JPH05328735A - Gate driving method of modular igbt - Google Patents

Gate driving method of modular igbt

Info

Publication number
JPH05328735A
JPH05328735A JP4129168A JP12916892A JPH05328735A JP H05328735 A JPH05328735 A JP H05328735A JP 4129168 A JP4129168 A JP 4129168A JP 12916892 A JP12916892 A JP 12916892A JP H05328735 A JPH05328735 A JP H05328735A
Authority
JP
Japan
Prior art keywords
igbt
gate
voltage
phase
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4129168A
Other languages
Japanese (ja)
Other versions
JP3067389B2 (en
Inventor
Haruo Tsunoda
春生 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4129168A priority Critical patent/JP3067389B2/en
Publication of JPH05328735A publication Critical patent/JPH05328735A/en
Application granted granted Critical
Publication of JP3067389B2 publication Critical patent/JP3067389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To equalize turn-on characteristics between each upper and lower arm IGBT of an IGBT module constituting the main circuit bridge of a voltage type inverter, and to prevent the overlapping of a DC component in the output ACs of the inverter. CONSTITUTION:The resistance values of each gate resistor such as RGV to each lower side arm IGBT such as IGBT in each U, V, W phase module 1, 2, 3 constituting the main circuit bridge of a voltage type inverter are properly made smaller than those of each gate resistor such as RGU to each upper side arm IGBT such as IGBTU. A time constant in a gate-on signal voltage applying path to each lower side arm IGBT is reduced in response to the magnitude of the emitter-side back electromotive force of each lower side arm IGBT such as ECV and the lapse of time, thus equalizing turn-on characteristics between each IGBT of both arms.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電圧形インバータの主
回路をブリッジに構成するモジュール化されたIGBT
に対するゲート駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a modularized IGBT in which a main circuit of a voltage source inverter is formed in a bridge.
To the gate driving method.

【0002】[0002]

【従来の技術】一般に、モジュール化されたIGBT
(絶縁ゲートバイポーラトランジスタ)をそのスイッチ
ング素子とする電圧形インバータの主回路は図1の回路
図の如く構成され、図示各IGBTに対するゲート信号
はゲート駆動回路からの電圧信号としてそれぞれ印加さ
れるものであるが、従来のこの種IGBTに対するゲー
ト駆動方法としては、モジュール化され且つその特性が
均一化された各IGBTに対して、各ゲート駆動回路か
ら対応するIGBTのゲートに至るゲート信号電圧印加
経路の抵抗値を同一となすものが知られている。
2. Description of the Related Art Generally, a modularized IGBT
The main circuit of a voltage source inverter having an (insulated gate bipolar transistor) as its switching element is constructed as shown in the circuit diagram of FIG. 1, and the gate signal for each IGBT shown in the figure is applied as a voltage signal from the gate drive circuit. However, as a conventional gate driving method for this kind of IGBT, a gate signal voltage application path from each gate driving circuit to the corresponding IGBT gate is provided for each modularized IGBT having uniform characteristics. It is known that the resistance values are the same.

【0003】以下図1の回路図について説明する。図1
は、直流電圧EDCを受けこれを所要の三相交流に変換し
三相誘導電動機4を駆動する三相電圧形インバータの主
回路をなす三相ブリッジの回路構成を示すものである。
なおその添字の有無に係わらず図中同一形状表示の素子
は同一仕様同一特性の素子を示すものとする。
The circuit diagram of FIG. 1 will be described below. Figure 1
Shows a circuit configuration of a three-phase bridge which forms a main circuit of a three-phase voltage source inverter which receives a direct current voltage E DC and converts it into a required three-phase alternating current and drives a three-phase induction motor 4.
It should be noted that, regardless of the presence or absence of the subscript, the elements having the same shape in the figure indicate elements having the same specifications and the same characteristics.

【0004】図1において1,2,3はそれぞれ前記三
相ブリッジのU相とV相とW相各相のモジュールであ
り、図示U相のFDU とIGBTU 或いはV相のFDV
とIGBTV との組合わせの如く逆並列接続した転流ダ
イオード(FD)を有するIGBTをその上下各アーム
の構成素子とし互いに同一の回路構成をなして図中点線
で囲まれた範囲の素子を集約したものである。また例え
ばRGUは図示していないゲート駆動回路から前記IGB
U のゲートに至るゲート信号電圧印加経路に設けたゲ
ート抵抗であり、U相モジュール1の外部に設けた場合
の例示である。同じくRGVは前記IGBTV に対するゲ
ート抵抗である。なお前記ゲート信号電圧印加経路の配
線抵抗自体は何れの経路においても同一となる様に各モ
ジュール内の回路構成がなされているものとする。
In FIG. 1, reference numerals 1, 2 and 3 denote U-phase, V-phase, and W-phase modules of the three-phase bridge, respectively. The U-phase FD U and IGBT U or the V-phase FD V are shown.
And an IGBT V having an anti-commutation diode (FD) connected in anti-parallel as a combination of them are used as constituent elements of the upper and lower arms of the IGBT, and the elements in the range surrounded by the dotted line in the figure are formed with the same circuit configuration. It is a summary. Also, for example, R GU is a gate drive circuit (not shown)
It is a gate resistance provided in the gate signal voltage application path to the gate of T U , and is an example when it is provided outside the U-phase module 1. Similarly, R GV is a gate resistance for the IGBT V. The circuit configuration in each module is assumed such that the wiring resistance itself of the gate signal voltage application path is the same in any path.

【0005】またV相モジュール2におけるLEVは、他
のU相とW相モジュールにおいても同様に存在するもの
であるが、前記IGBTV のエミッタから該V相モジュ
ールの負母線側外部端子に至るモジュール内配線におけ
るインダタタンスを示すものであり、モジュール構造上
その低減には限界のあるものである。即ち、前記従来の
ゲート駆動方法は、前記のRGU,RGV等ゲート抵抗の抵
抗値を何れのIGBTに対しても同一となすものであ
る。
The L EV in the V-phase module 2, which is also present in the other U-phase and W-phase modules, extends from the emitter of the IGBT V to the external terminal on the negative bus side of the V-phase module. This shows the inductance in the wiring in the module, and its reduction is limited due to the module structure. That is, in the conventional gate driving method, the resistance value of the gate resistance such as R GU and R GV is the same for any IGBT.

【0006】[0006]

【発明が解決しようとする課題】前記のIGBTモジュ
ールにより図1の如きブリッジ構成をなした電圧形イン
バータの主回路においては、各モジュールの下側アーム
IGBTのターン・オン動作によるそのコレクタ電流の
増大時、前記のエミッタ側配線インダクタンスに起因す
る逆起電力が前記各下側アームIGBTに対するゲート
・オン信号電圧の大きさを実質的に低減させる様に作用
し該各IGBTの出力電圧はその平均値において低下す
る。従って該信号電圧の低減影響の比較的小なる前記各
モジュールの上側アームIGBTの出力電圧平均値との
間に電圧差が発生し前記インバータの出力交流には直流
成分が重畳することになる。
In the main circuit of the voltage source inverter having the bridge structure as shown in FIG. 1 by the above-mentioned IGBT module, the collector current of the lower arm IGBT of each module is increased by the turn-on operation. At this time, the counter electromotive force resulting from the wiring inductance on the emitter side acts so as to substantially reduce the magnitude of the gate-on signal voltage to each lower arm IGBT, and the output voltage of each IGBT has its average value. Lowers at. Therefore, a voltage difference is generated between the average value of the output voltage of the upper arm IGBT of each module, which has a relatively small effect of reducing the signal voltage, and a DC component is superimposed on the output AC of the inverter.

【0007】上記の如きインバータ出力交流中の直流成
分重畳につき、図1の回路図と図2の動作波形図とによ
り以下に説明する。今、図1に示すV相モジュール2を
例にとれば,IGBTV のエミッタ側配線インダクタン
スLEVにコレクタ電流IL が図示矢印の方向に通電した
場合には、LEV・dIL /dtで与えられる逆起電力E
CVが、前記のインダクタンスLEVにおいて即ち前記IG
BTV のエミッタとその負側母線との間に、前記電流I
L の変化率dIL /dtの極性に従い該電流IL の変化
を妨げる方向に図示矢印の如く発生する。今、前記電流
変化率が正極性であれば即ち前記のIGBTV がそのゲ
ート抵抗RGVを介してゲート・オン信号電圧VGVを受け
て導通状態に移行しそのコレクタ電流IL が増大する場
合には、前記逆起電力ECVは該信号電圧VGVに対する過
渡的な減電圧成分として作用して前記IGBTV に対す
るゲート・オン信号電圧を実質的に低減させ該IGBT
V のターン・オン時間の増大をもたらすものとなる。
The DC component superposition in the inverter output AC as described above will be described below with reference to the circuit diagram of FIG. 1 and the operation waveform diagram of FIG. Taking the V-phase module 2 shown in FIG. 1 as an example, when the collector current I L is applied to the emitter side wiring inductance L EV of the IGBT V in the direction of the arrow shown in the figure, L EV · dI L / dt Back electromotive force E given
CV is the inductance L EV , that is, the IG
Between the emitter of BT V and its negative bus, the current I
It occurs as the direction of the arrow to inhibit any changes of the current I L in accordance with the polarity of the L of the change rate dI L / dt. When the current change rate is positive, that is, when the IGBT V receives the gate-on signal voltage V GV through its gate resistance R GV and shifts to the conductive state, and the collector current I L thereof increases. In addition, the back electromotive force E CV acts as a transient voltage reduction component with respect to the signal voltage V GV to substantially reduce the gate-on signal voltage with respect to the IGBT V.
This will increase the turn-on time of V.

【0008】従って、前記信号電圧VGVがパルス状信号
であれば前記IGBTV のパルス状出力電圧の時間幅は
前記ターン・オン時間の増大と共に縮小し該出力電圧の
平均値も低下することになる。なお前記信号電圧VGV
含め前記各IGBTに対するゲート・オン信号電圧は例
えばPWM制御等を受けたパルス列をなすものであり、
PWM制御における搬送周波数の増大等により前記信号
電圧VGVのパルス幅に比し前記逆起電力ECVの継続時間
が相対的に大となれば前記の出力電圧平均値の低下もま
た相対的に大なるものとなる。
Therefore, if the signal voltage V GV is a pulsed signal, the time width of the pulsed output voltage of the IGBT V is reduced as the turn-on time is increased, and the average value of the output voltage is also reduced. Become. The gate-on signal voltage for each of the IGBTs including the signal voltage V GV forms a pulse train under PWM control, for example.
If the duration of the counter electromotive force E CV becomes relatively large compared to the pulse width of the signal voltage V GV due to the increase of the carrier frequency in the PWM control or the like, the decrease of the output voltage average value also becomes relatively large. It will be great.

【0009】次に、図2の動作波形図は上記の如き動作
模様を図1に示す回路図との対比において示すものであ
り、VGUとVGVとはそれぞれ図1に示すU相モジュール
1の上側アームのIGBTU とV相モジュール2の下側
アームのIGBTV とに対するパルス列をなすゲート・
オン信号電圧であり、またVUNは前記のIGBTU とI
GBTV とのターン・オンにより三相誘導電動機4のU
相及びV相巻線に印加される電圧であり直流電源電圧E
DCの零電位点Pを基準として正負の極性を有し波高値E
DC/2にて変化するものである。
Next, the operation waveform diagram of FIG. 2 shows the operation pattern as described above in comparison with the circuit diagram shown in FIG. 1. V GU and V GV are the U-phase module 1 shown in FIG. 1, respectively. Of the gate train for the upper arm IGBT U and the lower arm IGBT V of the V-phase module 2
ON signal voltage, and V UN is the above-mentioned IGBT U and I
Three-phase induction motor 4 of the U by the turn-on of the GBT V
DC power supply voltage E, which is the voltage applied to the phase and V phase windings
The peak value E has positive and negative polarities with reference to the zero potential point P of DC.
It changes at DC / 2.

【0010】前記電圧VUNに関して、前記信号電圧VGU
に対応するIGBTU の出力電圧分はその立上がり時に
該信号電圧VGUよりも位相角θにおいてΔθ1 の位相遅
れを有し、同様に前記信号電圧VGVに対応するIGBT
V の出力電圧分は該信号電圧VGVよりもΔθ2 の位相遅
れを有するものとなるが、前記IGBTV のエミッタ側
配線インダクタンスの影響によりΔθ1 <Δθ2 となっ
て前記電圧VUNの正側電圧成分の平均値は負側成分のそ
れよりも大となる。その結果パルス列をなす該正負両電
圧成分の合成値よりなる前記電圧VUNの基本波交流電圧
には正極性直流成分が重畳されることになる。
With respect to the voltage V UN , the signal voltage V GU
The output voltage component of the IGBT U corresponding to the above has a phase delay of Δθ 1 in the phase angle θ from the signal voltage V GU at the time of its rise, and similarly the IGBT corresponding to the signal voltage V GV.
Although the output voltage of V has a phase delay of Δθ 2 with respect to the signal voltage V GV, Δθ 1 <Δθ 2 due to the influence of the emitter side wiring inductance of the IGBT V , and the positive voltage of the voltage V UN . The average value of the side voltage component is larger than that of the negative side component. As a result, a positive DC component is superimposed on the fundamental AC voltage of the voltage V UN , which is a composite value of the positive and negative voltage components forming the pulse train.

【0011】なお、図1にその構成を示す電圧形インバ
ータの主回路においてはその上下各アームのIGBTが
互に所定の位相差を有してターン・オン制御され、ター
ン・オン状態にある該上下各アームIGBT間の組み合
わせは所定の位相順序に従って変化して行く。図1の場
合は、前記のIGBTU とIGBTV とが対をなしてタ
ーン・オンし前記電動機4のU相及びV相巻線に図示矢
印の方向に電流IL を通電している時点の状態を示すも
のである。
In the main circuit of the voltage source inverter whose configuration is shown in FIG. 1, the IGBTs of the upper and lower arms are turned on and controlled with a predetermined phase difference from each other, and are in the turn on state. The combination between the upper and lower arm IGBTs changes according to a predetermined phase order. In the case of FIG. 1, the IGBT U and the IGBT V form a pair and are turned on, and a current I L is applied to the U-phase and V-phase windings of the electric motor 4 in the direction of the arrow. It shows a state.

【0012】しかしながら前記従来のIGBTのゲート
駆動方法においては、前記エミッタ側配線インダクタン
スに起因する前記各モジュール上下アームIGBT間の
前記の如きターン・オン特性差に対する補正がなされ
ず、従って、前記の各IGBTモジュールによりその主
回路が構成され且つその出力電圧がPWM制御等を受け
た電圧パルス列から成る電圧形インバータの出力交流中
には直流成分が重畳することになり、該インバータによ
り駆動される誘導電動機は直流偏励磁されてその回転ム
ラの発生等の悪影響を受けることになる。
However, in the conventional IGBT gate driving method, the above turn-on characteristic difference between the upper and lower arm IGBTs of each module due to the wiring inductance on the emitter side is not corrected. A direct current component is superimposed on the output AC of the voltage source inverter whose main circuit is composed of the IGBT module and whose output voltage is composed of a voltage pulse train subjected to PWM control or the like, and an induction motor driven by the inverter. Is biased to be DC-biased and adversely affected by uneven rotation.

【0013】上記に鑑み本発明は、電圧形インバータの
主回路をブリッジに構成するモジュール化されたIGB
Tに関して、該ブリッジにおける上下各アームIGBT
間のターン・オン特性の均一化を図り、前記の如きイン
バータ出力交流中の直流成分を除去し得るモジュール化
IGBTのゲート駆動方法の提供を目的とするものであ
る。
In view of the above, the present invention has a modularized IGBT in which the main circuit of the voltage source inverter is formed in a bridge.
Regarding T, upper and lower arm IGBTs in the bridge
It is an object of the present invention to provide a gate driving method for a modular IGBT capable of removing the DC component in the inverter output AC as described above by making the turn-on characteristics uniform during the period.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明のモジュール化IGBTのゲート駆動方法
は、電圧形インバータの主回路をブリッジに構成するモ
ジュール化されたスイッチング用IGBTのゲート駆動
方法であって、前記ブリッジの各相毎にその対をなす上
下各アームのIGBTをモジュールに形成した場合の該
上下各アームIGBTそれぞれに対するゲート・オン信
号電圧印加経路の抵抗値を、前記の上下各アームIGB
Tそれぞれにおけるゲート・エミッタ間電圧の時間的立
上がり特性を同一となす様に、互いに異なったものとな
すものとする。
In order to achieve the above object, a method of driving a gate of a modularized IGBT according to the present invention is a gate driving method of a modularized switching IGBT in which a main circuit of a voltage source inverter is formed in a bridge. In the method, the resistance value of the gate-on signal voltage application path for each upper and lower arm IGBT when the IGBT of the upper and lower arms forming a pair for each phase of the bridge is formed in a module, Each arm IGB
The gate-emitter voltage is made different from each other so that the time-dependent rising characteristics of the gate-emitter voltage are the same.

【0015】[0015]

【作用】同一素子特性の2組のIGBTそれぞれのゲー
ト・エミッタ間電圧を所定極性の同一時間経過にて立上
げれば該両IGBTはそれぞれ同一時間経過のターン・
オン動作をなす。従ってもし前記両IGBTそれぞれの
ターン・オン動作における時間経過が異なれば、該両I
GBTそれぞれに対する前記ゲート・エミッタ間電圧の
立上げ時間経過が異なることに起因するものとしてその
同一化を図ることにより該両IGBTのターン・オン動
作の同一化を図ることが可能となる。
When the gate-emitter voltage of each of the two IGBTs having the same element characteristics is raised at the same time with the predetermined polarity, the two IGBTs are turned after the same time.
Turn on. Therefore, if the time lapses in the turn-on operations of both the IGBTs are different, the I
It is possible to make the turn-on operations of both of the IGBTs identical by attempting to make them identical because the rise time of the gate-emitter voltage for each of the IGBTs is different.

【0016】また一般にIGBTのゲート・オン信号電
圧印加回路は、容量性の特性を示す該IGBTのゲート
・エミッタ間をゲート抵抗を介してゲート・オン信号電
圧により充電し、該ゲート・エミッタ間の静電容量と該
ゲート抵抗の抵抗値との積で与えられる時定数に従う時
間経過をなす充電電圧を以て前記のIGBTターン・オ
ン用の所要のゲート・エミッタ間電圧となす如く回路構
成したものである。
In general, the gate-on signal voltage application circuit of the IGBT charges the gate-emitter of the IGBT exhibiting the capacitive characteristic with the gate-on signal voltage via the gate resistance, and the gate-emitter voltage between the gate and the emitter of the IGBT is charged. The circuit is configured so that the required gate-emitter voltage for IGBT turn-on is obtained by using a charging voltage that elapses in time according to a time constant given by the product of the electrostatic capacitance and the resistance value of the gate resistor. ..

【0017】従って、もし前記ゲート・オン信号電圧が
何らかの外部電圧により低減作用を受けるならば、前記
ゲート抵抗の抵抗値を低減して前記時定数を小となすこ
とによって前記IGBTのターン・オンに要する期間に
おける前記充電電圧の低下を等価的に補償し、該期間に
おける該充電電圧の増大時間経過を略同一となして該I
GBTのターン・オン動作の同一化を図ることが出来
る。
Therefore, if the gate-on signal voltage is reduced by some external voltage, the turn-on of the IGBT is turned on by reducing the resistance value of the gate resistor to reduce the time constant. The decrease in the charging voltage in the required period is equivalently compensated, and the increase time of the charging voltage in the period is made substantially the same so that the I
The turn-on operation of the GBT can be made the same.

【0018】上記に従い本発明は、電圧形インバータの
主回路をブリッジ状に構成するIGBTモジュールの各
IGBTに対するゲート抵抗の抵抗値に関して、下側ア
ームIGBTに対するものを上側アームに対するものよ
りも適当に小となし、該下側アームIGBTのエミッタ
側配線インダクタンスに起因する前記の如き逆起電力の
影響を実質的に補償するものである。
In accordance with the above, according to the present invention, with respect to the resistance value of the gate resistance for each IGBT of the IGBT module which constitutes the main circuit of the voltage source inverter in a bridge shape, the resistance value for the lower arm IGBT is appropriately smaller than that for the upper arm. In other words, the effect of the counter electromotive force as described above due to the emitter side wiring inductance of the lower arm IGBT is substantially compensated.

【0019】[0019]

【実施例】以下本発明の実施例を図1の回路図により説
明する。即ち本発明は、図1において、電圧形インバー
タの主回路をブリッジ状に構成するU,V,W各相モジ
ュール1,2,3におけるIGBTU ,IGBTV 等の
各IGBTの素子特性が同一となされ且つVGU,VGV
の該各IGBTに対するゲート・オン信号電圧の大きさ
が同一となされていると共に該各信号電圧の印加経路の
配線抵抗自体は何れの経路においても同一となる様に各
モジュール内回路構成がなされているものとして、前記
の各信号電圧印加経路に挿入されるゲート抵抗に関し、
GV等の前記各相モジュールの下側アームIGBTに対
するゲート抵抗の抵抗値をRGU等の各上側アームIGB
Tに対するゲート抵抗の抵抗値よりも小となすものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the circuit diagram of FIG. That is, according to the present invention, in FIG. 1, the device characteristics of each IGBT such as IGBT U and IGBT V in the U, V and W phase modules 1, 2 and 3 which constitute the main circuit of the voltage source inverter in a bridge shape are the same. In addition, the magnitudes of the gate-on signal voltages for the respective IGBTs such as V GU and V GV are made the same, and the wiring resistance itself of the application path of the respective signal voltages is made the same in any path. Regarding the gate resistance inserted in each of the signal voltage application paths, assuming that the circuit configuration in each module is made,
The resistance value of the gate resistance to the lower arm IGBT of each phase module such as R GV is set to the upper arm IGBT of each R GU or the like.
It is smaller than the resistance value of the gate resistance with respect to T.

【0020】なお上記ゲート抵抗の抵抗値低減の度合い
は、前記の各下側アームIGBTのエミッタ側配線イン
ダクタンスLEV等に起因するECV等の前記逆起電力の予
想される大きさと持続時間とに従って適当に決定される
ものである。上記の如くU,V,W各相モジュールの上
下各アームIGBT用ゲート抵抗の抵抗値を異なるもの
とすることにより、例えば図示IGBTU とIGBTV
とが対をなしてターン・オンしコレクタ電流IL が通電
する場合には、該IGBTVのエミッタ側配線インダク
タンスLEVにおける逆起電力ECVによるゲート・オン信
号電圧VGVの過渡的低減を該信号電圧印加経路の時定数
低減によって等価的に補償し、前記IGBTV のターン
・オン動作特性を前記IGBTU のそれと略同一となす
ことが出来、その負荷となる誘導電動機4に供給する前
記インバータの交流出力電圧に対する直流成分の重畳を
避けることが可能となる。
The degree of reduction in the resistance value of the gate resistance depends on the expected magnitude and duration of the counter electromotive force such as E CV due to the emitter side wiring inductance L EV of each of the lower arm IGBTs. Is appropriately determined in accordance with. As described above, by making the resistance values of the upper and lower arm IGBT gate resistors of the U, V, W phase modules different, for example, IGBT U and IGBT V shown in the figure.
When paired with and turn on and the collector current I L is conducted , the transient reduction of the gate-on signal voltage V GV is caused by the counter electromotive force E CV in the emitter side wiring inductance L EV of the IGBT V. By equivalently compensating by reducing the time constant of the signal voltage application path, the turn-on operation characteristic of the IGBT V can be made substantially the same as that of the IGBT U , and the same is supplied to the induction motor 4 serving as its load. It is possible to avoid superimposing a DC component on the AC output voltage of the inverter.

【0021】[0021]

【発明の効果】本発明によれば、電圧形インバータの主
回路をブリッジに構成するモジュール化されたスイッチ
ング用IGBTのゲート駆動方法に関し、前記ブリッジ
各相の対をなす上下各アームIGBTそれぞれに対する
ゲート抵抗の抵抗値を、該上下各アームIGBTそれぞ
れにおけるゲート・エミッタ間電圧の時間的な立上がり
特性を同一となす様に互いに異なったものとなし、前記
の各下側アームIGBTに対するゲート・オン信号電圧
印加経路の時定数を各上側アームIGBTに対するもの
に比して適当に小となすことにより、前記下側アームI
GBTそれぞれにおけるエミッタ側配線インダクタンス
に起因する前記上下各アームIGBT間のターン・オン
特性差に対する等価的な補正を図って前記インバータの
出力交流に対する直流成分の重畳を避けることが可能と
なり、該インバータの負荷誘導電動機における直流偏励
磁を防止してその回転ムラの発生等の悪影響を防止する
ことが出来る。
According to the present invention, there is provided a method of driving a gate of a modularized switching IGBT in which a main circuit of a voltage-source inverter is formed in a bridge, and a gate for each upper and lower arm IGBT forming a pair of each phase of the bridge. The resistance values of the resistors are made different from each other so that the time-dependent rising characteristics of the gate-emitter voltage in each of the upper and lower arm IGBTs are the same, and the gate-on signal voltage for each of the lower arm IGBTs is set. By making the time constant of the application path appropriately smaller than that for each upper arm IGBT, the lower arm I
It becomes possible to correct the turn-on characteristic difference between the upper and lower arm IGBTs caused by the wiring inductance on the emitter side in each of the GBTs, and avoid the superimposition of the DC component on the output AC of the inverter. It is possible to prevent DC bias excitation in the load induction motor and prevent adverse effects such as uneven rotation.

【図面の簡単な説明】[Brief description of drawings]

【図1】IGBTをそのスイッチング素子とする電圧形
インバータの主回路図
FIG. 1 is a main circuit diagram of a voltage source inverter using an IGBT as its switching element.

【図2】図1に対応する動作波形図FIG. 2 is an operation waveform diagram corresponding to FIG.

【符号の説明】[Explanation of symbols]

1 三相ブリッジのU相モジュール 2 三相ブリッジのV相モジュール 3 三相ブリッジのW相モジュール 4 三相誘導電動機 FDU U相上アーム転流ダイオード FDV V相下アーム転流ダイオード IGBTU U相上アームIGBT IGBTV V相下アームIGBT LEV IGBTV のエミッタ側配線インダクタンス RGU IGBTU 用ゲート抵抗 RGV IGBTV 用ゲート抵抗 ECVEVによる逆起電力 EDC インバータの電源直流電圧 VGU IGBTU 用ゲート・オン信号電圧 VGV IGBTV 用ゲート・オン信号電圧1 U-phase module of three-phase bridge 2 V-phase module of three-phase bridge 3 W-phase module of three-phase bridge 4 Three-phase induction motor FD U U phase upper arm commutation diode FD V V V phase lower arm commutation diode IGBT U U Phase upper arm IGBT IGBT V V Phase lower arm IGBT L EV IGBT V emitter side wiring inductance R GU IGBT U gate resistance R GV IGBT V gate resistance E CV L EV back electromotive force E DC Inverter power supply DC voltage V GU IGBT U gate-on signal voltage V GV IGBT V gate-on signal voltage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電圧形インバータの主回路をブリッジに構
成するモジュール化されたスイッチング用IGBTのゲ
ート駆動方法であって、前記ブリッジの各相毎にその対
をなす上下各アームのIGBTをモジュールに形成した
場合の該上下各アームIGBTそれぞれに対するゲート
・オン信号電圧印加経路の抵抗値を、前記上下各アーム
IGBTそれぞれにおけるゲート・エミッタ間電圧の時
間的な立上がり特性を同一となす様に、互いに異なった
ものとなしたことを特徴とするモジュール化IGBTの
ゲート駆動方法。
1. A method of driving a gate of a modularized switching IGBT in which a main circuit of a voltage source inverter is configured in a bridge, wherein IGBTs of upper and lower arms forming a pair for each phase of the bridge are provided in a module. When formed, the resistance values of the gate-on signal voltage application paths for the upper and lower arm IGBTs are different from each other so that the temporal rise characteristics of the gate-emitter voltage in the upper and lower arm IGBTs are the same. A method of driving a gate of a modularized IGBT, characterized in that:
JP4129168A 1992-05-22 1992-05-22 Gate drive method for modular IGBT Expired - Fee Related JP3067389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4129168A JP3067389B2 (en) 1992-05-22 1992-05-22 Gate drive method for modular IGBT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4129168A JP3067389B2 (en) 1992-05-22 1992-05-22 Gate drive method for modular IGBT

Publications (2)

Publication Number Publication Date
JPH05328735A true JPH05328735A (en) 1993-12-10
JP3067389B2 JP3067389B2 (en) 2000-07-17

Family

ID=15002826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129168A Expired - Fee Related JP3067389B2 (en) 1992-05-22 1992-05-22 Gate drive method for modular IGBT

Country Status (1)

Country Link
JP (1) JP3067389B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139660A (en) * 1995-11-16 1997-05-27 Mitsubishi Electric Corp Semiconductor switch circuit
WO2010060585A3 (en) * 2008-11-26 2011-10-27 Sew-Eurodrive Gmbh & Co. Kg Converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139660A (en) * 1995-11-16 1997-05-27 Mitsubishi Electric Corp Semiconductor switch circuit
WO2010060585A3 (en) * 2008-11-26 2011-10-27 Sew-Eurodrive Gmbh & Co. Kg Converter

Also Published As

Publication number Publication date
JP3067389B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
US6069809A (en) Resonant inverter apparatus
EP3767315A1 (en) Short circuit detection and protection for a gate driver circuit and methods of detecting the same using logic analysis
US10622933B2 (en) Inverter device that reduces a loss caused by switching elements
JP2002204581A (en) Power semiconductor module
KR19980081113A (en) Pulse width modulator system
JP2014117112A (en) Semiconductor control device, and power conversion equipment
JP6402828B2 (en) Charging shared inverter
JP3052792B2 (en) Inverter device
US11050358B2 (en) Power module with built-in drive circuit
US6266258B1 (en) Power substrate element topology
JPH077967A (en) Polarity deciding method for load current and inverter
JP2013090350A (en) Power conversion apparatus
JP3025715B2 (en) Inverter circuit
CN113454899A (en) Inverter device
JP3067389B2 (en) Gate drive method for modular IGBT
JP2001045740A (en) Drive circuit of power semiconductor element
JP2003324966A (en) Inverter driving circuit
US11349303B2 (en) Power module with integrated surge voltage limiting element
JPH05308778A (en) Inverter for driving electric car
JPH0947013A (en) Snubber circuit and power converter employing it
JPH01148076A (en) Inverter
JP7214052B2 (en) power converter
JPH01503430A (en) Capacitor switch type induction motor drive device
JPH04289781A (en) Control circuit for pwm control inverter
JP3144124B2 (en) Inverter device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees