JPS60263310A - Magneto-resistance effect type magnetic head device - Google Patents

Magneto-resistance effect type magnetic head device

Info

Publication number
JPS60263310A
JPS60263310A JP11762584A JP11762584A JPS60263310A JP S60263310 A JPS60263310 A JP S60263310A JP 11762584 A JP11762584 A JP 11762584A JP 11762584 A JP11762584 A JP 11762584A JP S60263310 A JPS60263310 A JP S60263310A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
signal
output
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11762584A
Other languages
Japanese (ja)
Inventor
Shigemi Imakoshi
今越 茂美
Hideo Suyama
英夫 陶山
Yutaka Hayata
裕 早田
Munekatsu Fukuyama
宗克 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11762584A priority Critical patent/JPS60263310A/en
Priority to US06/705,706 priority patent/US4703378A/en
Priority to CA000475257A priority patent/CA1235482A/en
Priority to DE3587992T priority patent/DE3587992T2/en
Priority to DE3588065T priority patent/DE3588065T2/en
Priority to EP90123594A priority patent/EP0421489B1/en
Priority to EP93100342A priority patent/EP0544642B1/en
Priority to EP85102282A priority patent/EP0154307B1/en
Priority to DE8585102282T priority patent/DE3585959D1/en
Publication of JPS60263310A publication Critical patent/JPS60263310A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/027Analogue recording
    • G11B5/035Equalising
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • G11B2005/0013Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation
    • G11B2005/0016Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation of magnetoresistive transducers

Abstract

PURPOSE:To improve the rectilinearity and to increase a dynamic range by extracting a signal output corresponding to a signal magnetic field out of the output of a magneto-resistance effect type magnetism-sensitive part and applying a negative feedback magnetic field corresponding to said signal output to said magnetism-sensitive part to produce a negative feedback magnetic field. CONSTITUTION:The signal output given from an LPF21 is supplied to a buffer amplifier 23, and a current iFB is flowed to a bias conductor 3 from the amplifier 23. Thus the conductor 3 produces a negative feedback magnetic field HFB and gives it to an MR magnetism-sensitive part 5. As a result, the rectilinearity is improved more and the distortions are reduced less. This reduces the Barkhausen noises and increases a dynamic range. Thus the variance of output can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気抵抗効果型磁気ヘッド装置に係わる。[Detailed description of the invention] Industrial applications The present invention relates to a magnetoresistive magnetic head device.

背景技術とその問題点 先ず、第1図を参照して、従来の磁気抵抗効果(以下M
Rという)型磁気ヘッド装置のヘッド部りの構造の一例
を説明するに、例えばNi−Zn系フェライト、Mn−
Zn系フェライト等より成る磁性基板(1)上に(この
基板(11が導電性を有する場合には、これの上に被着
されたSiO2等の絶縁層(2)を介して)、後述する
MR感磁部(5)に対してバイアス磁界を与えるための
バイアス磁界発生用の電流通路となる帯状の導電膜より
成るバイアス導体+31が被着され、このバイアス導体
(3)上に、絶縁層(4)を介して例えば、Nl −F
e系合金、或いはNi−Co系合金等のMR磁性薄膜か
ら成るMR感磁部(5)が配される。そして、このMR
感磁部(5)上に、薄い絶縁層(6)を介して、各一端
が跨りバイアス導体(3)及びMR感磁部(5)を横切
る方向に延在して夫々磁気回路の一部を構成する磁気コ
アとしての、例えばM。
BACKGROUND TECHNOLOGY AND PROBLEMS First, with reference to FIG.
To explain an example of the structure of the head portion of a magnetic head device of type R), for example, Ni-Zn ferrite, Mn-
On a magnetic substrate (1) made of Zn-based ferrite or the like (via an insulating layer (2) of SiO2 etc. deposited on this substrate (if the substrate (11) has conductivity), as will be described later. A bias conductor +31 made of a strip-shaped conductive film that serves as a current path for generating a bias magnetic field to apply a bias magnetic field to the MR magnetic sensing part (5) is deposited, and an insulating layer is placed on the bias conductor (3). For example, Nl −F via (4)
An MR magnetic sensing part (5) made of an MR magnetic thin film such as an e-based alloy or a Ni-Co-based alloy is arranged. And this MR
A thin insulating layer (6) is placed on the magnetically sensitive part (5), with one end of each extending across the bias conductor (3) and the MR magnetically sensitive part (5), each forming a part of a magnetic circuit. For example, M as a magnetic core constituting the.

パーマロイから成る対の磁性層(7)及び(8)が被着
される。基板11)上には、非磁性の絶縁性保護層(9
)を介して、保護基@olが接合される。
A pair of magnetic layers (7) and (8) of permalloy is deposited. A non-magnetic insulating protective layer (9) is formed on the substrate (11).
), the protecting group @ol is attached.

しかして、一方の磁性層(7)と基板(11の前方端と
の間には、例えば絶縁層(6)より成る所要の厚さを有
する非磁性ギャップスペーサ層(11)が介在されて、
前方の磁気ギャップgが形成される。そして、この磁気
ギャップgが臨むように、基板+11、ギャップスペー
サ層(11) 、磁性層f71、保護層(9)及び保護
基板(10)の前方面が研磨されて磁気テープの如き磁
気記録媒体との対接面(12)が形成される。
Therefore, a non-magnetic gap spacer layer (11) made of, for example, an insulating layer (6) and having a required thickness is interposed between one of the magnetic layers (7) and the front end of the substrate (11).
A front magnetic gap g is formed. Then, the front surfaces of the substrate +11, the gap spacer layer (11), the magnetic layer f71, the protective layer (9), and the protective substrate (10) are polished so that the magnetic gap g faces the magnetic recording medium such as a magnetic tape. A facing surface (12) is formed.

又、磁気ギャップgを構成する磁性層(7)の後方端と
、他方の磁性層(8)の前方端とは、夫々MR感磁部(
5)上に絶縁層(6)を介して跨るように形成されるも
、両端間には互いに離間する不連続部(13)が形成さ
れる。陶磁性層(7)及び(8)の夫々後方端及び前号
端は、絶縁層(6)の介在によって電気的には絶縁され
るも、不連続部(13)において磁気的には結合される
ようなされる。かくして、基板(1)−磁気ギャソプg
−磁性層(71−M R感磁部(5)−磁性層(8)一
基板+11の閉磁路から成る磁気回路が形成される。
Further, the rear end of the magnetic layer (7) constituting the magnetic gap g and the front end of the other magnetic layer (8) are connected to the MR magnetic sensing portion (
5) A discontinuous portion (13) is formed between both ends of the discontinuous portion (13), which is formed so as to straddle the insulating layer (6). Although the rear end and the front end of the ceramic layers (7) and (8) are electrically insulated by the interposition of the insulating layer (6), they are not magnetically coupled at the discontinuous portion (13). It will be done like that. Thus, substrate (1) - magnetic gasop g
- Magnetic layer (71-MR) A magnetic circuit consisting of a closed magnetic path of R magnetic sensing part (5) - magnetic layer (8), one substrate + 11 is formed.

このようなMR型磁気ヘッド部りにおいては、その磁気
記録媒体と対接する前方ギャップgからの信号磁束が上
述の磁気回路を流れることによって、この磁気回路中の
MR感磁部(5)の抵抗値が、書 この信号磁束による
外部磁界に応じて変化する。
In such an MR type magnetic head section, the signal magnetic flux from the front gap g that is in contact with the magnetic recording medium flows through the above-mentioned magnetic circuit, thereby increasing the resistance of the MR magnetic sensing section (5) in this magnetic circuit. The value changes depending on the external magnetic field due to the signal magnetic flux.

そこで、MR感磁部(5)に検出電流を流し、この抵抗
値変化をこのMR感磁部(5)の両端の電圧変化として
検出して、磁気媒体上の記録信号の再生を行う。
Therefore, a detection current is passed through the MR magnetic sensing section (5), and this change in resistance value is detected as a voltage change across the MR magnetic sensing section (5), thereby reproducing the recorded signal on the magnetic medium.

この場合、MR感磁部(5)が磁気センサーとして線形
に動作し、且つ高感度とするためには、このMR感磁部
(5)を磁気的にバイアスする必要がある。
In this case, in order for the MR magnetic sensing section (5) to operate linearly as a magnetic sensor and to have high sensitivity, it is necessary to magnetically bias the MR magnetic sensing section (5).

このバイアス磁界は、バイアス導体(3)への通電によ
って発生する磁界と、MR感磁部(5)に通ずる検出電
流によってそれ自体が発生する磁界とによって与えられ
る直流磁界である。
This bias magnetic field is a DC magnetic field given by a magnetic field generated by energizing the bias conductor (3) and a magnetic field itself generated by the detection current flowing to the MR magnetic sensing section (5).

即ち、この種のMR型磁気ヘッド装置は、第2図にその
概略的構成を示すように、MR感磁部(5)に、バイア
ス導体(3)への直流電流IBの通電によって発生した
磁界と、MR感磁部(5)への検出電流IMHの通電に
よって発生した磁界とによってバイアス磁界Heが与え
られた状態で、前述した磁気媒体からの信号磁界H5が
与えられる。そして、この信号磁界H3による抵抗変化
に基づ<MR感磁部(5)の両端電圧、すなわちA点の
電位の変化を、低域阻止用コンデンサ(16)を介して
増幅器(14)に供給して増幅して出力端子(15)よ
り出力するものである。
That is, this type of MR type magnetic head device, as shown in its schematic configuration in FIG. The signal magnetic field H5 from the magnetic medium described above is applied in a state where a bias magnetic field He is applied by the magnetic field generated by applying the detection current IMH to the MR magnetic sensing part (5). Based on the resistance change caused by this signal magnetic field H3, the voltage across the MR magnetic sensing section (5), that is, the change in the potential at point A, is supplied to the amplifier (14) via the low-frequency blocking capacitor (16). The signal is then amplified and output from the output terminal (15).

第3図は、このMR感磁部(5)に与える磁界Hと、そ
の抵抗値Rとの関係を示す動作特性曲線図を示し、この
曲線は、磁界Hの絶対値が小さい範囲−HBR〜十HB
Hにおいて上に凸の2次曲線を示すが、磁界Hの絶対値
が大となって、この範囲から外れると、MR感磁部(5
)を構成するMR磁性薄膜の中央部分の磁化が磁気回路
方向に飽和しはじめ、2次曲線から離れてその抵抗Rは
最小値Rwinに漸近する。因みに、この抵抗Rの最大
値Rwaxは、MR磁性薄膜の磁化がすべて電流方向に
向いた状態に於ける値である。そして、この動作特性曲
線における2次曲線の特性部分で、前述したバイアス磁
界HBが与えられた状態で、第3図において符号(17
)を付して示す磁気媒体からの信号磁界が与えられるよ
うにして、これに応じて同図中符号(18)で示す抵抗
値変化に基づく出力を得るようにしている。この場合は
、信号磁界の大きさが大となるほど2次高調波歪が大と
なることが分る。
FIG. 3 shows an operating characteristic curve diagram showing the relationship between the magnetic field H applied to this MR magnetic sensing part (5) and its resistance value R, and this curve shows the range where the absolute value of the magnetic field H is small -HBR~ 10HB
H shows an upwardly convex quadratic curve, but when the absolute value of the magnetic field H becomes large and deviates from this range, the MR magnetic sensing part (5
) begins to saturate in the direction of the magnetic circuit, and its resistance R asymptotically approaches the minimum value Rwin away from the quadratic curve. Incidentally, the maximum value Rwax of this resistance R is a value in a state where all the magnetization of the MR magnetic thin film is oriented in the current direction. Then, in the characteristic part of the quadratic curve in this operating characteristic curve, when the bias magnetic field HB mentioned above is applied, the reference numeral (17) in FIG.
) is applied from the magnetic medium, and in response to this, an output based on a change in resistance value, indicated by reference numeral (18) in the figure, is obtained. In this case, it can be seen that as the magnitude of the signal magnetic field increases, the second harmonic distortion increases.

又、上述のMR型磁気ヘッド装置における第2図のA点
の電位は、MR感磁部(5)の抵抗の固定骨と変化分と
の合成によって決まる電位となるが、この場合、その固
定骨は98%程度にも及ぶものであり、この抵抗の固定
骨の温度依存性が大きいので、A点における電位の温度
ドリフトが大きいという欠点がある。このMR感磁部(
5)の抵抗値Rは、R=Ro (1+a cos2θ)
 −−−−(1)(但し、Roは抵抗の固定骨、αは最
大抵抗変化率、θはMR感磁部(5)における電流方向
と磁化方向とのなす角度である)で表され、例えばMR
感磁部(5)が81Ni −19Pe (パーマロイ)
合金による厚さ250人のMR磁性−薄膜から成る場合
のαの実測値はα= 0.017程度である。このαの
値は、MR感磁部(5)のMR磁性薄膜の膜厚や材料に
よって多少の相違はあるものの高々α= 0.05程度
である。
In addition, the potential at point A in FIG. 2 in the above-mentioned MR magnetic head device is determined by the combination of the fixed bone and the variation of the resistance of the MR magnetic sensing part (5). The resistance of the fixed bone is approximately 98%, and the temperature dependence of the fixed bone is large, so there is a drawback that the temperature drift of the electric potential at point A is large. This MR magnetic sensing part (
5) The resistance value R is R=Ro (1+a cos2θ)
---- (1) (where Ro is the fixed bone of the resistance, α is the maximum resistance change rate, and θ is the angle between the current direction and the magnetization direction in the MR magnetic sensing part (5)), For example, M.R.
Magnetic sensing part (5) is 81Ni-19Pe (permalloy)
The actual value of α in the case of an MR magnetic thin film with a thickness of 250 mm made of alloy is approximately 0.017. Although the value of α varies somewhat depending on the thickness and material of the MR magnetic thin film of the MR magnetic sensing part (5), it is approximately α=0.05 at most.

一方、この抵抗の固定骨Roは Ro=R1(1+aAt) ・・・・(2+(但し、R
iは抵抗の初期値で、aは温度係数、Δtは温度変化分
である)で与えられ、上述のMR感磁部(5)の例にお
ける温度係数aの実測値は、a = 0.0027/ 
deg程度である。このことは直流磁界の検出において
大きなノイズとなる。
On the other hand, the fixed bone Ro of this resistance is Ro=R1(1+aAt)...(2+(However, R
i is the initial value of resistance, a is the temperature coefficient, and Δt is the temperature change), and the actual measured value of the temperature coefficient a in the example of the MR magnetic sensing part (5) described above is a = 0.0027. /
It is about deg. This results in large noise in detecting a DC magnetic field.

更に、この種のMR型磁気ヘッド部による場合、上述し
たようにその温度係数が大きいために、例えばMR感磁
部(5)への通電、或いはバイアス導体(3)へのバイ
アス電流等によって発生する熱が、ヘッド部の磁気記録
媒体との摺接によって不安定に放熱されてヘッドの温度
が変化する場合、大きなノイズ、所謂摺動ノイズを生ず
ることになる。
Furthermore, in the case of this type of MR type magnetic head unit, since its temperature coefficient is large as mentioned above, the temperature coefficient is generated by, for example, energization to the MR magnetic sensing part (5) or bias current to the bias conductor (3). If this heat is radiated unstably due to the head's sliding contact with the magnetic recording medium and the temperature of the head changes, large noise, so-called sliding noise, will be generated.

又、第2図の構成における増幅器(14)が低インピー
ダンス入力を呈する場合、MR感磁部(5)及びコンデ
ンサ(16)から成る高域通過フィルタのカットオフ周
波数をroとすると、このコンデンサ(16)に必要な
容量Cは、RをMR感磁部(5)の抵抗とすると、 、 (ωo=2πfo)となる。今、MR感磁部(5)
が前述した厚さ250人のパーマロイより成り、その長
さが50μmとなると、その抵抗Rは120Ω程度とな
るので、f o = 1 kHzとすると、コンデンサ
(16)としてはC=1.3μFという大きな値のもの
が必要となり、特にマルチトランク型のデジタルオーデ
ィオ信号用磁気ヘッド装置を構成する場合には問題とな
るものである。
Furthermore, when the amplifier (14) in the configuration shown in FIG. The capacitance C required for 16) is as follows, (ωo=2πfo), where R is the resistance of the MR magnetic sensing part (5). Now, MR magnetic sensing part (5)
is made of the above-mentioned permalloy with a thickness of 250 mm and its length is 50 μm, its resistance R is about 120 Ω, so if f o = 1 kHz, the capacitor (16) is C = 1.3 μF. A large value is required, which is particularly problematic when constructing a multi-trunk type magnetic head device for digital audio signals.

又、磁気回路における透磁率、特に比較的肉薄で断面積
が小さい磁性層(7)及び(8)における透磁率は、こ
れができるだけ大であることが望まれ、この透磁率は外
部磁界が零のとき最大となるので、上述したようなバイ
アス磁界を与えることは透磁率の低下を招来する。
In addition, it is desirable that the magnetic permeability in the magnetic circuit, especially in the magnetic layers (7) and (8) which are relatively thin and have a small cross-sectional area, be as high as possible. Therefore, applying a bias magnetic field as described above will result in a decrease in magnetic permeability.

上述の直流バイアス式MR型磁気ヘッド装置は、有効ト
ラック幅が広く、挾トラック化が容易であるという利点
がある反面、直線性が悪く、直流再生が困難で、摺動ノ
イズが大きく、バルクハウゼンノイズが太き(、出力の
ばらつきが大きいという欠点がある。
The above-mentioned DC bias type MR magnetic head device has the advantage of having a wide effective track width and being easily formed into a sandwich track, but has poor linearity, difficulty in DC reproduction, large sliding noise, and Barkhausen It has the disadvantages of high noise (and large output variations).

その他の従来のMR型磁気ヘッド装置としては、差動式
MR型磁気ヘッド装置、バーバボール式MR型磁気ヘッ
ド装置等が提案されている。差動式MR型磁気ヘッド装
置は、そのMR型磁気ヘッド部に於いて、MR感磁部を
一対設け、一対のMR感磁部に対しては共通のバイアス
導体により同じバイアス磁界を与え、MR感磁部からは
同じ信号磁界によって差動出力が得られるようになし、
その差動出力を差動増幅器に供給し、その差動増幅器よ
り再生信号をえるようにしたものである。
Other conventional MR magnetic head devices that have been proposed include a differential MR magnetic head device and a Barberball MR magnetic head device. A differential MR type magnetic head device is provided with a pair of MR magnetic sensing parts in its MR type magnetic head section, and the same bias magnetic field is applied to the pair of MR magnetic sensing parts by a common bias conductor. Differential output is obtained from the magnetic sensing part by the same signal magnetic field,
The differential output is supplied to a differential amplifier, and a reproduced signal is obtained from the differential amplifier.

この差動式MR型磁気ヘッド装置は、直流再生が可能(
但し、オフセントのばらつきが大きい)、バルクハウゼ
ンノイズが少ない、出力のばらつきが少ない29回路と
しては増幅器だけで良いという利点がある反面、摺動ノ
イズの軽減効果が小さく、有効トラック幅が狭く、挾ト
ランク化が困難であるという欠点がある。
This differential MR type magnetic head device is capable of direct current reproduction (
However, although it has the advantage of requiring only an amplifier as a 29 circuit with low Barkhausen noise and low output variation (with large off-cent variations), the effect of reducing sliding noise is small, the effective track width is narrow, and the The disadvantage is that it is difficult to trunk.

又、バーバーポール式MR磁気ヘッド装置は、そのMR
型磁気ヘッド部に於けるMR感磁部に、その長手方向に
斜めとなる如(、金等より成る多数の互いに平行な導体
バーを被着形成したものである。 、 このバーバーポール式MR型磁気ヘッド装置は、バルク
ハウゼンノイズが少なく、出力のばらつきが少なく、回
路としては増幅器だけで良いという利点がある反面、直
流再生が困難、摺動ノイズが大きい、挾トラック化が困
難、有効トラック幅があまり広くないという欠点がある
In addition, the barber pole type MR magnetic head device has its MR
This barber pole type MR type has a large number of mutually parallel conductor bars made of gold or the like, which are adhered to the MR magnetic sensing part of the magnetic head section so as to be diagonal in the longitudinal direction. Magnetic head devices have the advantage of having little Barkhausen noise, little variation in output, and only needing an amplifier as a circuit, but on the other hand, DC reproduction is difficult, sliding noise is large, it is difficult to make a sandwich track, and the effective track width is limited. The disadvantage is that it is not very spacious.

そこで、上述した欠点を解消ないしは改善するために、
先に本出願人は新規な磁気抵抗効果型磁気ヘッド装置を
特願昭59−38980号として出願した。
Therefore, in order to eliminate or improve the above-mentioned drawbacks,
Previously, the present applicant filed an application for a new magnetoresistive magnetic head device in Japanese Patent Application No. 1983-38980.

以下に第4図を参照して、先に提案したMR型磁気ヘッ
ド装置の一例を説明する。この例においては、そのMR
型磁気ヘッド部りは第1図及び第2図で説明したと同様
の構成を採るもので、第4図において第1図及び第2図
と対応する部分に同一符号を付して重複説明を省略する
。この例においては、MR型磁気ヘッド部りのバイアス
導体(3)に、直流バイアス電流IBに重畳して高周波
数fCのレベルの小さい交流バイアス電流IAを流して
、0 直流磁界に重畳して高周波磁界をMR感磁部(5)に与
える。ここに交流バイアス電流iAの波形、したがって
交流磁界の波形は正弦波、矩形波等その波形の如何を問
わないものである。
An example of the previously proposed MR type magnetic head device will be described below with reference to FIG. In this example, the MR
The magnetic head section has the same configuration as explained in FIGS. 1 and 2, and in FIG. 4, the same reference numerals are given to the parts corresponding to those in FIGS. Omitted. In this example, a low-level AC bias current IA with a high frequency fC is superimposed on a DC bias current IB through the bias conductor (3) of the MR type magnetic head, and a high frequency A magnetic field is applied to the MR magnetic sensing section (5). Here, the waveform of the AC bias current iA, and thus the waveform of the AC magnetic field, may be a sine wave, a rectangular wave, or any other waveform.

このように、MR感磁部(5)に直流バイアス磁界に重
畳して交流バイアス磁界が与えられるので、このMR感
磁部(5)の両端間、即ち第4図におけるA点には周波
数fcの交流信号が取り出される。
In this way, since the AC bias magnetic field is applied to the MR magnetic sensing part (5) superimposed on the DC bias magnetic field, the frequency fc is applied between both ends of the MR magnetic sensing part (5), that is, at point A in FIG. An alternating current signal is extracted.

第5図Aは、直流バイアス磁界Haと、信号磁界Hsに
交流バイアス磁界HAが重畳された状態での磁界HとM
R感磁部(5)の抵抗Rとの関係を示している。ここで
交流バイアス磁界HAの変化分ΔHが小さい時には、成
る瞬間での交流バイアス磁界の変化に対する抵抗変化の
大きさΔRは、第5図Aの2次曲線の微分の絶対値とし
て得られ、第5図Bに示すように、直流バイアス磁界H
Bと信号磁界H3の大きさと出力たる抵抗変化分との関
係は、原理的には直線となる。従って、第4図における
A点に得られる交流信号の大きさは、直i 流バイアス
磁界HBと、磁気記録媒体からの信号磁界H3の和の変
化に応じて変化する出力となる。
Figure 5A shows the DC bias magnetic field Ha and the magnetic fields H and M when the AC bias magnetic field HA is superimposed on the signal magnetic field Hs.
The relationship with the resistance R of the R magnetic sensing part (5) is shown. Here, when the amount of change ΔH in the AC bias magnetic field HA is small, the magnitude of the resistance change ΔR with respect to the change in the AC bias magnetic field at the instant of change is obtained as the absolute value of the differential of the quadratic curve in FIG. As shown in Figure 5B, the DC bias magnetic field H
In principle, the relationship between B, the magnitude of the signal magnetic field H3, and the resistance change that is the output is a straight line. Therefore, the magnitude of the AC signal obtained at point A in FIG. 4 is an output that changes depending on the change in the sum of the DC bias magnetic field HB and the signal magnetic field H3 from the magnetic recording medium.

そして、この出力は、第4図に示すように上述した周波
数fcの成分を通す高域通過フィルタ(前置増幅器)(
19)を介して整流器(20)に供給して整流し、その
整流出力を低域通過フィルタ(21)に供給するもので
ある。このようにすれば、磁気媒体からの信号磁界H3
に応じた信号出力がとり出せる。この場合、交流電流I
Aの周波数fcは、今例えば最終的に出力端子(15)
から得る出力の帯域が0〜100kHz必要である場合
、これより十分高い周波数、例えばf c −I MH
zに選定すれば良い。この場合高域通過フィルタ(19
)は低域カットオフ周波数を100ktlzより高(、
且つ周波数f C%例えばI Ml(zより低い例えば
500kllzに選んでおくものとする。しかして、高
域通過フィルタの出力を前述したように整流器(20)
によって整流して後、カットオフ周波数が100kll
zの低域通過フィルタ(21)を通すことにより、出力
端子(15)に0〜100kHzの帯域の信号が得られ
る。
As shown in Fig. 4, this output is passed through a high-pass filter (preamplifier) (
19) to a rectifier (20) for rectification, and the rectified output is supplied to a low-pass filter (21). In this way, the signal magnetic field H3 from the magnetic medium
A signal output can be obtained according to the In this case, the alternating current I
The frequency fc of A is now, for example, finally at the output terminal (15)
If the band of output obtained from 0 to 100 kHz is required, a frequency sufficiently higher than this, for example f c -I MH
It is sufficient to select z. In this case, a high-pass filter (19
) has a low cutoff frequency higher than 100ktlz (,
And the frequency f C% shall be selected to be lower than I Ml (z, for example 500kllz).Then, the output of the high-pass filter is connected to the rectifier (20) as described above.
After rectification by, the cutoff frequency is 100kll.
By passing the signal through a low-pass filter (21) of 0 to 100 kHz, a signal in a band of 0 to 100 kHz is obtained at the output terminal (15).

このような構成による磁気ヘッド装置においては、第6
図Aに示す外部磁界(信号磁界子バイアス磁界)がMR
感磁部(5)に与えられた場合、第4図における点Bに
おいては第6図Bに示すように、周波数fcのキャリア
を信号で振幅変調した出力が得られ、第6図Cに示すよ
うに出力端子(15)においては、信号磁界に応じた出
力がとり出される。
In a magnetic head device having such a configuration, the sixth
The external magnetic field (signal magnetic field bias magnetic field) shown in Figure A is MR
When applied to the magnetic sensing part (5), at point B in Fig. 4, an output is obtained in which the carrier of frequency fc is amplitude-modulated with a signal, as shown in Fig. 6B, and as shown in Fig. 6C. Thus, at the output terminal (15), an output corresponding to the signal magnetic field is taken out.

かかる磁気ヘッド装置によれば、MR感磁部(5)の磁
界対抵抗2次特性曲線による動作特性の微分に相当する
直線的動作特性による出力がとり出されるので、歪のな
い再生信号をとり出すことができるものである。
According to such a magnetic head device, an output with a linear operating characteristic corresponding to the differentiation of the operating characteristic by the magnetic field vs. resistance quadratic characteristic curve of the MR magnetic sensing section (5) is extracted, so that a reproduced signal without distortion can be obtained. It is something that can be released.

又、MR感磁部(5)の抵抗の固定分について温度依存
性が大であっても、MR感磁部(5)の動作特性曲線を
微分した特性によっているので、この抵抗の固定分の温
度ドリフトによる影響を格段に低減することができる。
Furthermore, even if the fixed portion of the resistance of the MR magnetic sensing section (5) has a large temperature dependence, the fixed portion of this resistance depends on the characteristics obtained by differentiating the operating characteristic curve of the MR magnetic sensing section (5) The influence of temperature drift can be significantly reduced.

更に、上述したようにMR感磁部(5)の抵抗固定骨の
温度依存性による影響を排除したことによって、MR型
磁気ヘッド部の前述した磁気媒体との3 2 摺動によるノイズの発生を少なくすることができる。
Furthermore, as mentioned above, by eliminating the influence of the temperature dependence of the resistance-fixing bone of the MR magnetic sensing part (5), the generation of noise due to the above-mentioned sliding of the MR type magnetic head part with the magnetic medium can be reduced. It can be reduced.

又、かかる磁気ヘッド装置におけるコンデンサ(16)
は、周波数fcの成分を通過させれば良いから、例えば
f c −500kHzとすると、このコンデンサ(1
6)の容量Cは、C= 2600pFで良いことになる
。そして、この周波数fcを更に上げれば、この容量C
は更に小さくできるものである。
Also, a capacitor (16) in such a magnetic head device
Since it is sufficient to pass the component of frequency fc, for example, if f c -500kHz, this capacitor (1
6), the capacitance C should be 2600 pF. If this frequency fc is further increased, this capacitance C
can be made even smaller.

第7図は先に提案したMR型磁気ヘッド装置の他の例を
示し、第7図において第4図と対応する部分には同一符
号を付して重複説明を省略する。
FIG. 7 shows another example of the previously proposed MR type magnetic head device. In FIG. 7, parts corresponding to those in FIG. 4 are given the same reference numerals, and redundant explanation will be omitted.

この場合は、バイアス導体(3)には、直流バイアス電
流は流されずに、交流バイアス電流IAのみを流すよう
にする。この動作を模式的に示したのが第8図である。
In this case, no direct current bias current is caused to flow through the bias conductor (3), but only an alternating current bias current IA is caused to flow therethrough. FIG. 8 schematically shows this operation.

この図において、実線の曲線が、実際のMR感磁部の磁
界対抵抗の動作特性曲線であるが、この特性の2次曲線
部分を外挿すると破線図示のようになり、これによる最
小抵抗値Rll1inに対応する磁界を+Ho及び−H
oとする。この例では信号磁界H9に重畳して交流バイ
アス磁界4 HAが与えられ、信号磁界の極性と大きさとに対応し且
つ交流バイアス磁界に応じたMR感磁部(5)の抵抗変
化が得られる。
In this figure, the solid line curve is the operating characteristic curve of the magnetic field vs. resistance of the actual MR magnetic sensing part, but if the quadratic curve part of this characteristic is extrapolated, it becomes as shown by the broken line, and the minimum resistance value obtained by this is The magnetic field corresponding to Rll1in is +Ho and -H
o. In this example, an alternating current bias magnetic field 4 HA is applied superimposed on the signal magnetic field H9, and a resistance change of the MR magnetic sensing portion (5) corresponding to the polarity and magnitude of the signal magnetic field and in accordance with the alternating current bias magnetic field is obtained.

この場合の動作特性曲線は2次曲線で、このMR感磁部
(5)の抵抗値Rは、次のように表される。
The operating characteristic curve in this case is a quadratic curve, and the resistance value R of this MR magnetic sensing part (5) is expressed as follows.

ここに、ΔRmaxはΔRmax =Rmax −Rm
inで与えられる。MR感磁部(5)に与えられる磁界
Hは、次式に示すようにバイアス磁界HA(t)と、信
号磁界Hs(tlとの和で表される。
Here, ΔRmax is ΔRmax = Rmax − Rm
It is given in. The magnetic field H applied to the MR magnetic sensing section (5) is expressed by the sum of the bias magnetic field HA(t) and the signal magnetic field Hs(tl) as shown in the following equation.

H(tl=HAit)+)(s (tl ”(5)ここ
に磁界HA(t)は、バイアス導体(3)に流される電
流によって得られ、 HA (t)= HAO−sin (ωat) ・・・
・(61の如く表される。但し、角周波数ωGは次式の
ように表される。
H (tl = HAit) +) (s (tl ” (5) where the magnetic field HA (t) is obtained by the current flowing in the bias conductor (3), HA (t) = HAO-sin (ωat) ・・・・
・(It is expressed as in 61. However, the angular frequency ωG is expressed as in the following equation.

ωc=2πfC・・・・(7) MR感磁部(5)の出力電圧V (t)は、MR検出電
流をIとすると、 5 1tl=I ・ R・・・・(8) であり、上記(4)、(5)、(6)式から次のように
表される。
ωc=2πfC (7) The output voltage V (t) of the MR magnetic sensing section (5) is as follows, where I is the MR detection current: 5 1tl=I ・ R (8) From the above equations (4), (5), and (6), it is expressed as follows.

X5in ωc十(Hs (tl) 2)・・・・(9
) 次に、この出力電圧V (tlと、交流バイアス磁界H
Aと同相同曲波数の信号、例えばsin (ωat)を
乗算器(22)によって乗算する。その出力V z l
)は、次式のように表される。
X5in ωc ten (Hs (tl) 2)...(9
) Next, this output voltage V (tl and AC bias magnetic field H
A signal having the same wave number as A, for example, sin (ωat) is multiplied by a multiplier (22). Its output V z l
) is expressed as follows.

Vz (tl=V(t)・sin (al(Ht)+2
HAo−Hs(tl・sin (ωc t) +(Hs
(tl) 2) ・sin <6)c t)・・・・0
1ll そして、これを低域通過フィルタ(21)に通ずルト、
次αΦにおいてωC成分を有する項1−Rnsax ・
sin (alc t) =O”・・(ID 6 HA♂・5irI2(ωat) HAO = −(sin (ωt) −cos (2ω1)Xs
in(ωt))=−0・・・・(1り 2 HAO−H3Ttl ・5in2(ωt )=HA
o−Hs(ti (l −cos(2a+t))= H
AO−Hs (t) ” ・・(13)()(s (t
it 2・sin (ωt) −〇 ・・・・(14)
となる。従って、端子(15)で得られる出力電圧Vo
(tlは、 ・・・・ (15) となり、信号磁界HsTtlに比例する電圧が得られる
。尚、この場合、乗算器(22)への入力に、信号磁界
成分Hs(tlが含まれていても、出力に混入する虞は
少ないので、高域通過フィルタ(19)を省略すること
もできる。
Vz (tl=V(t)・sin (al(Ht)+2
HAo−Hs(tl・sin (ωc t) +(Hs
(tl) 2) ・sin <6)c t)・・・0
1ll This is then passed through a low-pass filter (21) to
The term 1-Rnsax with ωC component in order αΦ
sin (alc t) =O”...(ID 6 HA♂・5irI2(ωat) HAO = −(sin (ωt) −cos (2ω1)Xs
in(ωt))=-0...(1ri2 HAO-H3Ttl ・5in2(ωt)=HA
o-Hs(ti(l-cos(2a+t))=H
AO-Hs (t) ”...(13)()(s (t
it 2・sin (ωt) −〇 ・・・(14)
becomes. Therefore, the output voltage Vo obtained at terminal (15)
(tl is ... (15), and a voltage proportional to the signal magnetic field HsTtl is obtained. In this case, the input to the multiplier (22) includes the signal magnetic field component Hs(tl). However, since there is little possibility that the high-pass filter (19) will be mixed into the output, the high-pass filter (19) can also be omitted.

かかるMR型磁気ヘッド装置によれば、外部磁界の極性
に応じた出力をとり出せることになり、7 先の例と同様の利点に加えて、ダイナミックレンジが大
となるという利点がある。また、この場合、磁気的バイ
アスを交流成分のみとすることによって直流バイアスに
よる磁気回路の透磁率低下を回避できる利益もある。
According to such an MR type magnetic head device, it is possible to extract an output according to the polarity of the external magnetic field, and in addition to the same advantages as in the previous example, there is an advantage of a wide dynamic range. Further, in this case, there is an advantage that by using only the AC component as the magnetic bias, it is possible to avoid a decrease in the magnetic permeability of the magnetic circuit due to the DC bias.

先に提案したMR型磁気ヘッド装置によれば、直線性に
すぐれた歪の小さい出力を得ることができ、直流再生が
可能で、温度ドリフトが小さく、摺動ノイズが改善され
、有効トラック幅が大で、狭トラツク化可能であり、更
にコンデンサの容量を小さくできるなどの利益を有する
と共に、更に第7図で説明した構成とするときは、ダイ
ナミックレンジを大きくとることができ、また成る場合
は磁気回路の透磁率低下を回避することもできる。
According to the previously proposed MR type magnetic head device, it is possible to obtain output with excellent linearity and low distortion, DC reproduction is possible, temperature drift is small, sliding noise is improved, and the effective track width is widened. It has the advantages of being large, narrowing the track, and reducing the capacitance of the capacitor. Furthermore, when the configuration shown in FIG. 7 is used, the dynamic range can be widened; It is also possible to avoid a decrease in permeability of the magnetic circuit.

発明の目的 本発明は磁気抵抗効果感磁部に交流バイアス磁界を与え
るようにした磁気抵抗効果型磁気ヘッド装置に於いて、
直線性が一層向上して歪が一層少なくなり、バルクハウ
ゼンノイズの発生が少なくなり、ダイナミックレンジが
一層広くなり、出力8 のばらつきが少なくなるものを提案しようとするもので
ある。
Object of the Invention The present invention provides a magnetoresistive magnetic head device in which an alternating current bias magnetic field is applied to a magnetoresistive magnetic sensing part.
The objective is to propose a system that further improves linearity, reduces distortion, reduces the occurrence of Barkhausen noise, further widens the dynamic range, and reduces variations in output 8.

発明の概要 本発明による磁気抵抗効果型磁気ヘッド装置は、信号磁
界の与えられる磁気抵抗効果感磁部と、この磁気抵抗効
果感磁部に交流バイアス磁界を与える交流磁界発生手段
と、磁気抵抗効果感磁部の出力から信号磁界に応じた信
号出力を取出す信号取出し手段と、この信号取出し手段
からの信号出力に応じた負帰還磁界を磁気抵抗効果感磁
部に与える負帰還磁界発生手段とを有することを特徴と
するものである。
Summary of the Invention A magnetoresistive magnetic head device according to the present invention includes: a magnetoresistive magnetic sensing section to which a signal magnetic field is applied; A signal extraction means for extracting a signal output according to the signal magnetic field from the output of the magnetic sensing section, and a negative feedback magnetic field generation means for applying a negative feedback magnetic field to the magnetoresistive magnetic sensing section according to the signal output from the signal extraction means. It is characterized by having.

上述せる本発明によれば、磁気抵抗効果感磁部に交流バ
イアス磁界を与えるようにした磁気抵抗効果型磁気ヘッ
ド装置に於いて、直線性が一層向上して歪が一層少なく
なり、バルクハウゼンノイズの発生が少なくなり、ダイ
ナミックレンジが一層広くなり、出力のばらつきが少な
くなるものを得ることができる。
According to the present invention described above, in a magnetoresistive magnetic head device in which an AC bias magnetic field is applied to a magnetoresistive magnetic sensing part, linearity is further improved, distortion is further reduced, and Barkhausen noise is reduced. It is possible to obtain a device with fewer occurrences of noise, a wider dynamic range, and less variation in output.

! 実施例 以下に、第9図を参照して、本発明の一実施例を説明す
る。この実施例は、第7図の磁気抵抗効果型磁気ヘッド
に本発明を適用した場合で、第9図に於いて第7図と対
応する部分には同一符号を付して重複説明を省略する。
! EXAMPLE An example of the present invention will be described below with reference to FIG. This embodiment is a case in which the present invention is applied to the magnetoresistive magnetic head shown in FIG. 7. In FIG. 9, parts corresponding to those in FIG. .

即ち、低域通過フィルタ(21)よりの信号出力をバッ
ファ増幅器(23)に供給し、これよりの電流iFBを
バイアス導体(3)に流して、このバイアス導体(3)
(別個のバイアス導体を設けて、これに電流ipBを流
すこともできる)から負帰還磁界HFBを発生させて、
MR感磁部(5)に与えるようにする。
That is, the signal output from the low-pass filter (21) is supplied to the buffer amplifier (23), and the current iFB from this is passed through the bias conductor (3).
(a separate bias conductor may also be provided, through which a current ipB flows) a negative feedback field HFB is generated,
so as to give it to the MR magnetic sensing part (5).

第10図は第9図の磁気抵抗効果型磁気ヘッド装置の等
価回路を示し、走行している磁気テープの記録信号M 
(Xlに基づいて、信号磁界Hs(tlとして、Hs 
(tl = M(xi ・φm (j2π/λ)・・・
・(16)が発生すると共に、帰還磁界−Hpa(t)
が発生する。
FIG. 10 shows an equivalent circuit of the magnetoresistive magnetic head device shown in FIG. 9, and shows the recording signal M of the running magnetic tape.
(Based on Xl, signal magnetic field Hs (tl, Hs
(tl = M(xi ・φm (j2π/λ)...
・(16) is generated, and the return magnetic field −Hpa(t)
occurs.

かくして、MR感磁部(5)から出力電圧V ftlと
して、V (tl−φh ・(Hs (tl−HpBf
tl) ・・・・(17)が得られる。又、信号取出し
手段(回路(16)。
Thus, the output voltage V ftl from the MR magnetic sensing part (5) is V (tl-φh ・(Hs (tl-HpBf
tl) ...(17) is obtained. Also, signal extraction means (circuit (16)).

(19) 、(22) 、(21)から成る)から出力
信号9 Vo(tlとして、 Vo(t)=A (jω) ・Vltl −(1B)が
得られる。又、帰還磁界−Hps (t)は、−Hps
(t)−K −A (jω) ・・・・(19)で表さ
れる。
(19), (22), and (21)), the output signal 9 Vo (tl, Vo(t) = A (jω) ・Vltl - (1B) is obtained. Also, the feedback magnetic field - Hps (t ) is -Hps
It is expressed as (t)-K-A (jω) (19).

尚、φm(j2π/λ)はMR感磁部(5)に於ける入
力側の伝達関数(但し、λは波長)、φhはMR感磁部
(5)の出力側の伝達関数、A(jω)は信号取出し手
段の伝達関数、Kはバッファ増幅器(23)の伝達関数
、φiはバイアス導体(3)の伝達関数である。
In addition, φm(j2π/λ) is the transfer function on the input side of the MR magnetically sensitive section (5) (where λ is the wavelength), φh is the transfer function on the output side of the MR magnetically sensitive section (5), and A( jω) is the transfer function of the signal extraction means, K is the transfer function of the buffer amplifier (23), and φi is the transfer function of the bias conductor (3).

第11図Aに、MR感磁部(5)の磁界対抵抗の特性曲
線を示すが、MR感磁部(5)に、第11図Bに示す如
き大レベルの矩形波交流磁界Ha(tl及び信号磁界)
Tsftlの重畳磁界を与えた場合、MR感磁部(5)
からは第11図Cに示す如き出力電圧V Ttlが得ら
れる。乗算器(22)に於いて、この出力電圧V (t
)と、第11図りに示す矩形波交流電流を掛算すること
により、低域通過フィルタ(21)の出力側には、第】
1図Bのf#号磁界Hs(t)に対応した信号出力Vo
(t)1 0 が出力される。
FIG. 11A shows a characteristic curve of the magnetic field versus resistance of the MR magnetic sensing part (5). and signal magnetic field)
When a superimposed magnetic field of Tsftl is applied, the MR magnetic sensing part (5)
From this, an output voltage V Ttl as shown in FIG. 11C is obtained. In the multiplier (22), this output voltage V (t
) by the rectangular wave alternating current shown in Figure 11, the output side of the low-pass filter (21) has the following value:
Signal output Vo corresponding to f# magnetic field Hs(t) in Figure 1B
(t) 1 0 is output.

次に、磁気テープに315Hzの単一周波数の信号を記
録し、それを各種磁気ヘッド装置で再生した場合の、記
録レベルに対する信号出力の2次及び3次高調波歪の特
性を第12図に示す。但し、磁気テープとしてはメタル
テープを用いた。テープ速度は4.7c+n / se
eであった。記録用磁気ヘッドは通常のリング形磁気ヘ
ッドであった。MR型磁気ヘッド装置の場合、そのMR
感磁部(5)に流す検出電流iMRが5mA、バイアス
導体(3)に流する矩形波交流電流lAが5111^、
その周波数が250kHzであった。
Next, Figure 12 shows the characteristics of second and third harmonic distortion of the signal output with respect to the recording level when a single frequency signal of 315 Hz is recorded on a magnetic tape and reproduced by various magnetic head devices. show. However, a metal tape was used as the magnetic tape. Tape speed is 4.7c+n/se
It was e. The recording magnetic head was a normal ring-shaped magnetic head. In the case of an MR type magnetic head device, its MR
The detection current iMR flowing through the magnetic sensing part (5) is 5 mA, the rectangular wave alternating current lA flowing through the bias conductor (3) is 5111^,
Its frequency was 250kHz.

曲線B2.B3は夫々第7図の磁気抵抗効果型磁気ヘッ
ド装置による出力信号の2次及び3次高調波歪の特性曲
線を示し、曲線A2.A3にて示す通常のリング形磁気
ヘッド装置による出力信号の2次及び3次高調波歪の特
性曲線に比較して、いずれも歪がかなり大きいことが分
る。
Curve B2. B3 shows characteristic curves of second and third harmonic distortion of the output signal by the magnetoresistive magnetic head device of FIG. 7, and curves A2. It can be seen that the distortions are considerably large compared to the characteristic curves of second and third harmonic distortion of the output signal from a normal ring-shaped magnetic head device shown in A3.

これに対し、曲線C2,C3は夫々第9図の磁気抵抗効
果型磁気ヘッド装置による出力信号の222 ゛ 次及び3次高調波歪の特性曲線を示し、曲線A2゜A3
にて示す通常のリング形磁気ヘッド装置による出力信号
の2次及び3次高調波歪の特性曲線に比較して、同程度
に歪が小さいことが分る。
On the other hand, curves C2 and C3 show the characteristic curves of 222nd and 3rd harmonic distortion of the output signal from the magnetoresistive magnetic head device shown in FIG. 9, respectively, and curves A2 and A3
It can be seen that the distortion is similarly small compared to the characteristic curve of second- and third-order harmonic distortion of the output signal from a conventional ring-shaped magnetic head device shown in FIG.

次に、第13図を参照して、本発明の他の実施例を説明
する。この実施例は、第4図の磁気抵抗効果型磁気ヘッ
ド装置に本発明を適用した場合で、第13図に於いて第
4図と対応する部分には同一符号を付して重複説明を省
略する。即ち、低域通過フィルタ(21)よりの信号出
力をバッファ増幅器(23)に供給し、これよりの電流
iFBをバイアス導体(3)に流して、このバイアス導
体(3)(別個のバイアス導体を設けて、これに電流i
pBを流すこともできる)から負帰還磁界HFBを発生
させて、MR感磁部(5)に与えるようにする。尚、そ
の他の説明は、第9図の実施例の説明を援用する。
Next, another embodiment of the present invention will be described with reference to FIG. This embodiment is a case in which the present invention is applied to the magnetoresistive magnetic head device shown in FIG. 4. In FIG. 13, parts corresponding to those in FIG. do. That is, the signal output from the low-pass filter (21) is supplied to the buffer amplifier (23), the current iFB from this is passed through the bias conductor (3), and the bias conductor (3) (separate bias conductor and a current i
A negative feedback magnetic field HFB is generated from the negative feedback magnetic field HFB and applied to the MR magnetic sensing section (5). For other explanations, the explanation of the embodiment shown in FIG. 9 is referred to.

上述せる本発明によれば、磁気抵抗効果感磁部に交流バ
イアス磁界を与えるようにした磁気抵抗効果型磁気ヘッ
ド装置に於いて、直線性が一層向う 上27歪が一層少
“くなり・パ″りパつ57ノイズの発生が少なくなり、
ダイナミックレンジが一層広くなり、出力のばらつきが
少なくなるものを得ることができる。
According to the present invention described above, in a magnetoresistive magnetic head device in which an alternating current bias magnetic field is applied to the magnetoresistive magnetic sensing part, linearity is further improved, distortion is further reduced, and performance is improved. ``Ripatsu 57 noise generation is reduced,
It is possible to obtain a wider dynamic range and less variation in output.

尚、再生信号はデジタルオーディオ信号に限らず、デジ
タルビデオ信号、アナログオーディオ/ビデオ信号等も
可能である。
Note that the reproduction signal is not limited to a digital audio signal, but may also be a digital video signal, an analog audio/video signal, etc.

発明の効果 上述せる本発明によれば、磁気抵抗効果感磁部に交流バ
イアス磁界を与えるようにした磁気抵抗効果型磁気ヘッ
ド装置に於いて、直線性が一層向上して歪が一層少なく
なり、バルクハウゼンノイズの発生が少なくなり、ダイ
ナミックレンジが一層広くなり、出力のばらつきが少な
くなるものを得ることができる。
Effects of the Invention According to the present invention described above, in a magnetoresistive magnetic head device in which an alternating current bias magnetic field is applied to a magnetoresistive magnetic sensing part, linearity is further improved and distortion is further reduced. The generation of Barkhausen noise is reduced, the dynamic range is further widened, and output variations are reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明に供する磁気抵抗効果型磁気ヘッ
ド装置の路線的拡大断面図、第2図は従来の磁気抵抗効
果型磁気ヘッド装置の構成図、第3図は磁気抵抗効果型
感磁部の特性曲線図、第4図は先に提案した磁気抵抗効
果型磁気ヘッド装置3 の−例の構成図、第5図A及びBはその動作特性曲線図
、第6図はその動作の説明に供する波形図、第7図は先
に提案した磁気抵抗効果型磁気ヘッド装置の他の例の構
成図、第8図はその説明に供する特性曲線図、第9図は
本発明による磁気抵抗効果型磁気ヘッド装置の一実施例
を示す構成図、第10図はその等価回路を示す回路図、
第11図は第9図の装置の動作説明に供する波形図、第
12図は第9図の装置の特性の説明に供給する特性曲線
図、第13図は本発明による磁気抵抗効果型磁気ヘッド
装置の他の実施例を示す構成図である。 hは磁気ヘッド部、(1)は基板、(3)はバイアス導
体、(5)は磁気抵抗効果感磁部、(7)及び(8)は
磁性層、(19)は高域通過フィルタ、(20)は整流
器、(21)は低域通過フィルタ、(22)は乗算器、
(23)はバッファ増幅器である。 5 4 第1図 第2図
FIG. 1 is an enlarged cross-sectional view of a magnetoresistive magnetic head device used to explain the present invention, FIG. 2 is a configuration diagram of a conventional magnetoresistive magnetic head device, and FIG. 3 is a diagram showing a magnetoresistive magnetic head device. FIG. 4 is a diagram of the characteristic curve of the magnetic part, FIG. 4 is a configuration diagram of an example of the magnetoresistive magnetic head device 3 proposed earlier, FIGS. 5A and B are diagrams of its operating characteristic curve, and FIG. 6 is a diagram of its operation. A waveform diagram for explanation, FIG. 7 is a configuration diagram of another example of the magnetoresistive magnetic head device proposed earlier, FIG. 8 is a characteristic curve diagram for explanation, and FIG. 9 is a diagram of the magnetoresistive head device according to the present invention. A configuration diagram showing an example of an effective magnetic head device, FIG. 10 is a circuit diagram showing an equivalent circuit thereof,
11 is a waveform diagram for explaining the operation of the device in FIG. 9, FIG. 12 is a characteristic curve diagram for explaining the characteristics of the device in FIG. 9, and FIG. 13 is a magnetoresistive magnetic head according to the present invention. It is a block diagram which shows another Example of an apparatus. h is a magnetic head part, (1) is a substrate, (3) is a bias conductor, (5) is a magnetoresistive effect magnetic part, (7) and (8) are magnetic layers, (19) is a high-pass filter, (20) is a rectifier, (21) is a low-pass filter, (22) is a multiplier,
(23) is a buffer amplifier. 5 4 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 信号磁界の与えられる磁気抵抗効果感磁部と、該磁気抵
抗効果感磁部に交流バイアス磁界を与える交流磁界発生
手段と、上記磁気抵抗効果感磁部の出力から上記信号磁
界に応じた信号出力を取出す信号取出し手段と、該信号
取出し手段からの信号出力に応じた負帰還磁界を上記磁
気抵抗効果感磁部に与える負帰還磁界発生手段とを有す
ることを特徴とする磁気抵抗効果型磁気ヘッド装置。
a magnetoresistive magnetic sensing section to which a signal magnetic field is applied, an alternating current magnetic field generation means for applying an alternating current bias magnetic field to the magnetoresistive magnetic sensing section, and a signal output according to the signal magnetic field from the output of the magnetoresistive magnetic sensing section. A magnetoresistive magnetic head comprising: a signal extracting means for extracting a signal; and a negative feedback magnetic field generating means for applying a negative feedback magnetic field to the magnetoresistive magnetic sensing part according to the signal output from the signal extracting means. Device.
JP11762584A 1984-03-01 1984-06-08 Magneto-resistance effect type magnetic head device Pending JPS60263310A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP11762584A JPS60263310A (en) 1984-06-08 1984-06-08 Magneto-resistance effect type magnetic head device
US06/705,706 US4703378A (en) 1984-03-01 1985-02-26 Magnetic transducer head utilizing magnetoresistance effect
CA000475257A CA1235482A (en) 1984-03-01 1985-02-27 Magnetic transducer head utilizing magnetoresistance effect
DE3587992T DE3587992T2 (en) 1984-03-01 1985-02-28 Magnetic transducer head using a magnetoresistance effect.
DE3588065T DE3588065T2 (en) 1984-03-01 1985-02-28 Magnetic transducer head device using the magnetoresistance effect.
EP90123594A EP0421489B1 (en) 1984-03-01 1985-02-28 Magnetic transducer head utilizing the magnetoresistance effect
EP93100342A EP0544642B1 (en) 1984-03-01 1985-02-28 Magnetic transducer head apparatus utilizing the magnetoresistance effect
EP85102282A EP0154307B1 (en) 1984-03-01 1985-02-28 Magnetic transducer head utilizing the magnetoresistance effect
DE8585102282T DE3585959D1 (en) 1984-03-01 1985-02-28 MAGNETIC CONVERTER HEAD USING THE MAGNETIC RESISTANCE EFFECT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11762584A JPS60263310A (en) 1984-06-08 1984-06-08 Magneto-resistance effect type magnetic head device

Publications (1)

Publication Number Publication Date
JPS60263310A true JPS60263310A (en) 1985-12-26

Family

ID=14716367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11762584A Pending JPS60263310A (en) 1984-03-01 1984-06-08 Magneto-resistance effect type magnetic head device

Country Status (1)

Country Link
JP (1) JPS60263310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834864A2 (en) * 1996-10-03 1998-04-08 Hewlett-Packard Company Actively stabilized magnetoresistive head

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139513A (en) * 1977-05-11 1978-12-05 Mitsubishi Electric Corp Reproducer using magnetoresistance effect type head
JPS53139512A (en) * 1977-05-11 1978-12-05 Mitsubishi Electric Corp Information detector
JPS5421316A (en) * 1977-07-18 1979-02-17 Mitsubishi Electric Corp Magnetic recorder-reproducer
JPS551698A (en) * 1978-06-19 1980-01-08 Philips Nv Magnetic reading head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139513A (en) * 1977-05-11 1978-12-05 Mitsubishi Electric Corp Reproducer using magnetoresistance effect type head
JPS53139512A (en) * 1977-05-11 1978-12-05 Mitsubishi Electric Corp Information detector
JPS5421316A (en) * 1977-07-18 1979-02-17 Mitsubishi Electric Corp Magnetic recorder-reproducer
JPS551698A (en) * 1978-06-19 1980-01-08 Philips Nv Magnetic reading head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834864A2 (en) * 1996-10-03 1998-04-08 Hewlett-Packard Company Actively stabilized magnetoresistive head
EP0834864A3 (en) * 1996-10-03 1998-08-12 Hewlett-Packard Company Actively stabilized magnetoresistive head
US5930062A (en) * 1996-10-03 1999-07-27 Hewlett-Packard Company Actively stabilized magnetoresistive head

Similar Documents

Publication Publication Date Title
EP0154307B1 (en) Magnetic transducer head utilizing the magnetoresistance effect
US3979775A (en) Magnetoresistive multitransducer assembly with compensation elements for thermal drift and bias balancing
EP0484474B1 (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
US4691259A (en) Magnetic transducer head utilizing magnetoresistance effect
JPS60182503A (en) Magneto-resistance effect type magnetic head
JPH0473201B2 (en)
JPS60263310A (en) Magneto-resistance effect type magnetic head device
JPH0542049B2 (en)
JPS60263301A (en) Magneto-resistance effect type magnetic head
JPS6154005A (en) Magneto-resistance effect type magnetic head device
JPS6357741B2 (en)
JPH0532805B2 (en)
JPS6187215A (en) Magneto-resistance effect type magnetic head device
JPH0565922B2 (en)
JPH1027317A (en) Magnetic head
JPS6035731B2 (en) magnetoresistive transducer
JPS5984328A (en) Magneto-resistance effect type film head
JPS6259269B2 (en)
JPS6157011A (en) Magnetoresistance effect type magnetic head device
JPS631548B2 (en)
JPS6310310A (en) Magneto-resistance effect type magnetic head
JPS5837835A (en) Magneto-resistance effect type magnetic head
JPS60195712A (en) Magneto-resistance effect type magnetic head
JPH0527166B2 (en)
JPH01296422A (en) Magneto-resistance effect type element