JPH0532803B2 - - Google Patents
Info
- Publication number
- JPH0532803B2 JPH0532803B2 JP11950184A JP11950184A JPH0532803B2 JP H0532803 B2 JPH0532803 B2 JP H0532803B2 JP 11950184 A JP11950184 A JP 11950184A JP 11950184 A JP11950184 A JP 11950184A JP H0532803 B2 JPH0532803 B2 JP H0532803B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic field
- signal
- output
- bias
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000605 extraction Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 description 17
- 239000010410 layer Substances 0.000 description 17
- 230000008859 change Effects 0.000 description 13
- 239000000758 substrate Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000005330 Barkhausen effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/02—Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
- G11B5/027—Analogue recording
- G11B5/035—Equalising
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
- Recording Or Reproducing By Magnetic Means (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は磁気抵抗効果型磁気ヘツド信号再生装
置に係わる。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetoresistive magnetic head signal reproducing device.
背景技術とその問題点
先ず、第1図を参照して、従来の磁気抵抗効果
(以下MRという)型磁気ヘツド信号再生装置の
ヘツド部hの構造の一例を説明するに、例えば
Ni−Zn系フエライト、Mn−Zn系フエライト等
より成る磁性基板1上に(この基板1が導電性を
有する場合には、これの上に被着されたSiO2等
の絶縁層2を介して)、後述するMR感磁部5に
対してバイアス磁界を与えるためのバイアス磁界
発生用の電流通路となる帯状の導電膜より成るバ
イアス導体3が被着され、このバイアス導体3上
に、絶縁層4を介して例えば、Ni−Fe系合金、
或いはNi−Co系合金等のMR磁性薄膜から成る
MR感磁部5が配される。そして、このMR感磁
部5上に、薄い絶縁層6を介して、各一端が跨り
バイアス導体3及びMR感磁部5を横切る方向に
延在して夫々磁気回路の一部を構成する磁気コア
としての、例えばMoパーマロイから成る対の磁
性層7及び8が被着される。基板1上には、非磁
性の絶縁性保護層9を介して、保護基板10が接
合される。BACKGROUND ART AND PROBLEMS First, with reference to FIG. 1, an example of the structure of a head section h of a conventional magnetoresistive (hereinafter referred to as MR) type magnetic head signal reproducing device will be described.
On a magnetic substrate 1 made of Ni-Zn ferrite, Mn-Zn ferrite, etc. (if this substrate 1 has conductivity, an insulating layer 2 such as SiO 2 deposited thereon) ), a bias conductor 3 made of a strip-shaped conductive film is deposited to serve as a current path for generating a bias magnetic field to apply a bias magnetic field to the MR magnetic sensing part 5, which will be described later. For example, Ni-Fe alloy,
Alternatively, it consists of an MR magnetic thin film such as Ni-Co alloy.
An MR magnetic sensing section 5 is arranged. A magnetic conductor is placed on this MR magnetic sensing part 5 via a thin insulating layer 6, with each end straddling the bias conductor 3 and extending in a direction across the MR magnetic sensing part 5, each forming a part of a magnetic circuit. A pair of magnetic layers 7 and 8, for example made of Mo permalloy, is deposited as a core. A protective substrate 10 is bonded onto the substrate 1 with a nonmagnetic insulating protective layer 9 interposed therebetween.
しかして、一方の磁性層7と基板1の前方端と
の間には、例えば絶縁層6より成る所要の厚さを
有する非磁性ギヤツプスペーサ層11が介在され
て、前方の磁気ギヤツプgが形成される。そし
て、この磁気ギヤツプgが臨むように、基板1、
ギヤツプスペーサ層11、磁性層7、保護層9及
び保護基板10の前方面が研磨されて磁気テープ
の如き磁気記録体との接対面12が形成される。 Thus, a non-magnetic gap spacer layer 11 made of, for example, an insulating layer 6 and having a required thickness is interposed between one magnetic layer 7 and the front end of the substrate 1 to form a front magnetic gap g. Ru. Then, the substrate 1, facing this magnetic gap g,
The front surfaces of the gap spacer layer 11, the magnetic layer 7, the protective layer 9, and the protective substrate 10 are polished to form a contact surface 12 with a magnetic recording medium such as a magnetic tape.
又、磁気ギヤツプgを構成する磁性層7の後方
端と、他方の磁性層8の前方端とは、夫々MR感
磁部5上に絶縁層6を介して跨るように形成され
るも、両端間には互いに離間する不連続部13が
形成される。両磁性層7及び8の夫々後方端及び
前方端は、絶縁層6の介存によつて電気的には絶
縁されるも、不連続部13において磁気的には結
合されるようなされる。かくして、基板1−磁気
ギヤツプg−磁性層7−MR感磁部5−磁性層8
−基板1の閉磁路から成る磁気回路が形成され
る。 Furthermore, although the rear end of the magnetic layer 7 and the front end of the other magnetic layer 8 constituting the magnetic gap g are formed so as to straddle the MR magnetic sensing part 5 via the insulating layer 6, both ends are Discontinuous portions 13 spaced apart from each other are formed therebetween. The rear and front ends of both magnetic layers 7 and 8 are electrically insulated by the presence of the insulating layer 6, but are magnetically coupled at the discontinuous portion 13. Thus, substrate 1 - magnetic gap g - magnetic layer 7 - MR magnetic sensing part 5 - magnetic layer 8
- a magnetic circuit consisting of a closed magnetic path of the substrate 1 is formed;
このようなMR型磁気ヘツド部hにおいては、
その磁気記録媒体と対接する前方ギヤツプgから
の信号磁束が上述の磁気回路を流れることによつ
て、この磁気回路中のMR感磁部5の抵抗値が、
この信号磁束による外部磁界に応じて変化する。
そこで、MR感磁部5に検出電流を流し、この抵
抗値変化をこのMR感磁部5の両端の電圧変化と
して検出して、磁気媒体上の記録信号の再生を行
う。 In such an MR type magnetic head section h,
As the signal magnetic flux from the front gap g that is in contact with the magnetic recording medium flows through the above-mentioned magnetic circuit, the resistance value of the MR magnetic sensing part 5 in this magnetic circuit is
It changes depending on the external magnetic field caused by this signal magnetic flux.
Therefore, a detection current is applied to the MR magnetic sensing section 5, and this change in resistance value is detected as a voltage change across the MR magnetic sensing section 5, thereby reproducing the recorded signal on the magnetic medium.
この場合、MR感磁部5が磁気センサーとして
線形に動作し、且つ高感度とするためには、この
MR感磁部5を磁気的にバイアスする必要があ
る。このバイアス磁界は、バイアス導体3の通電
によつて発生する磁界と、MR感磁部5に通ずる
検出電流によつてそれ自体が発生する磁界とによ
つて与えられる直流磁界である。 In this case, in order for the MR magnetic sensing section 5 to operate linearly as a magnetic sensor and have high sensitivity, this
It is necessary to magnetically bias the MR magnetic sensing section 5. This bias magnetic field is a DC magnetic field provided by a magnetic field generated by energizing the bias conductor 3 and a magnetic field itself generated by the detection current flowing to the MR magnetic sensing section 5.
即ち、この種のMR型磁気ヘツド装置は、第2
図にその概略的構成を示すように、MR感磁部5
に、バイアス導体3への直流電流iBの通電によつ
て発生した磁界と、MR感磁部5への検出電流iMR
の通電によつて発生した磁界とによつてバイアス
磁界HBが与えられた状態で、前述した磁気媒体
からの信号磁界HSが与えられる。そして、この
信号磁界HSによる抵抗変化に基づくMR感磁部5
の両端電圧、すなわちA点の電位の変化を、低域
阻止用コンデンサ16を介して増幅器14に供給
して増幅して出力端子15より出力するものであ
る。 That is, this type of MR type magnetic head device has a second
As shown in the figure, the MR magnetic sensing section 5
, the magnetic field generated by the application of DC current i B to the bias conductor 3 and the detection current i MR to the MR magnetic sensing part 5
The signal magnetic field H S from the magnetic medium described above is applied while the bias magnetic field H B is applied by the magnetic field generated by the energization of the magnetic medium. Then, the MR magnetic sensing part 5 based on the resistance change due to this signal magnetic field H S
, that is, a change in the potential at point A, is supplied to an amplifier 14 via a low-frequency blocking capacitor 16, amplified, and outputted from an output terminal 15.
第3図は、このMR感磁部5に与える磁界H
と、その抵抗値Rとの関係を示す動作特性曲線図
を示し、この曲線は、磁界Hの絶対値が小さい範
囲−HBR〜+HBRにおいて上に凸の2次曲線を示
すが、磁界Hの絶対値が大となつて、この範囲か
ら外れると、MR感磁部5を構成するMR磁性薄
膜の中央部分の磁化が磁気回路方に飽和しはじ
め、2次曲線から離れてその抵抗Rは最小値Rnio
に漸近する。因みに、この抵抗Rの最大値Rnax
は、MR磁性薄膜の磁化がすべて電流方向に向い
た状態に於ける値である。そして、この動作特性
曲線における2次曲線の特性部分で、前述したバ
イアス磁界HBが与えられた状態で、第3図にお
いて符号17を付して示す磁気媒体からの信号磁
界が与えられるようにして、これに応じて同図中
符号18で示す抵抗値変化に基づく出力を得るよ
うにしている。この場合は、信号磁界の大きさが
大となるほど2次高調波歪が大となることが分
る。 FIG. 3 shows the magnetic field H applied to this MR magnetic sensing part 5.
This curve shows an upwardly convex quadratic curve in the range -H BR to +H BR where the absolute value of the magnetic field H is small. When the absolute value of becomes large and deviates from this range, the magnetization of the central part of the MR magnetic thin film constituting the MR magnetosensitive section 5 begins to saturate in the direction of the magnetic circuit, departing from the quadratic curve, and its resistance R becomes Minimum value R nio
Asymptotes to . Incidentally, the maximum value R nax of this resistance R
is the value when all the magnetization of the MR magnetic thin film is oriented in the current direction. Then, in the characteristic portion of the quadratic curve in this operating characteristic curve, the signal magnetic field from the magnetic medium shown with reference numeral 17 in FIG. 3 is applied while the bias magnetic field H B described above is applied. Accordingly, an output based on the change in resistance value indicated by reference numeral 18 in the figure is obtained. In this case, it can be seen that as the magnitude of the signal magnetic field increases, the second harmonic distortion increases.
又、上述のMR型磁気ヘツド装置における第2
図のA点の電位は、MR感磁部5の抵抗の固定分
と変化分との合成によつて決まる電位となるが、
この場合、その固定分は98%程度にも及ぶもので
あり、この抵抗の固定分の温度依存性が大きいの
で、A点における電位の温度ドリフトが大きいと
いう欠点がある。このMR感磁部5の抵抗値R
は、
R=Ro(1+α cos2θ) ……(1)
(但し、Roは抵抗の固定分、αは最大抵抗変
化率、θはMR感磁部5における電流方向と磁化
方向とのなす角度である)で表され、例えばMR
感磁部5が81Ni−19Fe(パーマロイ)合金による
厚さ250ÅのMR磁性薄膜から成る場合のαの実
測値はα=0.017程度である。このαの値は、
MR感磁部5のMR磁性薄膜の膜厚や材料によつ
て多少の相違はあるものの高々α=0.05程度であ
る。一方、この抵抗の固定分Roは
Ro=Ri(1+aΔt) ……(2)
(但し、Riは抵抗の初期値で、a温度係数、
Δtは温度変化分である)で与えられ、上述のMR
感磁部5の例における温度係数aの実測値は、a
=0.0027/deg程度である。このこと直流磁界の
検出において大きなノイズとなる。 Furthermore, the second magnetic head device in the MR type magnetic head device described above
The potential at point A in the figure is a potential determined by the combination of the fixed resistance and the variable resistance of the MR magnetic sensing section 5.
In this case, the fixed portion is about 98%, and the temperature dependence of the fixed portion of this resistance is large, so there is a drawback that the temperature drift of the potential at point A is large. The resistance value R of this MR magnetic sensing part 5
R = Ro (1 + α cos 2 θ) ... (1) (However, Ro is the fixed resistance, α is the maximum resistance change rate, and θ is the angle between the current direction and the magnetization direction in the MR magnetic sensing part 5. ), for example MR
When the magnetically sensitive part 5 is made of an MR magnetic thin film of 250 Å thick made of 81Ni-19Fe (permalloy) alloy, the actual value of α is about 0.017. The value of this α is
Although there are some differences depending on the thickness and material of the MR magnetic thin film of the MR magnetosensitive section 5, α=0.05 at most. On the other hand, the fixed portion Ro of this resistance is Ro=Ri(1+aΔt)...(2) (However, Ri is the initial value of resistance, a temperature coefficient,
Δt is the temperature change), and the above MR
The actual measured value of the temperature coefficient a in the example of the magnetically sensitive part 5 is a
= approximately 0.0027/deg. This causes a large amount of noise in the detection of a DC magnetic field.
更に、この種のMR型磁気ヘツド部による場
合、上述したようにその温度係数が大きいため
に、例えばMR感磁部5への通電、或いはバイア
ス導体3へのバイアス電流等によつて発生する熱
が、ヘツド部の磁気記録媒体との摺接によつて不
安定に放熱されてヘツドの温度が変化する場合、
大きなノイズ、所謂摺動ノイズを生ずることにな
る。 Furthermore, in the case of this type of MR type magnetic head section, since its temperature coefficient is large as described above, heat generated by, for example, energization to the MR magnetic sensing section 5 or bias current to the bias conductor 3, etc. However, if the temperature of the head changes due to unstable heat dissipation due to the sliding contact between the head and the magnetic recording medium,
A large noise, so-called sliding noise, will be generated.
又、第2図の構成における増幅器14が低イン
ピーダンス入力を呈する場合、MR感磁部5及び
コンデンサ16から成る高域通過フイルタのカツ
トオフ周波数をfoとすると、このコンデンサ16
に必要な容量Cは、RをMR感磁部5の抵抗とす
ると、
C=1/R〓p ……(3)
(ωo=2πfo)となる。今、MR感磁部5が前述
した厚さ250Åのパーマロイより成り、その長さ
が50μmとなると、その抵抗Rは120Ω程度となる
ので、fo=1kHzとすると、コンデンサ16とし
てはC=1.3μFという大きな値のものが必要とな
り、特にマルチトラツク型のデジタルオーデイオ
信号用磁気ヘツド装置を構成する場合には問題と
なるものである。 Furthermore, when the amplifier 14 in the configuration shown in FIG.
The required capacitance C is as follows, where R is the resistance of the MR magnetic sensing section 5: C=1/R〓 p (3) (ωo=2πfo). Now, if the MR magnetic sensing part 5 is made of permalloy with a thickness of 250 Å as mentioned above and its length is 50 μm, its resistance R will be about 120 Ω, so if fo = 1 kHz, the capacitor 16 should be C = 1.3 μF. This is a problem especially when constructing a multi-track type magnetic head device for digital audio signals.
又、磁気回路における透磁率、特に比較的肉薄
で断面積が小さい磁性層7及び8における透磁率
は、これができるだけ大であることが望まれ、こ
の透磁率は外部磁界が零のとき最大となるので、
上述したようなバイアス磁界を与えることは透磁
率の低下を招来する。 Furthermore, it is desired that the magnetic permeability in the magnetic circuit, particularly in the magnetic layers 7 and 8, which are relatively thin and have a small cross-sectional area, be as high as possible, and this magnetic permeability is maximum when the external magnetic field is zero. So,
Applying a bias magnetic field as described above causes a decrease in magnetic permeability.
上述の直流バイアス式MR型磁気ヘツド装置
は、有効トラツク幅が広く、狹トラツク化が容易
であるという利点がある反面、直線性が悪く、直
流再生が困難で、摺動ノイズが大きく、バルクハ
ウゼンノイズが大きく、出力のばらつきが大きい
という欠点がある。 The above-mentioned DC bias type MR type magnetic head device has the advantage of having a wide effective track width and being easily made into a narrow track, but on the other hand, it has poor linearity, difficulty in DC regeneration, large sliding noise, and Barkhausen. It has the drawbacks of high noise and wide variation in output.
その他の従来のMR型磁気ヘツド装置として
は、差動式MR型磁気ヘツド装置、バーバーポー
ル式MR型磁気ヘツド装置等が提案されている。
差動式MR型磁気ヘツド装置は、そのMR型磁気
ヘツド部に於いて、MR感磁部を一対設け、一対
のMR感磁部に対しては共通のバイアス導体によ
り同じバイアス磁界を与え、MR感磁部からは同
じ信号磁界によつて差動出力が得られるようにな
し、その差動出力を差動増幅器に供給し、その差
動増幅器より再生信号をえるようにしたものであ
る。 As other conventional MR type magnetic head devices, a differential type MR type magnetic head device, a barber pole type MR type magnetic head device, etc. have been proposed.
A differential MR type magnetic head device is provided with a pair of MR magnetic sensing parts in its MR type magnetic head part, and the same bias magnetic field is applied to the pair of MR magnetic sensing parts by a common bias conductor. Differential outputs are obtained from the magnetosensitive sections using the same signal magnetic field, the differential outputs are supplied to a differential amplifier, and a reproduced signal is obtained from the differential amplifier.
この差動式MR型磁気ヘツド装置は、直流再生
が可能(但し、オフセツトのばらつきが大きい)、
バルクハウゼンノイズが少ない、出力のばらつき
が少ない、回路としては増幅器だけで良いという
利点がある反面、摺動ノイズの軽減効果が小さ
く、有効トラツク幅が狹く、狹トラツク化が困難
であるという欠点がある。 This differential MR type magnetic head device is capable of direct current regeneration (however, the offset variation is large).
It has the advantages of low Barkhausen noise, little output variation, and requires only an amplifier as a circuit, but the disadvantages are that the effect of reducing sliding noise is small, the effective track width is narrow, and it is difficult to create a narrow track. There is.
又、バーバーポール式MR型磁気ヘツド装置
は、そのMR型磁気ヘツド部に於けるMR感磁部
に、その長手方向に斜めとなる如く、金等より成
る多数の互いに平行な導体バーを被着形成したも
のである。 In addition, the barber pole type MR type magnetic head device has a large number of mutually parallel conductor bars made of gold etc. attached to the MR magnetic sensing part of the MR type magnetic head part so as to be diagonal in the longitudinal direction. It was formed.
このバーバーポール式MR型磁気ヘツド装置
は、バルクハウゼンノイズが少なく、出力のばら
つきが少なく、回路としては増幅器だけで良いと
いう利点がある反面、直流再生が困難、摺動ノイ
ズが大きい、狹トラツク化が困難、有効トラツク
幅があまり広くないという欠点がある。 This barber-pole type MR type magnetic head device has the advantage of having low Barkhausen noise, little variation in output, and requires only an amplifier as a circuit, but it is difficult to reproduce DC, has large sliding noise, and has a small track. It has the drawbacks that it is difficult to carry out and the effective track width is not very wide.
そこで、上述した欠点を解消ないしは改善する
ために、先に本出願人は新規な磁気抵抗効果型磁
気ヘツド信号再生装置を特願昭59−38980号とし
て出願した。 Therefore, in order to eliminate or improve the above-mentioned drawbacks, the present applicant previously filed a novel magnetoresistive magnetic head signal reproducing device as Japanese Patent Application No. 59-38980.
以下に第4図を参照して、先に提案したMR型
磁気ヘツド信号再生装置の一例を説明する。この
例においては、そのMR型磁気ヘツド部hは第1
図及び第2図で説明したと同様の構成を採るもの
で、第4図において第1図及び第2図と対応する
部分に同一符号を付して重複説明を省略する。こ
の例においては、MR型磁気ヘツド部hのバイア
ス導体3に、直流バイアス電流iBに重畳して高周
波数fcのレベルの小さい交流バイアス電流iAを流
して、直流磁界に重畳して高周波磁界をMR感磁
部5に与える。ここに交流バイアス電流iAの波
形、したがつて交流磁界の波形は正弦波、矩形波
等その波形の如何を問わないものである。 An example of the previously proposed MR type magnetic head signal reproducing device will be described below with reference to FIG. In this example, the MR type magnetic head section h is the first
The configuration is similar to that explained in FIGS. 1 and 2, and in FIG. 4, parts corresponding to those in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant explanation will be omitted. In this example, a low-level AC bias current i A of high frequency fc is passed through the bias conductor 3 of the MR type magnetic head section h, superimposed on the DC bias current i B , and the high frequency magnetic field is superimposed on the DC magnetic field. is applied to the MR magnetic sensing part 5. Here, the waveform of the alternating bias current iA , and thus the waveform of the alternating magnetic field, may be a sine wave, a rectangular wave, or any other waveform.
このように、MR感磁部5に直流バイアス磁界
に重畳して交流バイアス磁界が与えられるので、
このMR感磁部5の両端間、即ち第4図における
A点には周波数fcの交流信号が取り出される。 In this way, since the AC bias magnetic field is applied to the MR magnetic sensing unit 5 superimposed on the DC bias magnetic field,
An alternating current signal of frequency fc is taken out between both ends of this MR magnetic sensing section 5, ie, at point A in FIG.
第5図Aは、直流バイアス磁界HBと、信号磁
界HSに交流バイアス磁界HAが重畳された状態で
の磁界HとMR感磁部5の抵抗Rとの関係を示し
ている。ここで交流バイアス磁界HAの変化分ΔH
が小さい時には、或る瞬間での交流バイアス磁界
の変化に対する抵抗変化の大きさΔRは、第5図
Aの2次曲線の微分の絶対値として得られ、第5
図Bに示すように、直流バイアス磁界HBと信号
磁界HSの大きさと出力たる抵抗変化分との関係
は、原理的には直線となる。従つて、第4図にお
けるA点に得られる交流信号の大きさは、直流バ
イアス磁界HBと、磁気記録媒体からの信号HSの
和の変化に応じて変化する出力となる。 FIG. 5A shows the relationship between the DC bias magnetic field H B , the magnetic field H and the resistance R of the MR magnetic sensing section 5 in a state where the AC bias magnetic field H A is superimposed on the signal magnetic field H S . Here, the change in AC bias magnetic field H A is ΔH
When ΔR is small, the magnitude of the resistance change ΔR with respect to the change in the alternating current bias magnetic field at a certain moment is obtained as the absolute value of the differential of the quadratic curve in FIG.
As shown in FIG. B, the relationship between the magnitude of the DC bias magnetic field H B and the signal magnetic field H S and the resistance change that is the output is, in principle, a straight line. Therefore, the magnitude of the AC signal obtained at point A in FIG. 4 is an output that changes depending on the change in the sum of the DC bias magnetic field H B and the signal H S from the magnetic recording medium.
そして、この出力は、第4図に示すように上述
した周波数fcの成分を通す高域通過フイルタ(前
置増幅器)19を介して整流器20に供給して整
流し、その整流出力を低域通過フイルタ21に供
給するものである。このようにすれば、磁気媒体
からの信号磁界HSに応じて信号出力がとり出せ
る。この場合、交流電流iAの周波数fcは、今例え
ば最終的に出力端子15から得る出力の帯域が0
〜100kHz必要である場合、これより十分高い周
波数、例えばfc=1MHzに選定すれば良い。この
場合高域通過フイルタ19は低域カツトオフ周波
数を100kHzより高く、且つ周波数fc、例えば1M
Hzより低い例えば500kHzに選んでおくものとす
る。しかして、高域通過フイルタの出力を前述し
たように整流器20によつて整流し後、カツトオ
フ周波数が100kHzの低域通過フイルタ21を通
すことにより、出力端子15に0〜100kHzの帯
域の信号が得られる。 Then, as shown in FIG. 4, this output is supplied to a rectifier 20 for rectification via a high-pass filter (preamplifier) 19 that passes the above-mentioned frequency fc component, and the rectified output is passed through a low-pass filter. It is supplied to the filter 21. In this way, a signal output can be obtained according to the signal magnetic field H S from the magnetic medium. In this case, the frequency fc of the alternating current iA is now, for example, the band of the output finally obtained from the output terminal 15 is 0.
If ~100kHz is required, a frequency sufficiently higher than this, for example fc = 1MHz, may be selected. In this case, the high-pass filter 19 has a low cutoff frequency higher than 100kHz and a frequency fc, for example 1M
For example, select 500kHz, which is lower than Hz. As described above, the output of the high-pass filter is rectified by the rectifier 20 and then passed through the low-pass filter 21 with a cutoff frequency of 100kHz, so that a signal in the band of 0 to 100kHz is output to the output terminal 15. can get.
このような構成による磁気ヘツド装置において
は、第6図Aに示す外部磁界(信号磁界+バイア
ス磁界)がMR感磁部5に与えられた場合、第4
図における点Bにおいては第6図Bに示すよう
に、周波数fcのキヤリアを信号で振幅変調した出
力が得られ、第6図Cに示すように出力端子15
においては、信号磁界に応じた出力がとり出され
る。 In the magnetic head device having such a configuration, when the external magnetic field (signal magnetic field + bias magnetic field) shown in FIG. 6A is applied to the MR magnetic sensing section 5, the fourth
At point B in the figure, as shown in Fig. 6B, an output is obtained by amplitude modulating the carrier of frequency fc with a signal, and as shown in Fig. 6C, an output is obtained from the output terminal 15.
In this case, an output corresponding to the signal magnetic field is extracted.
かかる磁気ヘツド信号再生装置によれば、MR
感磁部5の磁界対抵抗2次特性曲線による動作特
性の微分に相当する直線的動作特性による出力が
とり出されるので、否のない再生信号をとり出す
ことができるものである。 According to such a magnetic head signal reproducing device, MR
Since an output with a linear operating characteristic corresponding to the differentiation of the operating characteristic by the magnetic field vs. resistance quadratic characteristic curve of the magnetic sensing section 5 is extracted, a reliable reproduced signal can be extracted.
又、MR感磁部5の低抗の固定分について温度
依存性が大であつても、MR感磁部5の動作特性
曲線を微分し特性によつているので、この抵抗の
固定分の温度ドリフトによる影響を格段に低減す
ることができる。 Furthermore, even if the fixed portion of the low resistance of the MR magnetic sensing section 5 has a large temperature dependence, the operating characteristic curve of the MR magnetic sensing section 5 is differentiated and depends on the characteristics, so the temperature of the fixed portion of this resistance is The influence of drift can be significantly reduced.
更に、上述したようにMR感磁部5の抵抗固定
分の温度依存性による影響を排除したことによつ
て、MR型磁気ヘツド部の前述した磁気媒体との
摺動によるノイズの発生を少なくすることができ
る。 Furthermore, by eliminating the influence of the temperature dependence of the fixed resistance of the MR magnetic sensing section 5 as described above, the generation of noise due to the sliding of the MR type magnetic head section with the magnetic medium described above is reduced. be able to.
又、かかる磁気ヘツド装置におけるコンデンサ
16は、周波数fcの成分を通過させれば良いか
ら、例えばfc=500kHzとすると、このコンデンサ
16の容量Cは、C=2600pFで良いことになる。
そして、この周波数fcを更に上げれば、この容量
Cは更に小さくできるものである。 Further, since the capacitor 16 in such a magnetic head device only needs to pass a component of the frequency fc, for example, if fc=500kHz, the capacitance C of the capacitor 16 can be C=2600pF.
If this frequency fc is further increased, this capacitance C can be further reduced.
第7図は先に提案したMR型磁気ヘツド信号再
生装置の他の例を示し、第7図において第4図と
対応する部分には同一符号を付して重複説明を省
略する。この場合は、バイアス導体3には、直流
バイアス電流は流されずに、交流バイアス電流iA
のみを流すようにする。この動作を模式的に示し
たのが第8図である。この図において、実線の曲
線が、実際のMR感磁部の磁界対抵抗の動作特性
曲線であるが、この特性の2次曲線部分を外挿す
ると破線図示のようになり、これにより最小抵抗
値Rnioに対応する磁界を+Ho及び−Hoとする。
この例では信号磁界HSに重畳して交流バイアス
磁界HAが与えられ、信号磁界の極性と大きさと
に対応し且つ交流バイアス磁界に応じたMR感磁
部5の低抗変化が得られる。 FIG. 7 shows another example of the previously proposed MR type magnetic head signal reproducing device. In FIG. 7, parts corresponding to those in FIG. 4 are given the same reference numerals, and redundant explanation will be omitted. In this case, no DC bias current is passed through the bias conductor 3, but an AC bias current i A
Make sure that only the water is flowing. FIG. 8 schematically shows this operation. In this figure, the solid line curve is the operating characteristic curve of the magnetic field versus resistance of the actual MR magnetic sensing part, but if you extrapolate the quadratic curve part of this characteristic, it will become as shown by the broken line, and this will result in the minimum resistance value Let the magnetic fields corresponding to R nio be +Ho and -Ho.
In this example, an alternating current bias magnetic field H A is applied superimposed on the signal magnetic field H S to obtain a low resistance change of the MR magnetic sensing section 5 that corresponds to the polarity and magnitude of the signal magnetic field and corresponds to the alternating current bias magnetic field.
この場合の動作特性曲線は2次曲線で、この
MR感磁部5の抵抗値Rは、次のように表され
る。 The operating characteristic curve in this case is a quadratic curve.
The resistance value R of the MR magnetic sensing part 5 is expressed as follows.
R=Rnax−ΔRnax(H/Ho)2 ……(4)
ここに、ΔRnaxはΔRnax=ΔRnax−ΔRnaoで与
えられる。MR感磁部5に与えられる磁界Hは、
次式に示すようにバイアス磁界HA(t)と、信号磁
界HS(t)との和で表される。 R = R nax - ΔR nax (H/Ho) 2 ... (4) Here, ΔR nax is given by ΔR nax = ΔR nax - ΔR nao . The magnetic field H given to the MR magnetic sensing part 5 is
As shown in the following equation, it is expressed as the sum of the bias magnetic field H A (t) and the signal magnetic field H S (t).
H(t)=HA(t)+HS(t) ……(5)
ここに磁界HA(t)は、バイアス導3に流される
電流によつて得られ、
HA(t)=HAO・sin(ωCt) ……(6)
の如く表される。但し、角周波数ωCは次式のよ
うに表される。 H(t)=H A (t)+H S (t) ...(5) Here, the magnetic field H A (t) is obtained by the current flowing through the bias conductor 3, and H A (t)=H AO・sin(ω C t) ...(6) It is expressed as follows. However, the angular frequency ω C is expressed as the following equation.
ωC=2πfc ……(7)
MR感磁部5の出力電圧V(t)は、MR検出電流
をIとすると、
V(t)=I・R ……(8)
であり、上記(4)、(5)、(6)式から次のように表され
る。 ω C =2πfc...(7) The output voltage V(t) of the MR magnetic sensing section 5 is as follows, where I is the MR detection current, V(t)=I・R...(8), and the above (4) ), (5), and (6), it can be expressed as follows.
V(t)=I・Rnax−I・ΔRnax/Ho2×〔HAO 2・si
n2ωC+2HAO・HS(t)×sinωC+{HS(t)}2〕……(9)
次に、この出力電圧V(t)と、交流バイアス磁界
HAと同相同期周波数の信号、例えばsin(ωC t)
を乗算器22によつて乗算する。その出力Vz(t)
は、次式のように表される。 V(t)=I・R nax −I・ΔR nax /Ho 2 × [H AO 2・si
n 2 ω C +2H AO・H S (t)×sinω C + {H S (t)} 2 ]...(9) Next, this output voltage V(t) and the AC bias magnetic field
Signal with in-phase synchronous frequency with H A , e.g. sin(ω C t)
is multiplied by the multiplier 22. Its output Vz(t)
is expressed as the following equation.
Vz(t)=V(t)・sin(ωC t)=I・Rnax・sin
(ωCt)−I・ΔRnax/Ho2・〔HAO 2・sin2(ωC t
)
+2HAO・HS(t)・sin(ωCt)+{HS(t)}2]
・sin(ωC t)……(10)
そして、これを低域通過フイルタ21に通ずる
と、次(10)においてωC成分を有する項
I・Rnax・sin(ωC t)=0 ……(11)
HAO 2・sin2(ωC t)=HAO/2{sin(ωt)−cos
(2ωt)×sin(ωt)}=0……(12)
2HAO・HS(t)・sin2(ωt)=HAO・HS(t)・{1−co
s(2ωt)}=HAO・HS(t)……(R)
{HS(t)}2・sin(ωt)=0 (14)
となる。従つて、端子15で得られる出力電圧
Vo(t)は、
Vo(t)=−I・ΔRnax×HAO・HS(t)/Ho2 (15)
となり、信号磁界HS(t)に比例する電圧が得られ
る。尚、この場合、乗算器22への入力に、信号
磁界HS(t)が含まれていても、出力に混入する虞
は少ないので、高域通過フイルタ19を省略する
こともできる。 Vz(t)=V(t)・sin(ω C t)=I・R nax・sin
(ω C t)−I・ΔR nax /Ho 2・[H AO 2・sin 2 (ω C t
) +2H AO・H S (t)・sin (ω C t) + {H S (t)} 2 ]
・sin(ω C t)...(10) Then, when this is passed through the low-pass filter 21, the term having an ω C component in the following (10) I・R nax・sin(ω C t)=0... …(11) H AO 2・sin 2 (ω C t)=H AO /2{sin(ωt)−cos
(2ωt)×sin(ωt)}=0……(12) 2H AO・H S (t)・sin 2 (ωt)=H AO・H S (t)・{1−co
s(2ωt)}=H AO・H S (t)……(R) {H S (t)} 2・sin(ωt)=0 (14). Therefore, the output voltage available at terminal 15
Vo(t) becomes Vo(t)=−I·ΔR nax ×H AO ·H S (t)/Ho 2 (15), and a voltage proportional to the signal magnetic field H S (t) is obtained. In this case, even if the signal magnetic field H S (t) is included in the input to the multiplier 22, there is little possibility that it will be mixed into the output, so the high-pass filter 19 can be omitted.
かるMR型磁気ヘツド信号再生装置によれば、
外部磁界の極性に応じた出力をとり出せることに
なり、先に例と同様の利点に加えて、ダイナミツ
クレンジが大となるという利点がある。また、こ
の場合、磁気的バイアスを交流成分のみとするこ
とによつて直流バイアスによる磁気回路の透磁率
低下を回避できる利益もある。 According to the MR type magnetic head signal reproducing device,
It is possible to extract an output according to the polarity of the external magnetic field, and in addition to the same advantages as in the previous example, there is an advantage that the dynamic range is increased. Further, in this case, there is an advantage that by using only the alternating current component as the magnetic bias, it is possible to avoid a decrease in the magnetic permeability of the magnetic circuit due to the direct current bias.
先に提案したMR型磁気ヘツド信号再生装置に
よれば、直線性にすぐれた歪の小さい出力を得る
ことができ、直流再生が可能で、温度ドリフトが
小さく、摺動ノイズが改善され、有効トラツク幅
が大で、挾トラツク化可能であり、更にコンデン
サの容量を小さくできるなどの利益を有すると共
に、更に第7図で説明した構成とするときは、ダ
イナミツクレンジを大きくとることができ、また
或る場合は磁気回路の透磁率低下を回避すること
もできる。 The previously proposed MR type magnetic head signal regenerator can obtain output with excellent linearity and low distortion, is capable of direct current regeneration, has small temperature drift, improves sliding noise, and has effective track performance. It has the advantage that it has a large width, can be made into a sandwich track, and can further reduce the capacitance of the capacitor, and when it has the configuration explained in FIG. 7, it can have a large dynamic range. In some cases it is also possible to avoid a decrease in permeability of the magnetic circuit.
ところで、例えば第7図のMR型磁気ヘツド装
置の出力端子15の出力の周波数特性は、磁気テ
ープの走行速度が4.8cm/secの場合、第9図に曲
線aとして示す如く、周波数が1kHz付近でレス
ボンスが最大で、周波数がこれより漸次大又は小
になるにつれて、次第にレスボンスが減少する特
性を有している。上述した他の種々の方式のMR
型磁気ヘツド装置に於いても、出力の周波数特性
に略同様な傾向が見られる。 By the way, for example, the frequency characteristic of the output from the output terminal 15 of the MR type magnetic head device shown in FIG. 7 is such that when the running speed of the magnetic tape is 4.8 cm/sec, the frequency is around 1 kHz, as shown by curve a in FIG. It has a characteristic that the response is maximum at , and as the frequency becomes gradually larger or smaller, the response gradually decreases. MR of various other methods mentioned above
Similar trends can be seen in the output frequency characteristics of the type magnetic head device.
そこで、MR型磁気ヘツド信号再生装置の出力
の周波数特性を平坦にするには、第9図に曲線b
にて示す如く、曲線aに対し逆の周波数特性をす
るイコライザ回路を出力側に縦続接続することが
考えられる。 Therefore, in order to flatten the frequency characteristics of the output of the MR type magnetic head signal reproducing device, curve b is shown in Fig. 9.
It is conceivable to connect equalizer circuits having frequency characteristics opposite to curve a in cascade on the output side, as shown in FIG.
ところが、MR型磁気ヘツド信号再生装置で
は、出力レベルが大になるにつれて歪が増加し、
出力レベルが小になるにつれてS/Nが低下する
という特性を呈する。従つて、MR型磁気ヘツド
装置の出力側に上述の如きイコライザ回路を縦続
接続したのでは、出力のレスポンスが最大となる
周波数付近の歪を減少させようとすると、高域の
S/Nが低下するし、高域のS/Nを増大させよ
うとすると、出力のレスポンスが最大となる周波
数付近の歪が増加してしまう。 However, in MR type magnetic head signal reproducing devices, distortion increases as the output level increases.
It exhibits a characteristic that the S/N decreases as the output level decreases. Therefore, if an equalizer circuit like the one described above is connected in cascade on the output side of an MR type magnetic head device, the high-frequency S/N will decrease when trying to reduce distortion near the frequency where the output response is maximum. However, if an attempt is made to increase the S/N ratio in the high range, the distortion near the frequency where the output response is maximum will increase.
発明の目的
かかる点に鑑み、本発明は出力の周波数特性が
平坦になると共に、歪が減少し、S/Nが増大す
る磁気抵抗効果型磁気ヘツド信号再生装置を提案
しようとするものである。OBJECTS OF THE INVENTION In view of these points, the present invention proposes a magnetoresistive magnetic head signal reproducing device in which the output frequency characteristics are flattened, distortion is reduced, and S/N is increased.
発明の概要
本発明による磁気抵抗効果型磁気ヘツド信号再
生装置は、信号磁界の与えられる磁気抵抗効果感
磁部と、磁気抵抗効果感磁部の出力から信号磁界
に応じた信号出力を取出す信号取出し手段と、イ
コライザ回路と、信号取出し手段からの信号出力
をイコライザ回路に供給して得たイコライザ出力
に応じた負帰還磁界を磁気抵抗効果感磁部に与え
る負帰還磁界発生手段とを有し、信号出力の周波
数特性を平坦にするようにしたことを特徴とする
ものである。Summary of the Invention The magnetoresistive magnetic head signal reproducing device according to the present invention includes a magnetoresistive magnetic sensing section to which a signal magnetic field is applied, and a signal extractor for extracting a signal output according to the signal magnetic field from the output of the magnetoresistive magnetic sensing section. means, an equalizer circuit, and a negative feedback magnetic field generating means for supplying the signal output from the signal extraction means to the equalizer circuit and applying a negative feedback magnetic field to the magnetoresistive magnetic sensing part according to the equalizer output obtained, This is characterized in that the frequency characteristics of the signal output are made flat.
かかる本発明によれば、出力の周波数特性が平
坦になると共に、歪が減少し、S/Nが増大する
磁気抵抗効果型磁気ヘツド信号再生装置を得るこ
とができる。 According to the present invention, it is possible to obtain a magnetoresistive magnetic head signal reproducing device in which the frequency characteristics of the output are flattened, distortion is reduced, and S/N is increased.
実施例
以下に、第10図を参照して、本発明の一実施
例を説明する。この実施例は、第7図の磁気抵抗
効果型磁気ヘツド信号再生装置に本発明を適用し
た場合で、第10図に於いて第7図と対応する部
分には同一符号を付して重複説明を省略する。即
ち、低域通過フイルタ21により信号出力を第9
図の曲線aの周波数特性を有するイコライザ回路
23に供給し、これよりの電流をバイアス導体3
に流して、このバイアス導体3(別個のバイアス
導体を設けて、これに電流を流すこともできる)
から負帰還磁界HFBを発生させて、MR感磁部5
に与えるようにする。Embodiment An embodiment of the present invention will be described below with reference to FIG. This embodiment is a case in which the present invention is applied to the magnetoresistive magnetic head signal reproducing device shown in FIG. 7. In FIG. 10, parts corresponding to those in FIG. omitted. That is, the low-pass filter 21 converts the signal output to the ninth
The current is supplied to the equalizer circuit 23 having the frequency characteristic of curve a in the figure, and the current from this is applied to the bias conductor 3.
and this bias conductor 3 (a separate bias conductor can also be provided to carry current through it)
A negative feedback magnetic field H FB is generated from the MR magnetic sensing part 5.
Try to give it to
かかるイコライザ回路23の回路例を第13図
に示す。24,25は夫々入出端子、31は演算
増幅器で、入力端子24を、抵抗器26及びコン
デンサ27の直列回路、抵抗器28及びコンデン
サ29の直列回路並びに抵抗器30の並列回路を
通じて演算増幅器31の反転入力端子に接続し、
その非反転入力端子を接地する。出力端子25及
び演算増幅器31の反転入力端子間に、抵抗器3
2及びコンデンサ33の直列回路並びに抵抗器3
4の並列回路を接続する。尚、回路素子の定数例
は第13図に図示の通りであるが、磁気テープの
走行速度、その磁性材料、磁気ヘツド装置の方式
の如何によつて異なる。 A circuit example of such an equalizer circuit 23 is shown in FIG. 24 and 25 are input/output terminals, respectively, and 31 is an operational amplifier. Connect to the inverting input terminal,
Ground its non-inverting input terminal. A resistor 3 is connected between the output terminal 25 and the inverting input terminal of the operational amplifier 31.
2 and a series circuit of capacitor 33 and resistor 3
Connect 4 parallel circuits. Examples of the constants of the circuit elements are shown in FIG. 13, but they vary depending on the running speed of the magnetic tape, its magnetic material, and the type of magnetic head device.
尚、本発明を上述の第4図及び第2図の方式の
MR型磁気ヘツド信号再生装置に適用した場合
を、夫々第11図及び第12図に示す。この場合
も第10図と同様に、低域通過フイルタ21又は
増幅器14よりの信号出力を第9図の曲線aの周
波数特性を有するイコライザ回路23に供給し、
これよりの電流をバイアス導体3に流して、この
バイアス導体3から負帰還磁界HFBを発生させ
て、MR感磁部5に与えるようにする。その他差
動式、バーバーポール式、無バイアス式MR型磁
気ヘツド装置にも本発明を適用できる。尚、これ
らの詳細説明は省略する。 It should be noted that the present invention is not limited to the methods shown in FIGS. 4 and 2 described above.
The case of application to an MR type magnetic head signal reproducing device is shown in FIGS. 11 and 12, respectively. In this case as well, as in FIG. 10, the signal output from the low-pass filter 21 or the amplifier 14 is supplied to the equalizer circuit 23 having the frequency characteristic of curve a in FIG.
This current is passed through the bias conductor 3 to generate a negative feedback magnetic field H FB from the bias conductor 3 and apply it to the MR magnetic sensing section 5 . The present invention can also be applied to other differential type, barber pole type, and non-bias type MR type magnetic head devices. Note that detailed explanations of these will be omitted.
上述せる本発明によれば、出力の周波数特性が
平坦になると共に、歪が減少し、S/Nが増大す
る磁気抵抗効果型磁気ヘツド信号再生装置を得る
ことができる。 According to the present invention described above, it is possible to obtain a magnetoresistive magnetic head signal reproducing device in which the frequency characteristics of the output are flattened, distortion is reduced, and S/N is increased.
尚、再生信号はデジタルオーデイオ信号に限ら
ず、デジタルビデオ信号、アナログオーデイオ/
ビデオ信号等も可能である。 Note that the playback signal is not limited to digital audio signals, but also digital video signals, analog audio/
Video signals etc. are also possible.
発明の効果
上述せる本発明によれば、出力の周波数特性が
平坦になると共に、歪が減少し、S/Nが増大す
る磁気抵抗効果型磁気ヘツド信号再生装置を得る
ことができる。Effects of the Invention According to the present invention described above, it is possible to obtain a magnetoresistive magnetic head signal reproducing device in which the frequency characteristics of the output are flattened, distortion is reduced, and S/N is increased.
第1図は本発明の説明に供する磁気抵抗効果型
磁気ヘツド信号再生装置の略線的拡大断面図、第
2図は従来の磁気抵抗効果型磁気ヘツド信号再生
装置の構成図、第3図は磁気抵抗効果型感磁部の
特性曲線図、第4図は先に提案した磁気抵抗効果
型磁気ヘツド信号再生装置の一例の構成図、第5
図はその動作特性曲線図、第6図はその動作の説
明に供する波形図、第7図は先に提案した磁気抵
抗効果型磁気ヘツド信号再生装置の他の例の構成
図、第8図はその説明に供する特性曲線図、第9
図は本発明の説明に供する特性曲線図、第10図
〜第12図は本発明による磁気抵抗効果型磁気ヘ
ツド信号再生装置の各実施例を示す構成図、第1
3図はそのイコライザ回路の具体例を示す回路図
である。
hは磁気ヘツド部、1は基板、3はバイアス導
体、5は磁気抵抗効果感磁部、7及び8は磁性
層、19は高域通過フイルタ、20は整流器、2
1は低域通過フイルタ、22は乗算器、23はイ
コライザ回路である。
FIG. 1 is a schematic enlarged sectional view of a magnetoresistive magnetic head signal reproducing device used to explain the present invention, FIG. 2 is a block diagram of a conventional magnetoresistive magnetic head signal reproducing device, and FIG. Figure 4 is a characteristic curve diagram of the magnetoresistive magnetic sensing part; Figure 4 is a configuration diagram of an example of the previously proposed magnetoresistive magnetic head signal reproducing device;
Fig. 6 is a waveform diagram for explaining its operation, Fig. 7 is a configuration diagram of another example of the previously proposed magnetoresistive magnetic head signal reproducing device, and Fig. 8 is a diagram of its operating characteristic curve. Characteristic curve diagram for explanation, No. 9
10 is a characteristic curve diagram for explaining the present invention, FIGS.
FIG. 3 is a circuit diagram showing a specific example of the equalizer circuit. h is a magnetic head part, 1 is a substrate, 3 is a bias conductor, 5 is a magnetoresistive effect magnetic sensing part, 7 and 8 are magnetic layers, 19 is a high-pass filter, 20 is a rectifier, 2
1 is a low-pass filter, 22 is a multiplier, and 23 is an equalizer circuit.
Claims (1)
と、該磁気抵抗効果感磁手段の出力から上記信号
磁界に応じた信号出力を取出す信号取出し手段
と、イコライザ回路と、上記信号取出し手段から
の信号出力を上記イコライザ回路に供給して得た
イコライザ出力に応じた負帰還磁界を上記磁気抵
抗効果感磁手段に与える負帰還磁界発生手段とを
有し、上記信号出力の周波数特性を平坦にするよ
うにしたことを特徴とする磁気抵抗効果型磁気ヘ
ツド信号再生装置。1. Magnetoresistive magnetic sensing means to which a signal magnetic field is applied, signal extraction means for extracting a signal output according to the signal magnetic field from the output of the magnetoresistive magnetic sensing means, an equalizer circuit, and a signal from the signal extraction means. negative feedback magnetic field generating means for supplying the output to the equalizer circuit and applying a negative feedback magnetic field to the magnetoresistive magnetic sensing means according to the equalizer output obtained, so as to flatten the frequency characteristics of the signal output. A magnetoresistive magnetic head signal reproducing device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11950184A JPS60263301A (en) | 1984-06-11 | 1984-06-11 | Magneto-resistance effect type magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11950184A JPS60263301A (en) | 1984-06-11 | 1984-06-11 | Magneto-resistance effect type magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60263301A JPS60263301A (en) | 1985-12-26 |
JPH0532803B2 true JPH0532803B2 (en) | 1993-05-18 |
Family
ID=14762823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11950184A Granted JPS60263301A (en) | 1984-06-11 | 1984-06-11 | Magneto-resistance effect type magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60263301A (en) |
-
1984
- 1984-06-11 JP JP11950184A patent/JPS60263301A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60263301A (en) | 1985-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4703378A (en) | Magnetic transducer head utilizing magnetoresistance effect | |
JP3021042B2 (en) | Short-circuit double-element magnetoresistive read head for amplifying high-density signals | |
US5818685A (en) | CIP GMR sensor coupled to biasing magnet with spacer therebetween | |
JPS589484B2 (en) | magnetic reading head | |
US4122505A (en) | Magneto-resistive reading head with suppression of thermal noise | |
JPH0473201B2 (en) | ||
JPS60182503A (en) | Magneto-resistance effect type magnetic head | |
JPH0542049B2 (en) | ||
JPH0532803B2 (en) | ||
JP3639407B2 (en) | Magnetic head | |
JPH0532804B2 (en) | ||
JPH0532805B2 (en) | ||
JP3270174B2 (en) | Magnetoresistive head and magnetic disk drive | |
JPH0565922B2 (en) | ||
JPH0542730B2 (en) | ||
JPS60263310A (en) | Magneto-resistance effect type magnetic head device | |
JPH0376536B2 (en) | ||
JP2583851B2 (en) | Magnetoresistive magnetic head | |
JP2855723B2 (en) | Magnetic tape playback device | |
JPS6259269B2 (en) | ||
JPS631548B2 (en) | ||
JPH10149514A (en) | Magneto-resistance effect type magnetic head | |
JPH03171410A (en) | Thin film magnetic head for recording and reproducing | |
JPH0378106A (en) | Magneto-resistance effect element and magnetic recording and reproducing device using the same | |
JPH05266435A (en) | Thin film magnetic head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |