166666A (en) Metal-ceramic laminated film
JPH11195554A (en) Multilayered ceramic electronic device and production of the same
JP2658121B2 (en) High dielectric materials and capacitors using the same
JP3131004B2 (en) Manufacturing method of laminated porcelain electronic components
JPH0963845A (en) Layered component and production thereof
JPH09260199A (en) Multilayer capacitor
JPH01120802A (en) Manufacture of electronic component with built-in resistor
JP2000195741A (en) Laminated ceramic capacitor
JP3237202B2 (en) Stacked varistor